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The lightest engineering metal magnesium (Mg) alloys have many potential
structural and functional applications. However, due to the intrinsic activity
of Mg, Mg alloys are not corrosion-resistant. Particularly the severe galvanic
corrosion of Mg alloys in contact with other metals in engineering limits the
industrial applications. There is currently no cost-effective solution to this
stubborn problem. This short review systematically introduces the strategy of
galvanic corrosion mitigation, and briefly summarizes the existing approaches
that have been used to reduce the galvanic corrosion damage. It appears that
the surface alloying that can convert the surface of a Mg alloy into a passive
metal is the most promising technique. Based on the existing results in the area
of Mg surface alloying, future research directions are listed at last.
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1 Introduction

Magnesium (Mg) alloys have many potential applications, particularly in the auto,
aerospace, military, and electronic industries, as structural and functional materials. Firstly,
Mg alloys as a structural material due to the well-known low density are very attractive
to engineers. They have great potential in weight-sensitive industries like electronics,
automotive and aerospace (Zeng et al., 2018; Song et al., 2020; Luo et al., 2019; Xie et al.,
2023; Zhang et al., 2023). Secondly, Mg alloys have many favorable properties to enable
their functions in special applications. For example, due to the negative open-circuit
potential (OCP) of Mg, Mg alloys have been traditionally used as a sacrificial anode to
cathodically protect other engineering metals (Song and Atrens, 2023; Song et al., 2004). A
new development in this area is the use of Mg alloys as intelligent anodes to smartly protect
reinforced concrete (Wu et al., 2021; Yan et al., 2019). Recently, researchers also carried
out many investigations in the fields of Mg-air battery and hydrogen storage (Ma et al.,
2020; Khajondetchairit et al., 2022; Bao et al., 2023; Chen et al., 2024; Cao et al., 2023;
Ouyang et al., 2020). Moreover, the great biocompatibility and high corrodibility of Mg
have also interested many researchers who are trying to use Mg alloys as biodegradable
implants in the human body (Sekar and Panigrahi, 2024; Kim and Pan, 2023; Cui et al.,
2020; Song, 2007; Antoniac et al., 2020).

However, Mg alloys generally have low corrosion resistance in water containing
media (Benbouzid et al., 2022; Sha et al., 2022). Particularly due to the highly active
nature of Mg in comparison with other structural metals (ASTM G82-98, 1998), the
macro-galvanic corrosion of Mg alloys in connect with other engineering metals,
which is commonly encountered in engineering applications, has become the main
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hurdle badly restricting the industrial applications (Isacsson et al.,
1997). To enable the use of Mg alloys in engineering, the stubborn
galvanic corrosion issue must be addressed.

Although galvanic corrosion of Mg alloys is a small scope
in research, it is a big challenge in engineering. In theory, the
protection against galvanic corrosion can also inherently inhibit
the self-corrosion of a metal. This mitigation effect is particularly
significant for Mg alloys, because the additional dissolution damage
due to the negative difference effect of Mg can also be inhibited
when the galvanic corrosion process is suppressed. Hence, it is of
great significance to summarize and review promising results and
progress in time in this narrow field.

2 Galvanic corrosion of Mg alloys

Galvanic corrosion is simply the anodic dissolution of a relatively
active metal (anode) being accelerated by a relatively noble metal
(cathode) in electronic contact (Lee, 2006; Yadava et al., 2007). It
should be noted that the galvanic effect induced additional corrosion
can also occur microscopically between different phases in an alloy
(Andrade et al., 2008; Tsai and Chen, 2007). In this review, galvanic
corrosion, if not specified, will simply refer to the macro-galvanic
corrosion between twometals, which has been commonly known in
most industrial communities.

The rate of galvanic corrosion in general can be simply expressed
by the galvanic current Ig from the anodic metal through the
solution to the coupled cathodic metal (Saeed, 2024; Song et al.,
2004):

Ig =
EPcorr −E

M
corr

RM
p +Rs+RP

p
(1)

where EM
corr and EP

corr are the corrosion potentials of the corroding
metal (anode) and coupled metal (cathode), respectively, RM

p and
RP

p are their average polarization resistances respectively, and RS
is the total solution resistance between them. Around this simple
equation, there have been many studies so far (Wagner, 1951; Hack,
1988; Tavakkolizadeh and Saadatmanesh, 2001; Wu et al., 2022;
Oldham and Mansfeld, 1972; Liang et al., 2023; Zhang et al., 2008;
Schneider et al., 2014) on the damage estimation (Ma et al., 2020;
Wagner, 1951), the experimental measurements (Ma et al., 2020),
the numerical (Verbrugge, 2006; Jia et al., 2006) and analytical
predictions of galvanic processes (Song, 2010).

Compared with the other metals, Mg alloys suffer from
much severe and complex galvanic corrosion in most natural
environments. This is primarily because Mg has the most negative
OCP in all the engineering metals, and secondly its anodic
polarization resistance is very low (i.e., the anodic polarization
current densities are always high). Moreover, the unique processes
involved in the dissolution of a Mg alloy, such as the negative
difference effect (Song and Atrens, 2023; Huang et al., 2020;
Huang et al., 2023), poisoning effect, passivation effect, and
alkalization effect (Song et al., 2004), also further complicate and
exacerbate the damage. Unfortunately, the galvanic corrosion of
Mg alloys in practice is almost inevitable, because in industry
the electronic continuity between the anodic and cathodic metals
cannot be simply stopped. For example, 1) the anode and cathode

sometimes must be electronically connected to transfer signals, 2)
the physical disconnection of the joint should usually be avoided
from a viewpoint of structural strength, or 3) an additional
manufacturing cost always incurs if an insulator is inserted in
the anode-cathode joint, which may be unaffordable in enterprise
management. Even worse, the ionic path between the anode and
cathode through the electrolyte cannot be easily blocked either
by coverage of the couple surfaces with an insulating coating
or alteration of the geometric shapes of the couple (Song and
Yao, 2025). Consequently, even though galvanic corrosion is a
simple electrochemical process (there is nothing new in theory),
the mitigation of galvanic corrosion for Mg alloys in practice is
extremely challenging (Song and Atrens, 2023).

3 Approaches of mitigating galvanic
corrosion

Since it is impractical to cut off the electronic path or block
the ionic flow between the galvanic anode and cathode, the only
effective way of mitigating the galvanic corrosion of a Mg alloy
should be passivating theMg alloy surface (i.e., enhancing its average
anodic polarization resistance Rp

M up to an extremely high level) to
lower the galvanic current density according to Equation 1.Thebasic
principles are further illustrated in Figure 1.

In Figure 1a, the cathodic and anodic polarization curves of Mg
are denoted asMgc andMga, while those of the cathode (steel) are Stc
and Sta, respectively. When Mg and steel are coupled together, the
anodic polarization curve (i.e., curve Mga in Figure 1a) of the Mg
and the cathodic polarization curve (i.e., curve Stc in Figure 1a) of
the cathodic metal (e.g., steel) intersect at pointH, which represents
the galvanic potential (Eg) and current density (Ig) of the couple.
The higher the H (i.e., Ig), the more severe galvanic corrosion the
Mg alloy will have. Generally, the galvanic corrosion rate of a Mg
alloy coupled with a steel is very high. If the Mg can be passivated,
its anodic polarization curve Mga will be dramatically lowered
down to curveMg’a, which intersects with the cathodic polarization
curve Stc of the steel at a very low point H’ (see Figure 1a). Thus,
the galvanic corrosion of the self-passivated Mg can be effectively
suppressed. In this case, the most outstanding feature of such a
self-passivated Mg is its self-healing capability. If the Mg surface is
activated mechanically or electrochemically during installation or
service, it can be rapidly re-passivated, which will fundamentally
decrease the risk of accelerated corrosion locally in the damaged
area. However, ideal passivation of Mg is difficult, and so-far it has
not been achieved in engineering.

There have beenmany research efforts onmitigating the galvanic
corrosion of Mg alloys in industry (Song et al., 2004; Zhang et al.,
2008). Figure 1b schematically illustrates the approaches that have
been taken to improve the corrosion resistance, including the
galvanic corrosion resistance, of Mg alloys. Alloying (i.e., bulk
alloying) is one of themost popular methods. Various elements have
been added to Mg to reduce the corrosion rate (Liang et al., 2023;
Li et al., 2022; Gusieva et al., 2014). Some of the alloying elements
mainly remove the impurities (mainly Fe, Cu andNi) inMg (Liu and
Song, 2013; Prasad et al., 2012) (which is also termed as purification),
or basically inhibit the cathodic reaction onMg (Makar and Kruger,
1993; Liu et al., 2018). This kind of alloying in effect lowers the
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FIGURE 1
Schematic illustration of mitigating the galvanic corrosion of Mg caused by an electronically coupled cathode (e.g., steel): (a) effect of varied anodic
polarization curve of Mg on galvanic corrosion (b) effect of bulk alloying, coating, surface conversion, and surface alloying of Mg on anodic
polarization curve and galvanic corrosion of Mg (polarization curves of cathodic metal steel, anodic Mg, Mg alloys, Mg covered with different coatings,
and Mg surface alloyed with Al or Zn).

cathodic polarization curve of Mg (curveMgc shifts down to curve
Mpc along arrow “alloying-c” as shown in Figure 1b). Although the
alloying can reduce the self-corrosion rate of Mg, negatively shifting
the OCP, it cannot effectively lower the anodic polarization curve of
Mg (curveMpa is not lower than curveMga as shown in Figure 1b).
Hence, the galvanic corrosion rate indicated by pointH′ in Figure 1b
is still high, close to pointH. In some sense, the alloying has an effect
similar to purifying, which inhibits the self-corrosion of Mg at the
OCP, but does not satisfactorily suppress the galvanic corrosion at
the galvanic potential.

There are also some alloying elements, like Al, Zn, Ti, Sn, Cr,
etc. (Candan et al., 2016; Kubásek et al., 2013; Staišiūnas et al., 2014)
that can more or less retard the anodic reaction on Mg, positively
shifting the OCP, and consequently lowering the galvanic corrosion
rate. In this case, the anodic polarization curve Mga in Figure 1b
is lowered down to curve Maa along arrow “alloying-a”. However,
such bulk alloyedMg still has relatively high anodic current densities
at more positive potentials. Thus, curve Maa eventually intersects
with curve Stc at point H′, which is still very high (close to point H
as shown in Figure 1b). So far, in experiment no element has been
identified that can alloy with Mg within its solid solubility limit to

dramatically reduce the anodic current densities of Mg at potentials
more positive than −1.4 V ∼ Ag/AgCl (This potential is much more
negative than the OCP of a steel, and Mg can easily be galvanically
polarized to the potential or a more positive level if it is in contact
with the steel). This implies that almost all the Mg alloys will suffer
from severe galvanic corrosion if they form a joint with steels. In
otherwords, the galvanic corrosion ofMg alloys cannot be effectively
suppressed through their conventional bulk alloying.

The reduction of anodic current densities of Mg in the potential
range around the OCP by the bulk alloying with those elements can
be attributed to the direct buildup of a corrosion product film on the
Mg surface (Annamalai et al., 2019; Zeng et al., 2014). Unfortunately,
due to the limited solid solubility of these elements in Mg, a highly
protective film cannot be stably formed. Hence, the film will lose
its retarding effect at a more positive potential, and the anodic
current density will eventually increase more rapidly (curve Maa
bends up after point “d” as shown in Figure 1b). Even worse, when
the amounts of the elements exceed their solid solubility limits in
Mg, the precipitation of the element-containing phases may act as
a cathode to accelerate the corrosion of the Mg matrix through
micro-galvanic effect.
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Apart from the self-grown surface film on Mg in the service
environment, films may also be formed in some specially prepared
media before service either with (e.g., anodized coatings) or without
(e.g., conversion coatings) the aid of electric field (Pillado et al., 2023;
Mu et al., 2014; Zhang et al., 2019; Muhaffel and Cimenoglu, 2019;
Zhang et al., 2018).TheMg surface coatedwith such a coating or film
has much lower anodic current densities at low anodic potentials
initially, having an anodic polarization curve similar to that of a bulk
alloyedMg (see curveMaa which shifts from curveMga along arrow
“coating” in Figure 1b). However, the coating cannot withstand a
higher potential or long-term exposure in service environments.
The anodic polarization current densities increase with time (curve
Maa moves up to curveMca in Figure 1b). Therefore, if such coated
Mg is coupled with a steel, its galvanic corrosion rate will become
higher eventually (also close to point H as indicated by point
H′ in Figure 1b).

Since neither surface coating nor bulk alloying can render
Mg passivity to exhibit an ideal anodic polarization behaviour as
illustrated in Figure 1a. To inhibit the galvanic corrosion of Mg,
surface alloyingmust be considered. It can convertMg surface into a
self-passive non-Mgmetal (Song and Atrens, 2023; Song et al., 2016;
Cao et al., 2016; Zhu et al., 2021a) like stainless steel.

The word “stainless” used to describe a steel generally refers
to the self-passivating phenomenon. It will be of great significance
if the “stainless” performance could be transplanted to Mg alloys.
Inspired by this idea, Song and Atrens in their early publication
(Song and Atrens, 2003) urged to develop “stainless steel”-like
corrosion resistant Mg alloys via properly alloying Mg with suitable
elements to produce a passive film on the surface. In 2013, the
concept of “stainless Mg” was clearly proposed again (Atrens et al.,
2013), and further discussed based on some non-equilibrium Mg
alloys (Song et al., 2016; Cao et al., 2016). Strong self-passivity is
regarded as an essential pre-requisite to ensure the important self-
healing capacity (Song and Atrens, 2023; Song et al., 2016; Cao et al.,
2016). Unfortunately, experiments so far have proved it extremely
challenging to produce a real stainlessMg alloy through alloyingMg
bulk with passivating elements, like Cr, Ni, Mo in Mg (Zhu et al.,
2021a), in a conventional way because of the relatively low solid
solubility limits of these elements. Also, the high densities of these
passivating elements can easily turn a Mg alloy into a heavy metal,
which limits their addition amounts in Mg. Without sufficient
addition, it is impossible to suppress the Mg activity.

Different from bulk alloying, surface alloying can change the
composition only in a thin layer to generate a self-passivating surface
(Song et al., 2016; Cao et al., 2016). In this case, addition amounts
of the alloying elements will not be limited by their solubilities
and densities, because the surface can more easily be alloyed than
the bulk through a non-equilibrium approach. More attractively,
the surface alloying does not change the bulk properties of a Mg
alloy. These offer many new possibilities for the development of a
“stainless” surface layer for Mg alloys.

Ideally, the alloyed surface layer should have an anodic
polarization curve similar to a stainless steel, i.e., the anodic current
densities should be always very low in the potential range from
the OCP of the substrate Mg up to the OCP of the coupled
cathodic metal (e.g., steel) to ensure the galvanic current density
Ig to be low enough as indicated by point H′ in Figure 1a.
Following this idea, research work should be focused on the

selection of suitable passivating elements and the development of
surface alloying techniques. A promising approach is the surface
alloying with Al or Zn as shown in Figure 1b, which is summarized
as follows:

In Figure 1b, the intersection of curve Msa with curve Stc at
point S implies that Al or Zn has a very low galvanic corrosion
rate if it is coupled with a steel. If the surface of a Mg alloy can
be converted into Al or Zn or their alloys, then there will be no
concern about the galvanic corrosion. In experiment, theMg surface
may be converted to Zn or Al through a surface alloying process.
This can be realized via thermal-diffusion or hot-dipping. Such
an alloyed Mg surface layer can be relatively thick and resistant
to corrosion and galvanic corrosion, having great adhesion to the
substrate (Zhu et al., 2021a; Shigematsu et al., 2000; Zhu et al.,
2005). Compared with other methods, such as cladding, platting,
or ion implantation, the thermal-diffusion and hot-dipping
are relatively simple, low cost, robust, corrosion-resistant, and
strongly adhesive. They are practically feasible, and have appeared
to be most promising so far, having attracted many research
interests recently.

4 History and recent developments

The thermal-diffusion to form a surface alloy layer was first
developed by Shigematsu et al., (Shigematsu et al., 2000), through
embedding AZ91D in Al powder at 450°C. The 750 μm thick
aluminum alloy surface layer they obtained had enhanced resistance
to corrosion and wear. Soon the surface alloying process for Mg
alloy was improved by zhang et al. (Zhang and Kelly, 2002) using a
powder mixture containing 70% Al and 30% Zn at 430°C. Further
to the surface alloying, Zhu and Song (2006) pre-coated AZ91D
with a paste made of liquid ethylene glycol and solid powder
mixture of Al + Zn, and then heated the paste-coated Mg alloy
in sand at 420°C for 1.5 h to speed up the thermal diffusion
of Al and Zn into the substrate alloy. The alloyed surface was
measured to corrosion resistance about 20 times higher than the
uncoated counterpart. Figure 2a schematically illustrates the simple
setup of the thermal-diffusion process. That study implied that any
components made of Mg alloys with complicated geometric shapes
could be placed in a crucible to alloy their surfaces at a controlled
temperature for a certain period of time.The success of this method
is critically determined by the thermal-diffusion temperature. If the
temperature is too low, it will be difficult for alloying elements to
diffuse into the surface layer of the substrate Mg alloy, whereas
a too high temperature will over-heat the substrate and adversely
alter its microstructure and deteriorate the mechanical performance
of the alloy.

To understand the thermal-diffusion and phase transformation
during the surface alloying, a multi-layer surface was fabricated on
AZ91E in powder mixtures with different ratios of Al over Zn at
different temperatures (Hirmke et al., 2011). It was found that the
presence of Zn in the powder could promote the diffusion of Al
into the substrate. As shown in Figure 3, with increasing Zn content
in the powder mixture, the thickness of the alloyed surface layer
significantly increased.

So far, all the reported thermal-diffusion surface alloying
treatments were performed at a relatively high temperature for a
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FIGURE 2
Schematical illustration of the setup for surface alloying of a Mg alloy through (a) thermal diffusion in metallic powder containing passivating elements
(e.g., Al) at a high temperature, and (b) hot-dipping in a molten alloy (e.g., Zn alloy) bath under argon protection.

relatively long time, which will inevitably alter the microstructure,
and may badly influence the properties of the substrate Mg alloy.
It is unacceptable in industrial applications. To lower the processing
temperature, Zhu et al. (Zhu et al., 2021a) burnishedMg and its alloy
surfaces before thermal-diffusion, and found that the burnishing
could refine the Mg grains, and change the crystal orientation of the
grains in the surface layer, resulting in basal crystalline planes on the
Mg alloy surface exposed to the environment, which significantly
enhanced the corrosion resistance (Pu et al., 2011; Pu et al.,
2012). It was originally expected that the burnishing induced
grain refinement and crystal orientation sped up the Al diffusion
during the surface alloying. However, neither the thermal-diffusion
temperature nor the processing time was satisfactorily reduced in
experiment. In spite of the unsatisfactory diffusion temperature
and time, the study had a few impressive findings: 1) The Al-
alloyed surface layer was a few millimeters thick and had a transient
zone, which ensured high wear resistance and good adhesion (see
Figure 4a). 2)TheAl-alloyed surface had goodpassivity andwas very
resistant to galvanic corrosion; the burnished andAl-alloyed surface
had a breakdown potential more positive than 1 V ∼ Ag/AgCl
(see Figure 4b). 3) Scratching on the burnished and Al-alloyed
surface did not lead to significantly increased galvanic current
densities (see Figures 4c, d). In that work, it was the first time that
the alloyed Mg surface after scratching was still resistant to galvanic
corrosion attack.

In addition to the improved galvanic corrosion resistance by
thermal-diffusion, it was also found that the alloyed surface provided
a suitable base for formation and growth of layered double hydroxide
(LDH), which further enhanced the passivity and thus suppressed
the galvanic corrosion of a Mg alloy (Zhu et al., 2021b).

However, the thermal-diffusion temperature or time required
for the surface alloying remains an issue to address, as the high
temperature and/or long heating time can change themicrostructure
of a Mg alloy, and consequently deteriorate its mechanical
performance.

5 The most promising process

An alloyed surface layer can also be obtained by hot-dipping.
Such a process has the potential in theory to significantly shorten
the surface alloying time.

In fact, hot-dipping has been used to galvanize steels for a
long-time, which can generate a Zn-alloy coating to sacrificially
protect the substrate steel, and has been widely used in various
industries and everyday life (Marder, 2000; Schuerz et al., 2009;
Seré et al., 1999; Shibli et al., 2015). It is a rapid treatment
performed in a molten Zn alloy bath. Different from an electro or
electroless plating/galvanizing process, hot-dipping does not use any
solution bath, and its molten Zn alloy bath can be easily recycled.
There is no environment pollution issue in industry. The idea of
transplanting this method to Mg alloy surfaces was recently tested
by Hu et al. (Hu et al., 2022). The results indicated that after a few
seconds of dipping in a molten Zn-3Mg bath at 390°C ± 5°C, an
alloyed surface layer could be formed onAZ31, which had an alloyed
zone containing Zn, Mg2Zn11, Mg7Zn3, and MgZn2 phases, and
a diffusion zone consisting of MgZn and Mg7Zn3 MgZn2 phases.
The study validated that an alloyed surface layer could be very well
formed on aMg alloy. However, the galvanic corrosion performance
of the hot-dipped Mg alloy was not tested in that impressive work.

On basis of the successful hot-dipping process developed by
Hu et al. (Hu et al., 2022), we recently further investigated the
galvanic corrosion behavior of such an alloyed surface layer on
WE43 via a similar hot-dipping process as schematically illustrated
in Figure 2b (Hu et al., 2022). In our study, aMg alloyWE43 coupon
was dipped in a molten Zn alloy bath containing 3 wt% Al and
2 wt%Mg at 360°C for less than 30 s (Song, 2011). This hot-dipping
temperature was the lowest in all the reported surface alloying
processes, and the time was also very short. In such a short dipping
time, the microstructural changes of the substrate Mg alloy would
be negligible, which would ensure a high production efficiency if the
process could be industrialized.The detailed study will be published
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FIGURE 3
Cross-sectional optical micrographs of AZ91E samples embedded in packed Al-Zn powder mixtures with varying Zn contents (a) 0wt%, (b) 2wt%, (c)
5wt%, (d) 10wt%, (e) 20wt%, and (f) 30wt% at 413°C for 18 h, and (g) the dependence of alloyed surface layer thickness on thermal diffusion time at
400°C in the powder mixtures with different zinc contents (Hirmke et al., 2011).

separately (Yang and Song, 2019). Only some of the preliminary
results are presented in Figure 5 to illustrate the innovative points
of the hot-dipping method and to demonstrate the future research
directions.

Figure 5a presents the macro-appearance of the alloyed surface
of WE43 via the hot-dipping. The alloyed surface layer was uniform
in thickness, around 1 mm (see Figure 5b), having three sublayers:
inner, intermediate and outer (see Figure 5c). The multi-sublayer
microstructure had a compositional gradient from Mg alloy to Zn
alloy, which could further reduce the detrimental galvanic effect
between the surface layer and the substrate Mg alloy in case the
former is damaged and the latter exposed locally. A comparison
of the substrate Mg alloy before (Figure 5d) and after (Figure 5c)
the hot-dipping does not show any difference in microstructure,

verifying that this hot-dipping did not alter the microstructure of
the substrate Mg alloy.

The polarization curve measurements (see Figure 5e) indicated
that the Zn-alloyed surface of Mg alloy WE43 had an OCP similar to
Zn, and better passivity than the latter.Thepassive current densities in
the passive region from theOCP to -1 V ∼Ag/AgCl of the Zn-alloyed
surface lower than those ofZn couldbe ascribed to thebeneficial effect
of Mg in Zn (Yao et al., 2016). The Zn-alloyed surface of the of the
Mg alloy had a much lower corrosion rate and more positive OCP
than those of theMg alloy before hot-dipping. In Figure 5e, the anodic
polarization curve of WE43 intersects with the cathodic polarization
curve of steel or galvanized steel at point a, in the order of 10 mA/cm2,
which is a galvanic current density high enough to lead to disastrous
galvanic corrosion damage if the Mg alloy is directly coupled with
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FIGURE 4
(a) Cross-section of pure Mg after burnishing and surface-alloying in Al powder at 450°C for 2 h (see Figure 2a), (b) polarization curves of pure Mg, the
burnished surface, the Al-alloyed surface, and the burnished and Al-alloyed surface of Mg, and the galvanic current densities changing with time for (c)
the burnished and Al-alloyed surface of Mg before, and (d) after scratching coupled with a pure Zn coupon in 3.5 wt% NaCl solution
(Zhu et al., 2021a; Zhu et al., 2021b).

the steel or galvanize steel. The anodic polarization curve of the Mg
alloy intersects with the cathodic polarization curve of the Zn-alloyed
surface at point b.Thismeans that severe galvanic corrosionwill occur
on the substrate if the Zn-alloyed surface layer is broken. Therefore,
the alloyed surface layer must be thick and adhesive enough to be
resistant to mechanical damage.

A meaningful result of the polarization measurements was the
anodic polarization curves of Zn andAlwhichmetwith the cathodic
polarization curves of the steel and galvanized steel at points c
and d, respectively. They were two orders of magnitude lower than
points a and b, respectively, suggesting that the galvanic corrosion
caused by the steel or the galvanized steel could be effectively
suppressed if the Mg alloy surface could be converted to Zn or Al.
This idea was tested experimentally with the hot-dipping process
that converted the WE43 surface into a Zn alloy in the molten bath
containing 3 wt% Al and 2 wt% Mg at 360°C for less than 30 s.
As shown in Figure 5e, the anodic polarization curve of the Zn-
alloyed surface of WE43 intersects with the cathodic polarization
curves of the steel and galvanized steel at c and e, respectively. Point
e corresponds to a galvanic current density around 10–30 μA/cm2,
close to a passivating current density (a few µA/cm2), one order
of magnitude lower than point c. This implies that the galvanic
corrosion of the surface-alloyedWE43 caused by the galvanized steel
would be significantly lower than that caused by the steel. In other
words, the severe galvanic corrosion problem of a Mg alloy coupled
with a steel could be solved if the surface of the Mg alloy could be
alloyed properly with Zn and meanwhile the steel be galvanized.

The galvanic corrosion behaviors expected from the polarization
curve measurements were further verified by surface-alloyedWE43
coupons. They were one-to-one coupled with Zn and Al coupons,
respectively. Some of the alloyed surfaces of the WE43 were
scratched while the others were not. As shown in Figures 5f, g, the
galvanic current densities of the alloyed surfaces of the WE43 with
and without scratch coupled with Zn or Al were all negligible.
Further to the promising results, it was measured that the alloyed
surfaces of theWE43 with and without scratch had galvanic current
densities around 50 μA/cm2 when they were coupled with steel (see
Figure 5h). If the steel was galvanized, then the galvanic current
densities of the alloyed surfaces of the WE43 with and without
scratch were less than 1 μA/cm2 (see Figure 5i), which is negligible
in engineering. According to this electrochemical result, the average
depth of galvanic corrosion on the surface alloyed Mg alloy in
contact with galvanized steel will be 1 mm in 50 years only. It is even
not deep enough to penetrate the alloyed surface layer. Hence, the
self-passive surface coating generated by hot-dipping is much more
durable than any other coatings formed via chemical conversion or
electrochemical MAO. It should be noted that in reality, galvanized
steels are widely used. It is quite possible to use a galvanized steel to
replace bare steels. This should to a great extent solve the galvanic
corrosion problem with Mg alloys in industry.

Another interesting finding from Figure 5e was point d in the
order of µA/cm2. This signifies that the galvanic corrosion of a Mg
alloy caused by a steel may be effectively retarded if the surface of the
Mg alloy can be converted to Al. Certainly, the generation of such a
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FIGURE 5
(a) Appearance of the alloyed surface of WE43 after hot-dipping in the molten Zn alloy bath at 360°C for 10–30 s in argon atmosphere (see Figure 3b),
(b) optical image and (c) SEM image of the cross-section of the alloyed surface layer formed on Mg alloy WE43 after the hot-dipping, (d) the SEM
image of the WE43 before the hot-dipping, (e) polarization curves of Zn, Al, the original WE43, the alloyed surface of the WE43, steel and galvanized
steel in 3.5 wt% NaCl solution at room temperature, the galvanic current densities of galvanic couples of (f) Zn coupon and alloyed surface of WE43
with and without scratch, (g) Al coupon and alloyed surface of WE43 with and without scratch, (h) alloyed surface of WE43 and steel, and (i) alloyed
surface of WE43 and galvanized steel.
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high-quality surface layer similar to pure Al on a Mg alloy is quite
challenging.

6 Challenges

The hot-dipping process in theory can quickly generate a thick
alloy surface layer on a Mg alloy, but many complicated changes
and processes are involved in the process (Hu et al., 2022). At least,
the surface alloying concerns the diffusion of alloying elements,
the nucleation, growth and transformation of some equilibrium
and non-equilibrium phases in the zone between the substrate Mg
alloy and the adjacent molten alloy bath, the solidification of the
molten alloy, and the heating and cooling of the substrate alloy,
molten bath and their interface. Specifically speaking, there are
endothermic and exothermic reactions associated with Zn containing
intermetallic phases (Morishita et al., 2006)during the surface alloying
process, which may significantly alter the temperature distribution in
the transitional zone between the substrate Mg alloy and the molten
alloy bath, complicating the surface alloying and thus influencing
the quality of the alloyed surface layer. Only after the detailed
alloying mechanism is comprehensively understood, can the hot-
dipping technique be further improved, and an ideally alloyed surface
of Mg alloys be achieved.

Another challenge is the control of surface quality and geometry
of the alloyed surface of a Mg alloy. The alloyed surface layer may
not be so uniform in thickness, composition andmicrostructure. For
example, the surfaces obtained via thermal-diffusion (Zhu and Song,
2006) and hot-dipping (see Figure 5a) are rougher than the original
surface of the substrate Mg alloy. Therefore, the configuration of a
Mg alloy part may be changed after the alloying process, which may
not be suitable for a joint as originally designed. If an additional
finishing process is needed, that will increase production complexity
and cost, which may be acceptable in industry.

The third difficulty of the surface alloying process is cost, which
is always a real challenge in industry. Even though the hot-dipping
can remarkedly shorten the processing time and thus significantly
lower the cost, sometimes a slightly increased cost or an additional
step in production is not acceptable in a cost-sensitive enterprise. For
example, in the auto industry, if the surface alloying is introduced
into the production line for a Mg alloy part, then at least the
maintenance of a molten alloy bath at the high temperature and
the preheating and cooling of Mg alloy parts before and after the
hot-dipping must be considered in the production line. The overall
cost can be significantly higher than that incurred by addition of a
top-coating in the painting line.

7 Concluding remarks and outlook

While the existing galvanic corrosion prevention methods,
such as bulk alloying, surface treatment and coating, fail to meet
the lightweight, strength, conductivity and some other functional
requirements of Mg alloys in engineering joints, the surface alloying
successfully converts the surface of a Mg alloy into a passive non-Mg
metal, which reduces the galvanic corrosion risk without scarifying
the essential joint performance. Experiments have proved that the
surface alloying through hot-dipping is promising in theory, feasible

in practice, and likely acceptable in engineering. Particularly, the hot-
dipping in a molten Zn alloy bath can produce a Zn-alloyed surface
layer on a Mg alloy quickly without changing the microstructure of
the Mg alloy. It may be further improved for industrial applications.

Based on the effective mitigation of galvanic corrosion and
inhibition of self-corrosion of Mg alloys by the surface alloying,
future research may be focused on the following areas.

1) Simplification of the surface alloying process to reduce the
production cost: It will be possible to include the surface
alloying process in the production line of a Mg alloy
component. Ideally, it can be combined into a heat-treatment
step. This could be where cost-saving can kick in.

2) Deepening of the understanding of metallurgic changes in
the alloyed surface layer of a Mg alloy: This is an essential
foundation for precise control of the surface quality and
geometric shape,whichmay reduce additional processing steps
for the Mg alloy used in a joint.

3) Further modification of the alloyed surface of a Mg alloy
for new surface properties: Since the Mg alloy surface has
been changed to a different alloy, some treatments that are
traditionally used for the alloy may now be applied to the
surface. For example, the electroplating that is rarely used on
Mg alloysmay be adopted to improve the surface hardness after
the Mg alloy surface has been converted to Zn.
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