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This study presents a hybrid computational framework designed to accurately
predict the mechanical properties of essential 3D printing materials, namely,
Aluminum (Al), Titanium (Ti), and Nickel (Ni). By integrating first-principles
simulations via the CASTEP code—grounded in Density Functional Theory
(DFT)—with machine learning techniques, specifically Ridge regression, the
approach aims to enhance prediction accuracy while minimizing computational
costs. The analysis focuses on key elastic properties, including Bulk Modulus,
Young’s Modulus, and Shear Modulus. Initial simulations using CASTEP provide
benchmark mechanical values, which are subsequently used to train and
validate the Ridge regression model. The results reveal outstanding predictive
accuracy, with R2 values surpassing 0.999 across all properties and minimal
mean squared errors. A close correlation between DFT-derived and AI-predicted
values confirms the robustness of the approach. This methodology significantly
reduces reliance on physical experimentation and heavy simulations, making
it a powerful tool for material design and optimization. Moreover, the findings
emphasize Aluminum’s potential for lightweight structures, Titanium’s superior
stiffness suited for biomedical and aerospace applications, and Nickel’s strong
resistance to compression, making it ideal for demanding industrial settings.
Such insights contribute to faster and more efficient materials selection and
customization in additive manufacturing.

KEYWORDS

artificial intelligence (AI), machine learning, DFT, mechanical properties, 3D printing,
elastic constants

1 Introduction

Additive manufacturing (AM), commonly known as 3D printing, has experienced
remarkable growth in demanding industrial sectors such as aeronautics, automotive, and
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biomedical industries (Ngo et al., 2018; Gibson et al., 2021). This
technology stands out from traditionalmanufacturing processes due
to its ability to produce complex geometries with high precision
while reducing material waste and production lead times (Fraz
and ier, 2014; Gibson, 2015). These advantages make it a preferred
solution for creating lightweight, strong, and customized parts, such
as aerospace structural components or tailored medical implants
(Ngo et al., 2018; Perdew et al., 1996; Murr et al., 2010).

However, despite these benefits, the widespread adoption
of AM faces persistent challenges, particularly in material
selection and optimization. Mechanical properties, such as Young’s
modulus, shear modulus, and tensile strength, play a crucial role
in the performance and durability of printed parts, especially
under intense mechanical stress or corrosive environments
(Abe, 2019; Segall et al., 2002). Traditionally, the evaluation of
these properties relies on experimental testing, which is costly,
time-consuming, and requires significant material resources
(Butler et al., 2018; Saharudin et al., 2025).

To overcome these limitations, computational methods have
emerged as a promising alternative. Among these, Density
FunctionalTheory (DFT) has become a reference tool for predicting
material properties at the atomic scale. Implemented in software
such as CASTEP (Zhang and Ling, 2018; Grimme et al., 2010;
Karouchi et al., 2024a), DFT enables accuratemodeling of electronic
structure and mechanical characteristics of materials (Curtin and
Miller, 2003; Grimme, 2004). However, although this approach
provides reliable results, it is still associated with prohibitive
computational times, limiting its use for large-scale screening
(Soler et al., 2002; Curtarolo et al., 2012).

To address these challenges, the integration of machine learning
(ML) with DFT simulations has recently gained popularity. This
synergy combines the accuracy of quantum calculations with
the speed of predictive models, paving the way for accelerated
material characterization. Several studies have already validated the
potential of this hybrid approach, particularly for metallic alloys
(Samine et al., 2022; Deng et al., 2020), titanium-based materials
(Bhesania et al., 2022),and nickel superalloys (Xu et al., 2022;
Schütt et al., 2017). For instance, advanced techniques such as
graph neural networks (Xie and Grossman, 2018; Samine et al.,
2023)and deep learning (Schütt et al., 2017; Kibrete et al., 2023) have
demonstrated remarkable ability to predict mechanical properties
from structural data. In the specific field of AM, recent research
has highlighted the critical influence of printing parameters, such
as infill density and layer orientation, on the final performance of
printed parts (Rooney et al., 2024).

Studies have investigated the influence of process parameters
on the microstructure and mechanical properties of Ti-6Al-4V
alloys, highlighting the significant effect of build orientation
(Andreacola et al., 2023). Similarly, research on aluminum
AM components has demonstrated notable variations in
mechanical performance depending on post-process heat treatment
conditions (Ponnusamy et al., 2017).

The fatigue behavior of AM materials has also been examined,
with findings emphasizing the critical role of surface roughness
(Andreacola et al., 2021). Additionally, annealing treatments applied
to 316L stainless steel produced by selective laser melting (SLM)
have been shown to enhance ductility at the expense of strength
(Eskandari et al., 2022). Comparative studies on titanium and

aluminum alloys have confirmed the decisive impact of laser
parameters on final mechanical properties (Brando et al., 2023).

The challenges associated with AM of complex metal
parts—including residual stresses and deformations have been
comprehensively reviewed (Rashid et al., 2017). A detailed
assessment of material science principles in metal 3D printing
has provided insights into process modeling (Aboulkhair et al.,
2019). Furthermore, investigations into microcellular structures in
lightweight AM alloys have revealed their influence on mechanical
performance (Brandl et al., 2012). Finally, studies on maraging
steel M300 have quantified the effect of build orientation on
fracture toughness, underscoring its potential for demanding
industrial applications (Komarasamy et al., 2019). In this context,
our study proposes an innovative methodology that combines DFT
simulations performed with CASTEP with Ridge regression models
to predict themechanical properties of three strategic AMmaterials:
aluminum (Al), titanium (Ti), and nickel (Ni). The selection of
these materials is motivated by their industrial importance and
complementary mechanical characteristics. Our approach aims
to establish a predictive framework that is both accurate and
efficient, significantly reducing the time and costs associated with
the development of new materials for AM.

Ultimately, this research aligns with a multidisciplinary
perspective aimed at accelerating the design of high-performance
materials for critical applications. The results obtained could have
major implications in sectors such as aeronautics, where reducing
component weight without compromising mechanical strength
is a key challenge, or in the biomedical field, where implant
customization requires precise control of mechanical properties.

In this study, we focused on pure metallic materials, namely,
aluminum, titanium, and nickel. These materials are frequently
used in metal additive manufacturing, particularly in the Selective
Laser Melting (SLM) technique.This method involves locally fusing
successive layers ofmetal powder using a laser to produce solid parts.

Although the study is based solely on theoretical calculations
using Density Functional Theory (DFT) with the CASTEP code, it
is important to note that the mechanical properties of printed parts
can be significantly influenced by printing process parameters, such
as laser power, scan speed, or layer thickness.The evaluation of these
effects will be the subject of future work.

2 Computational methods

The mechanical properties of aluminum (Al), nickel (Ni), and
titanium (Ti) were calculated using density functional theory (DFT)
as implemented in the CASTEP code. Both Al and Ni possess face-
centered cubic (FCC) crystal structures, while Ti was considered in
a body-centered cubic (BCC) form.The exchange-correlation effects
were treated using the generalized gradient approximation (GGA) in
the Perdew–Burke–Ernzerhof (PBE) formulation. For the electronic
structure calculations, a plane-wave basis set was employed with an
energy cutoff of 500 eV. The Brillouin zone was sampled using a
Monkhorst-Pack grid with a k-point mesh of 4 × 4 × 4 to ensure
sufficient accuracy. Prior to calculating the mechanical properties,
geometry optimization was performed for each material, ensuring
that the atomic positions and cell parameters were relaxed until the
forces on the atoms were minimized.
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FIGURE 1
Crystal structures of the studied materials.

In this study, we used artificial intelligence (AI) to predict the
mechanical properties of Aluminum, Titanium, and Nickel. The
approach relies on a machine learning model, specifically Ridge
regression, which is a variant of traditional linear regression with
a regularization term.

Ridge regression is particularly suited to problems where the
explanatory variables are correlated, as is often the case in materials
science applications involving properties such as elastic constants
and mechanical moduli. This model introduces a penalty to the
classical linear regression equation, which prevents the inflation of
coefficients and reduces the risk of overfitting.

This approach is particularly relevant in the field of 3Dprinting,
where the ability to accurately predict the mechanical properties
of materials allows for optimized material selection, the design of
stronger parts, and a reduction in the number of experimental
tests required.

3 Results and discussion

3.1 Structural propriety

The crystal structures of the studied materials (Al, Ni, and Ti)
are shown in Figure 1. Aluminum and nickel adopt a face-centered
cubic (FCC) structure, while titanium is represented in its body-
centered cubic (BCC) phase. The FCC structure, as shown in the
center, features atoms at the corners and at the centers of each cube
face, resulting in a densely packed arrangement. The BCC structure
of titanium, depicted on the left, has an atom located at the center of
the cube with additional atoms at the cube corners.

These structural configurations play a critical role in determining
the mechanical and electronic properties of the materials.

Analysis of the material’s structure using VESTA software
revealed the presence of three distinct phases: titanium (Ti), nickel
(Ni), and aluminum (Al). The diffraction patterns of the Ti, Ni, and
Al phases obtained from VASP simulations are shown in Figure 2.

The Ti phase exhibits a sharp peak in the calculated diffraction
pattern, indicative of high crystallinity and suggesting a relatively
pure phase. The Ni phase also displays strong crystallinity,
characterized by two prominent peaks consistent with the expected
diffraction pattern for Ni. The Al phase, in contrast, shows a less
pronounced crystalline structure compared to Ti and Ni, with

multiple peaks exhibiting broader profiles.This broadening suggests
a potential polycrystalline nature of the Al phase or the presence
of internal strain within the Al lattice. The co-existence of these
three phases within the simulation could indicate a mixture of Ti,
Ni, and Al powders or, alternatively, a composite material composed
of these elements.The relative intensities of the peaks can be utilized
to estimate the relative proportions of each phase.

3.2 Mechanical properties

This section focuses on the evaluation of the mechanical
behavior of the selected materials Aluminum, Titanium, and Nickel
using DFT simulations. Key mechanical parameters such as elastic
constants, bulk modulus, shear modulus, and Young’s modulus are
discussed in detail. The objective is to analyze and compare their
suitability for additive manufacturing based on their resistance to
stress, deformation, and compression.

The mechanical properties of materials, including the elastic
constants of the crystal, result from the response to external
forces. These constants describe the mechanical behavior of the
material under stress and deformation (Hoeun et al., 2023; Mouhat
and Coudert, 2014). Based on Hook’s law of elasticity, there are
six components of tensile strength, as well as six other stress-
related components in the three dimensions (3D) of the crystal.
This framework allows for the description of interactions between
applied stresses (or compressions) and the resulting deformations in
a crystalline material (Ledbetter and Migliori, 2006).

Hook’s law can be expressed by the following formulas
(Muhammad et al., 2014; Mavko et al., 2009; Mouhat and Coudert,
2014):

σi = Cijϵj

ϵi = Sijσj

Where i, j = 1,2,3, with:

• Elasticity constant (Cij), which represents the rigidity of
the material.

• Compliance, or softness (inverse of), which describes how the
material deforms under stress.

• Stress applied to the material.
• Resulting strain.
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FIGURE 2
Diffraction patterns of Ti, Ni, and Al phases from VASP simulations.

Hooke’s law for elasticity, which involves a (6 × 6) matrix
on the surface of the material, can be expressed in the
following form:

(((((((

(

σ1
σ2
σ3
σ4
σ5
σ6

)))))))

)

=

(((((((

(

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

)))))))

)

(((((((

(

ϵ1

ϵ2

ϵ3

ϵ4

ϵ5

ϵ6

)))))))

)

And the elastic matrix Cij can be written as
(Karouchi et al., 2024b; Yoshida and Pappalettera, 2023):

Cij =

[[[[[[[[[[[[[

[

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

]]]]]]]]]]]]]

]

These equations represent a linear system between stress and
strain in an elastic material. For anisotropic materials such as
crystals, these equations can be generalized in the form of a 6× 6
elasticity tensor that relates the six components of stress to the six
components of strain. Each material (Al, Ni, Ti) possesses a unique
set of elastic constants Cij obtained from CASTEP simulations.
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3.3 Elastic constants

Thecalculated elastic stiffnessmatrices (Cij) for Aluminum (Al),
Titanium (Ti), and Nickel (Ni), derived using CASTEP simulations.
Eachmatrix provides crucial insights into themechanical properties
of these materials, including Young’s modulus, Poisson’s ratio, and
bulk modulus. An interpretation of the results follows, focusing on
the values of C11, C22, C33, and off-diagonal components like C12,
C13, etc. for eachmaterial (Ejjabli et al., 2024; Karouchi et al., 2023).

3.3.1 Aluminum (Al)
Thematrix of elastic constants for Aluminum is shown below:

(((

(

133.71085 50.71550 50.71550 0 0 0
50.71550 133.71085 50.71550 0 0 0
50.71550 50.71550 133.71085 0 0 0

0 0 0 29.41765 0 0
0 0 0 0 29.41765 0
0 0 0 0 0 29.41765

)))

)

GPa

The values of the elastic constants C11,C22, and C33 are all
equal to 133.71 GPa.This indicates that aluminum exhibits isotropic
mechanical behavior. Where the mechanical response is the same in
all principal directions of the crystal. The values of the off-diagonal
elements, such as C12,C13, and C23, are all equal to 50.72 GPa.These
values confirm the uniform response of aluminum to mechanical
stress applied in different directions, further reinforcing the isotropic
nature of the material.

The values of the shear modulus C44,C55, and C66 are all
equal to 29.42 GP. This suggests that aluminum has moderate
resistance to shear deformation. The shear modulus measures the
material’s ability to resist forces that tend to cause sliding, and
these moderate values show that aluminum can deform under shear
while remaining relatively rigid. The bulk modulus of aluminum
is 78.38 GPa. This modulus measures the material’s resistance to
uniform compression. A value of 78.38 GPa indicates that aluminum
is moderately compressible, in line with the known properties of
this metal. The Young’s modulus of aluminum, is 88.59 GPa. This
modulus measures the stiffness of the material in response to tensile
or compressive stress along an axis. A value of 88.59 GPameans that
aluminum hasmoderate stiffness, making it suitable for applications
requiring a balance between lightness and mechanical strength.

3.3.2 Titanium (Ti)
Thematrix of elastic constants for Titanium is shown below:

(((

(

72.21045 116.94895 116.94895 0 0 0
116.94895 72.21045 116.94895 0 0 0
116.94895 116.94895 72.21045 0 0 0

0 0 0 30.92695 0 0
0 0 0 0 30.92695 0
0 0 0 0 0 30.92695

)))

)

 GPa

The values of the elastic constants C11,C22, and C33 for titanium
are 72.21 GPa. This indicates that titanium exhibits anisotropic
mechanical behavior, where the mechanical response differs along
different principal directions of the crystal.This anisotropy is typical
of materials with a hexagonal close-packed (HCP) crystal structure,
such as titanium. The values of the off-diagonal elements, including
C12 and C13, are significantly larger at 116.95 GPa. These values

confirm titanium’s enhanced response to mechanical stress applied
in various directions, further reinforcing the directional dependence
of the material’s stiffness.

The shear modulus C44,C55, and C66 are all equal to 30.93 GPa.
This suggests that titanium has a higher resistance to shear
deformation compared to aluminum. The shear modulus measures
the material’s ability to resist forces that tend to cause sliding, and
these values indicate that titanium can deform under shear while
maintaining considerable rigidity. The bulk modulus of titanium
is 102.04 GPa. This modulus measures the material’s resistance to
uniform compression. A value of 102.04 GPa indicates that titanium
is moderately compressible, consistent with the known properties of
this metal. The Young’s modulus of titanium, calculated using the
Voigt average, is 27.95 GPa, while the Hill average gives a higher
value of 479.17 GPa. These moduli measure the stiffness of the
material in response to tensile or compressive stress along an axis.
The higher Hill average reflects titanium’s considerable stiffness,
making it suitable for applications that require exceptional strength-
to-weight ratios, such as in aerospace and automotive industries.

3.3.3 Nickel (Ni)
Thematrix of elastic constants for Nickel is shown below:

(((

(

132.86275 137.71295 137.71295 0 0 0
137.71295 132.86275 137.71295 0 0 0
137.71295 137.71295 132.86275 0 0 0

0 0 0 74.66560 0 0
0 0 0 0 74.66560 0
0 0 0 0 0 74.66560

)))

)

GPa

The values of the elastic constantsC11,C22, andC33 for nickel are
all equal to 132.86 GPa. This indicates that nickel exhibits isotropic
mechanical behavior, where the mechanical response is the same in
all principal directions of the crystal.This isotropy is characteristic of
materials with a face-centered cubic (FCC) crystal structure, similar
to that of aluminum.

The values of the off-diagonal elements, such as C12,C13, and
C23, are all equal to 137.71 GPa. These higher values confirm the
uniform response of nickel to mechanical stress applied in different
directions, further reinforcing the isotropic nature of the material.

The values of the shear modulus C44,C55, and C66 are
approximately 74.67 GPa. This suggests that nickel has a moderate
resistance to shear deformation, which is typical for FCC metals.
The shearmodulusmeasures thematerial’s ability to resist forces that
tend to cause sliding, and these moderate values indicate that nickel
can deformunder shearwhilemaintaining considerable rigidity.The
bulk modulus of nickel is 136.10 GPa. This modulus measures the
material’s resistance to uniform compression. A value of 136.10 GPa
indicates that nickel is less compressible, which aligns with the
known properties of this metal. The Young’s modulus of nickel, is
approximately 118.74 GPa. This modulus measures the stiffness of
the material in response to tensile or compressive stress along an
axis. A value of 118.74 GPameans that nickel hasmoderate stiffness,
making it suitable for applications that require a balance between
strength and ductility.

The elastic constants of aluminum (Al), titanium (Ti), and nickel
(Ni) reveal important insights into their mechanical properties and
potential applications. Aluminum, with its isotropic cubic structure,
shows uniform stiffness in all directions (C11 = C22 = C33 =
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FIGURE 3
Comparison of elastic constants (C11, C12, C44) for aluminum, nickel, and titanium.

133.71 GPa) and moderate shear resistance (C44 = 29.42 GPa),
making it ideal for lightweight applications such as in aerospace and
automotive industries. Titanium, exhibiting anisotropy due to its
hexagonal structure, has lower axial stiffness (C11 = 72.21 GPa) but
higher shear stiffness (C12 = 116.95 GPa), indicating its suitability
for high-strength applications like medical implants and aerospace
components. Nickel, with its FCC structure, demonstrates high
stiffness in both normal and shear directions (C11 = 132.86 GPa,
C44 = 74.67 GPa), making it excellent for corrosion-resistant and
high-durability applications, such as in turbines and superalloys.
These results highlight the materials’ varied mechanical properties,
offering guidance for their use in specific industrial applications, and
suggest that further doping or alloying could improve performance
for targeted technologies.

3.3.4 Discussion
Figure 3 compares three fundamental elastic constants:

C11, C12, and C44. C11 measures stiffness along the principal
crystallographic directions, C12 represents the interaction between
different directions within the crystal structure, and C44 relates to
the material’s shear resistance.

• C11 represents the material’s stiffness along a given direction.
Nickel has the highest value, indicating greater stiffness
compared to aluminum and titanium. Titanium shows the
lowest stiffness in this direction.

• C12 shows the interaction between different directions. Nickel
has a much higher value, indicating stronger interaction
between directions, while aluminum has a significantly lower
interaction.

• C44 measures shear stiffness. Nickel shows moderate shear
rigidity, aluminum has the lowest value, and titanium lies in
between, reflecting better shear resistance.

The bulk modulus, also called the volume modulus,
evaluates a material’s ability to resist uniform compression.

This graph (Figure 4) highlights the differences between
aluminum, nickel, and titanium in terms of compression
resistance.

• Nickel has the highest bulk modulus, indicating it is the
most difficult to compress, making it suitable for applications
requiring high pressure resistance.

• Titanium follows with a slightly lower but still high bulk
modulus, reflecting its capacity to resist compression while
maintaining some flexibility.

• Aluminum,with the lowest bulkmodulus, is easier to compress,
which is advantageous in applications where a lighter and more
flexible material is needed.

In 3D printing, materials with high Bulk Modulus like
Nickel are essential for producing parts that will endure heavy
loads and compression. This predictive modeling can help
streamline the material selection process, enabling manufacturers
to optimize materials for specific applications with minimal
experimental effort.

The shear modulus measures a material’s resistance to
forces that tend to slide one part of the material over another.
This graph (Figure 5) compares the ability of the three materials
used in 3D printing to resist angular deformation:

• Nickel displays an exceptionally high shearmodulus, indicating
strong resistance to shear deformation. This makes it an
optimal choice for 3D printing applications where parts require
high resistance to torsion or angular forces, especially in
environments subjected to high mechanical stresses.

• Titanium and Aluminum show much lower shear moduli,
making them more prone to angular deformation compared to
nickel. However, in the context of 3D printing, these materials
offer advantages for fabricating parts where greater flexibility is
needed or where lightweight materials are essential, such as in
aerospace and automotive sectors.
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FIGURE 4
Bulk modulus comparison for aluminum, nickel, and titanium.

Young’s modulus measures the stiffness of a material,
indicating its ability to resist elastic deformation under tension
or compression. Figure 6 shows the differences in stiffness between
aluminum, nickel, and titanium.

• Titanium has the highest Young’s modulus, reaching nearly
500 GPa, indicating excellent rigidity. This makes it suitable
for applications that require high strength and minimal
deformation under load, such as biomedical implants or critical
structural components.

• Aluminum and Nickel have much lower Young’s moduli,
meaning they deform more easily under stress. This
flexibility makes them ideal for applications like prototypes
or lightweight parts used in the aerospace and automotive
industries.

The Poisson ratio (Figure 7) describes the ratio between
transverse contraction and longitudinal extension when a material
is stretched or compressed. It reflects how a material contracts or
expands when subjected to tension.

• Nickel shows the highest Poisson ratio, indicating a significant
tendency to expand laterally when stretched. This property
is advantageous for applications requiring ductility or stress
absorption.

• Aluminum has a moderate Poisson ratio, providing a good
balance between deformation and stability.

• Titanium has a negative Poisson ratio, which is unusual. This
suggests it could exhibit auxetic behavior (expanding laterally

when stretched). Such behavior could be beneficial in advanced
3D printing applications or for designing auxetic structures.

In 3D printing, understanding a material’s lateral deformation is
key to ensuring that parts maintain their structural integrity under
load. For flexible parts, Nickel’s behavior could be advantageous,
while Titanium’s unique behavior can be leveraged in niche
applications requiring materials with counterintuitive deformation
characteristics. The predictive modeling of Poisson’s Ratio ensures
that manufacturers can anticipate and mitigate deformation issues
before production.

3.4 Analysis of mechanical properties
predictions with AI

In this study, we present the mechanical properties of three
materials “Aluminum, Titanium, and Nickel” obtained through
computational methods (CASTEP Code) and predictions made
using a machine learning approach based on Ridge regression.
The primary focus is on the Bulk Modulus, Young’s Modulus, and
Shear Modulus, which are critical for evaluating the performance
of materials in various applications, including 3D printing. The
results from the CASTEP calculations provided actual values for the
mechanical properties of each material, which were then compared
to the predicted values obtained from the Ridge regression model.
The following sections detail the findings for each property:

• Bulk Modulus
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FIGURE 5
Shear modulus comparison for aluminum, nickel, and titanium.

FIGURE 6
Young’s modulus comparison for aluminum, nickel, and titanium.

Frontiers in Materials 08 frontiersin.org

https://doi.org/10.3389/fmats.2025.1584896
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Samine et al. 10.3389/fmats.2025.1584896

FIGURE 7
Poisson ratio comparison for aluminum, nickel, and titanium.

The Bulk Modulus measures a material’s resistance to uniform
compression. For Aluminum, the actual Bulk Modulus was
78.38 GPa, while the predicted value was 79.37 GPa. Similarly, for
Titanium, the actual value was 102.04 GPa, with a predicted value of
101.65 GPa. Nickel exhibited an actual BulkModulus of 136.10 GPa,
with a predicted value of 135.50 GPa. The mean squared error
(MSE) for the predictions was 0.4957, and the R-squared (R2) value
was 0.9991, indicating an excellent fit between the predicted and
actual values.

• Young’s Modulus

Young’s Modulus reflects the stiffness of a material under
elastic deformation. The actual Young’s Modulus for Aluminum
was 88.59 GPa, while the predicted value was 88.02 GPa. Titanium’s
actual value was 27.94 GPa, and the predicted value was 28.74 GPa.
Nickel demonstrated an actual Young’sModulus of 118.74 GPa, with
a predicted value of 118.51 GPa. The predictions achieved an MSE
of 0.3377 and an R-squared (R2) value of 0.9998, further supporting
the model’s reliability.

• Shear Modulus

The Shear Modulus indicates a material’s response to shear
stress. For Aluminum, the actual Shear Modulus was 29.42 GPa,
compared to a predicted value of 29.94 GPa. Titanium’s actual Shear
Modulus was 30.93 GPa, with a predicted value of 30.86 GPa. Nickel
exhibited an actual value of 74.67 GPa, and the predicted value

was 74.22 GPa. The MSE for the Shear Modulus predictions was
0.1606, and the R-squared (R2) value reached 0.9996, indicating
exceptional accuracy.

The results obtained from the regression model demonstrate a
high level of accuracy in predicting the mechanical properties of
Aluminum, Titanium, and Nickel. The low MSE values and high R-
squared scores suggest that the model is highly effective for these
materials. These findings highlight the potential of using artificial
intelligence techniques to predict material properties, which can aid
in the design and optimization of materials for various engineering
applications, including 3D printing.

3.4.1 Comparison table of CASTEP results and AI
predictions

Table 1 provides a detailed comparison between the actual
mechanical properties obtained through CASTEP simulations and
the predictions generated by the AI model using Ridge regression.
The table highlights the consistency between the two sets of results,
as demonstrated by the low Mean Squared Error (MSE) values
and the high R-squared (R2) scores, which exceed 0.999 for all
properties. This high level of agreement underscores the reliability
of the hybrid approach in accurately predicting critical mechanical
properties such as Bulk Modulus, Young’s Modulus, and Shear
Modulus. By enabling precise predictions, this method significantly
reduces the need for extensive computational and experimental
resources, making it a valuable tool for material optimization in 3D
printing applications.
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TABLE 1 Comparison of actual and AI-Predicted mechanical properties with performance metrics (MSE and R2).

Material Property Actual value (CASTEP code) (GPa) Predicted value (AI) (GPa) MSE R2

Aluminum

Bulk Modulus 78.38 79.37 0.4957 0.9991

Young’s Modulus 88.59 88.02 0.3377 0.9998

Shear Modulus 29.42 29.94 0.1606 0.9996

Titanium

Bulk Modulus 102.04 101.65 0.4957 0.9991

Young’s Modulus 27.94 28.74 0.3377 0.9998

Shear Modulus 30.93 30.86 0.1606 0.9996

Nickel

Bulk Modulus 136.10 135.50 0.4957 0.9991

Young’s Modulus 118.74 118.51 0.3377 0.9998

Shear Modulus 74.67 74.22 0.1606 0.9996

Description of the Table:
• Material: Indicates the type of material studied (Aluminum, Titanium, Nickel).
• Property: Specifies the mechanical property measured (Bulk Modulus, Young’s Modulus, Shear Modulus).
• Actual Value (CASTEP Code): Presents the measured values obtained from the CASTEP method.
• Predicted Value (Artificial intelligence): Indicates the values predicted by the machine learning model.
• MSE:TheMean Squared Error of the predictions.
• R2: The R-squared value indicating the goodness of fit for the model.

FIGURE 8
Comparison of actual and AI-predicted bulk modulus.

3.4.2 Comparison of CASTEP code and IA results
Figure 8 illustrates the comparison between the bulk modulus

values derived from CASTEP Code simulations (solid blue line)
and those predicted by AI models (red dashed line) for the three
materials: aluminum, titanium, and nickel. Both lines show a close
overlap, signifying a high degree of accuracy in the AI model’s
predictions.

From the graph, a clear trend is observed in the bulk modulus
values. Both actual and predicted values increase progressively
from aluminum to titanium, and finally to nickel. This suggests
that nickel has the highest resistance to uniform compression,
followed by titanium, with aluminum having the lowest resistance.
These insights are valuable for materials selection, especially when
resistance to compressive forces is a key factor in design applications.
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FIGURE 9
Comparison of actual and predicted Young’s modulus.

The close agreement between the actual and predicted bulk
modulus values, as reflected by the nearly identical curves, highlights
the exceptional performance of the AI model. This high correlation
is further supported by the R2 value of approximately 0.9991,
indicating a near-perfect match between the predicted and actual
data. The model’s accuracy makes it a reliable tool for predicting the
mechanical properties of materials, providing valuable assistance in
the design and optimization of components for applications such as
3D printing.

Figure 9 illustrates the comparison between the values of
Young’smodulus derived fromCASTEPCode simulations and those
predicted by AI models for aluminum, titanium, and nickel. The
predicted values, represented by the red dashed line, align closely
with the actual values indicated by the solid blue line. This close
correspondence suggests that the AI model can provide reliable
estimates of Young’s modulus for the materials analyzed.

The high R2 values, close to 0.9998, further support the close
alignment of the curves. This consistency reinforces the credibility
of the AI model’s predictions and its utility in estimating Young’s
modulus for these materials.

Figure 10 compares the shear modulus values obtained from
CASTEP Code simulations with those predicted by AI models for
aluminum, titanium, and nickel. The predicted values, depicted
by the red dashed line, align almost perfectly with the actual
values represented by the blue solid line.This remarkable alignment
demonstrates the excellent accuracy of the AI model’s predictions
for the shear modulus.

The shear modulus trend indicates an increase from aluminum
to titanium and finally to nickel. This trend signifies that nickel
possesses the highest resistance to angular deformation, followed by
titanium, while aluminum exhibits the lowest shear modulus among
the three materials. Understanding these properties is essential for
applications where shear resistance is critical.

The close correspondence of the curves, combined with high
R2 values near 0.9996, corroborates the reliability of the AI model’s
predictions. This affirmation suggests that the model can be trusted
to evaluate the mechanical properties of materials effectively,
providing valuable insights for engineering and material selection.

3.4.3 Discussion
The results of this study demonstrate the effectiveness of

integrating computational methods such as CASTEP Code with
machine learning models, specifically Ridge regression, to predict
the mechanical properties of materials used in 3D printing. The
high R-squared values (exceeding 0.999) and the lowMean Squared
Errors (MSE) across all predicted properties (BulkModulus, Young’s
Modulus, and Shear Modulus) validate the reliability of this hybrid
approach in predicting material behavior with great accuracy.These
findings emphasize the potential of machine learning techniques to
significantly reduce the time and computational resources typically
required for material testing and optimization.

3.4.3.1 Material-specific findings
Aluminum: The results highlight Aluminum’s balanced

mechanical properties, particularly its moderate Bulk Modulus
and Young’s Modulus, which make it suitable for lightweight
applications requiring a balance between strength and flexibility.
Its relatively low Shear Modulus compared to Titanium suggests
that Aluminum may be more appropriate for structures that
prioritize lightness over extreme shear resistance. This makes
Aluminum highly useful in sectors such as aerospace, where
weight reduction is essential but material strength must not be
compromised.

In 3D printing, Aluminum is widely used in various domains:

• Aerospace and aviation: Lightweight components for fuselages,
satellites, and drones.
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FIGURE 10
Comparison of actual and predicted shear modulus.

• Automotive industry: Manufacturing of lightweight parts such
as engine mounts and housings.

• Rapid prototyping: Development of functional prototypes
requiring both strength and lightness.

• Electronics: Enclosures for electronic devices where reduced
weight is essential.

Titanium: Titanium’s exceptional mechanical performance,
particularly its high Young’s Modulus and Shear Modulus, makes it
the stiffest andmost rigid of the threematerials tested.This positions
Titanium as an ideal candidate for applications that demand
high mechanical strength and resistance to deformation, such
as biomedical implants and aerospace components. However, the
unique negative Poisson’s Ratio of Titanium introduces complexities
in terms of its deformation behavior, which may pose challenges
in specific 3D printing processes. Despite these challenges, the
material’s high performance under stress and resistance to corrosion
make it indispensable for high-end engineering applications.

In 3D printing, Titanium is utilized in the following areas:

• Medical: Biomedical implants (bone and dental prostheses) due
to its biocompatibility and corrosion resistance.

• Aerospace: Critical engine parts and structural components
under high stress.

• Sports equipment: High-performance products like bicycle
frames and golf clubs.

• Luxury goods: Watches and jewelry requiring both lightness
and robustness.

Nickel: Nickel stands out for its superior resistance to
compression, as indicated by its highest Bulk Modulus, and its good
overall mechanical properties, making it a strong contender for
industrial applicationswhere parts are subjected to high compressive

forces. Although Nickel is heavier and more rigid compared to
Aluminum, it offers a robust option for environments that require
durability and compression resistance, such as in machinery
components. However, its lower flexibility compared to Aluminum
suggests it may be less suited for lightweight applications.

3D printing applications for Nickel include:

• Energy industry: Manufacturing of turbines and components
for power plants.

• Petrochemical industry: Production of heat exchangers and
corrosion-resistant tanks.

• Aerospace: Components for jet engines exposed to high
temperatures.

• Machinery: Durable machine parts subjected to heavy
compression forces.

3.4.3.2 Advantages of the hybrid approach
This study demonstrates the power of combining machine

learning models with traditional computational methods. The
strong alignment between the predicted values and actual values
shows that the Ridge regression model is not only capable of
capturing the complex relationships betweenmaterial properties but
can do so with minimal computational cost compared to purely
simulation-based approaches. This offers significant advantages for
industries using 3D printing, allowing for faster prototyping, cost-
efficientmaterial testing, and the optimization ofmaterial properties
before committing to costly physical trials.

The hybrid approach also shows great promise for future
applications in materials science, particularly in the development of
novel materials for additive manufacturing. By leveraging machine
learning to predict mechanical properties with high accuracy,
researchers and manufacturers can significantly reduce the time
required to bring new materials to market, driving innovation
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in industries where performance, customization, and efficiency
are critical.

4 Conclusion

In this study, a hybrid methodology integrating Density
Functional Theory (DFT) simulations via CASTEP with machine
learning algorithms was successfully developed to predict the
mechanical properties of 3D-printed aluminum, titanium, and
nickel. The DFT-generated data served as a high-fidelity dataset for
training and validating predictive models.

Among the tested algorithms, the Ridge regression model
exhibited outstanding predictive capabilities, achieving R-squared
values consistently above 0.999 for Young’s modulus, bulk modulus,
and shearmodulus.This level of precision confirms the effectiveness
and reliability of the proposed machine learning approach in
replicating computational results with negligible error.

Beyond numerical performance, the study also provided
material-specific insights relevant to additive manufacturing.
Aluminum was confirmed as optimal for lightweight, ductile
structures; nickel demonstrated high compressive strength, ideal for
robust components; and titanium, while offering superior strength
and stiffness, requires careful process control due to its complex
deformation behavior during printing.

This hybrid approach not only reduces the computational
burden associated with DFT simulations but also accelerates the
process ofmaterial selection and design optimization in 3Dprinting.
The integration of quantum mechanical simulations with artificial
intelligence establishes a powerful framework for the intelligent
development of next-generation materials tailored for additive
manufacturing.
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