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Owing to the great barrier properties, light weight and environmental
friendliness, graphene-based anticorrosion coatings are considered to be
promising candidates for next-generation anticorrosion materials. Recently,
polydopamine has showed considerable research value and application
prospects in the field of anticorrosion, and provided new opportunities
for chemical modification of graphene for the enhancement of coating
performance. However, the applications and mechanisms of polydopamine-
modified graphene in anticorrosion coatings have not been systematically
summarized. This review focuses on the application and mechanism of
graphene and polydopamine-modified graphene in anticorrosion coatings.
Firstly, the intrinsic barrier properties and applications of graphene in
anticorrosion coatings are summarized, especially in self-healing anticorrosion
coatings. Next, the properties and applications of polydopamine in the field
of anticorrosion are reviewed and discussed. Moreover, the application and
mechanism of polydopamine in graphene-based anticorrosion coatings are
systematically reviewed, which mainly includes enhancing the intrinsic barrier
properties, improving the dispersibility, modifying with functional materials, and
introducing pH-responsive properties. Finally, the critical challenges and future
prospects for the development of graphene-based anticorrosion coatings are
discussed. This article aims to boost further development of graphene-based
anticorrosion coatings to solve the anticorrosion bottleneck of equipment in
harsh corrosive environments.
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1 Introduction

When the metal is in contact with the surrounding medium, it often fails due to the
chemical or electrochemical interaction between them, i.e., corrosion occurs. From the
second law of thermodynamics and the Gibbs free energy change of the reaction, all but
a few precious metals have a tendency to convert to ions (Li et al., 2023). In other words,
metal corrosion is a spontaneous and widespread phenomenon that is involved in almost
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all areas of industry and human life (Nazari et al., 2022; Cui et al.,
2021). As one of the worst corrosive environments, the ocean
atmosphere can form a liquid film containing oxygen and salt on
metal surfaces, leading to extremely strong corrosion and failure of
metal materials. It seriously affects the long-term safe development
of infrastructure and engineering equipment in tropical oceans,
polar oceans and deep oceans (Yu et al., 2023). Especially with the
continuous exploration of oceans, the reliability requirements for
marine equipment are getting higher and higher. Due to long-term
exposure to the marine corrosive environment containing oxygen,
salt spray and ultraviolet rays, it is a big challenge to develop a long-
term, effective anticorrosion strategy for high-end equipment in the
field of marine engineering.

Metal corrosion is caused by the reaction of metal and external
media, so the surface coating is the most direct and effective
protective measure to reduce and avoid metal corrosion. Due to
the advantages of wide selectivity, wide availability and low cost,
organic anticorrosion coatings are themost widely used engineering
materials to ensure the safety of marine equipment in harsh
corrosive environments. (Zhang F. et al., 2018; Liu et al., 2020;
Vesely et al., 2010; Li et al., 2022; Li et al., 2014; Fang et al.,
2015; Song et al., 2024). However, the polymer matrix of organic
coatings contains large molecular chain gaps and defects such as
pores and cracks that are inevitably introduced during the coating
process. It means that a pure organic coating can hardly be a perfect
physical barrier to corrosive media (Hasani et al., 2018; Cai et al.,
2018; Li and Zhou, 2022). In recent years, the emerging graphene-
based anticorrosion coatings have the advantages of excellent
anticorrosive performance, small coating thickness, light weight,
high adhesion and great barrier effects, which is an ideal upgraded
alternative to the traditional organic anticorrosion coatings. The
barrier effects refer to the ability of the graphene flakes to prevent
the penetration of corrosive media like H2O, O2 and Cl−, which
improve the anticorrosion performance of organic coatings. In the
composition of graphene-based anticorrosion coatings, the addition
of graphene as filler is only 0.5%–2%, which can replace 30%–60%
of zinc powder filler in traditional organic anticorrosion coatings.
Moreover, compared with other 2D materials, graphene has better
barrier properties thanks to the special arrangement of carbon
atoms in its 2D structure, which will be described in more detail
below. Secondly, graphene is only composed of carbon atoms, which
gives it the advantage of being more chemically stable and lighter
than other 2D materials like transition metal dichalcogenides or
MXenes. Third, the industrial mass production of graphene is
already available, and the cost of raw materials and processing of
graphene has advantages over other 2D materials like h-BN or black
phosphorus. Thus, it shows that graphene has unique advantages
in anticorrosion performance, reducing costs and environmental
protection, making it an ideal filler for improving the performance
and reducing costs of anticorrosion coatings (Ollik and Lieder, 2020;
Cui et al., 2019; Jin et al., 2022a).

Owing to the advantages of graphene as filler in coatings, the
scientific research and engineering application of graphene-based
anticorrosion coatings have developed rapidly in recent years. In
addition, some emerging graphene modification technologies have
also provided new opportunities for the anticorrosion applications
ofmodified graphene coatings, which give the coating new functions
such as high-temperature resistance, wear resistance, self-healing

properties and self-warning properties. Among them, mussel
adhesion protein has been highly valued in the field of surface
modification and anticorrosion due to its strong affinity with metal
substrates. Polydopamine, the derivative ofmussel adhesion protein,
has also attracted widespread attention as a new type of modified
material and green corrosion inhibitor (Jin et al., 2025). Due to the
unique chemical properties of polydopamine, it is expected to make
up for the defects of pure graphene-based anticorrosion coatings and
accelerate the development and application of high-performance
graphene-based anticorrosion coatings.

This review recapitulates the development of graphene-based
anticorrosion coatings and the applications of polydopamine
in graphene-based anticorrosion coatings. Firstly, the barrier
properties of graphene are briefly described. Then, the applications
and current problems of graphene in anticorrosion coatings are
systematically discussed, especially in self-healing anticorrosion
coatings. After that, the properties and the applications of
polydopamine in anticorrosion are reviewed and discussed.
Finally, the research and the possible anticorrosion mechanism
of polydopamine in graphene-based anticorrosion coatings are
reviewed and analyzed, as shown in Figure 1. Based on the above,
the critical challenges and future prospects for the application
of polydopamine in graphene-based coatings as next-generation
anticorrosion materials are discussed, aiming to boost further
development of modified graphene as a candidate to solve
the anticorrosion bottleneck of equipment in harsh corrosive
environments such as tropical oceans, polar oceans, deep oceans
and deep earth.

2 Development of graphene-based
anticorrosion coatings

2.1 Barrier properties of graphene

In 2004, Novoselov et al. from the University of Manchester
first used mechanical exfoliation to obtain graphene with a
thickness of only 0.35 nm (Novoselov et al., 2004). The study
found that graphene is a type of two-dimensional material with
only one atomic layer thickness. Its carbon atoms are connected
by sp2 orbital hybridization, so the chemical bonds between
carbon atoms are highly stable σ bonds (Geim, 2009). Due
to its special two-dimensional structure, graphene has great
mechanical, electrical, thermal, and optical properties, making it
a hot research topic in many fields (Jin et al., 2023; Jin et al.,
2022b; Wang et al., 2019; Han et al., 2014). In addition, the
excellent barrier property of graphene has gradually attracted
attention in the field of anticorrosion. The van der Waals radius of
neighboring carbon atoms in graphene is 0.11 nm. The conjugation
effect of π-electrons within the surface reduces the diameter
of the hexagonal holes to 0.064 nm, which forms a repulsive
field to effectively block the penetration of corrosive media such
as oxygen and water molecules, as shown in Figure 2a (Berry,
2013). Therefore, graphene is considered as an ideal anticorrosion
material due to advantages such as barrier property and chemical
stability.

Based on the intrinsic barrier properties of graphene, graphene
films are directly used for the anticorrosion of metal surfaces
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FIGURE 1
Research of polydopamine in graphene-based anticorrosion coatings and applications in harsh corrosive conditions.

(Pan et al., 2024; Li et al., 2022). Chen et al. confirmed the
protective performance of graphene films on copper substrates in
hydrogen peroxide and high-temperature corrosive environments
(Chen et al., 2011). The results showed that graphene had good
chemical inertness and high-temperature oxidation resistance. It
could block the direct contact between the corrosive medium and
the copper substrate, which effectively reduced the oxidation and
corrosion rate of copper, as shown in Figure 2b. However, Zhou
et al. found that graphene films on metal surfaces may accelerate
the corrosion of metal substrates (Zhou et al., 2013). They deposited
a layer of graphene film on the copper surface and exposed it to
the atmosphere for 6 months. Compared with the pure copper
substrate, the copper substrate with graphene film actually suffered
more severe corrosion, as shown in Figure 2c. With the deepening
of research, Schriver et al. found that intact graphene films could
indeed be used as a protective layer to protect the metal substrate in
a short period of time (Schriver et al., 2013). However, due to long-
term immersion in a corrosive environment, the inevitable defects in
graphene films may lead to the penetration of corrosive media such
as H2O and O2, causing corrosion of the substrate. Since graphene
films are excellent conductors, they can induce electrochemical
reactions at the contact interface and promote the corrosion. For
copper substrates, as long as there are free electrons at the interface

between the graphene film and metallic copper, the free electrons
can diffuse from copper to the graphene film, as shown in Figure 2d.
This process accelerates the cathode reaction, ultimately leading to
the corrosion of copper.

In summary, the intrinsic barrier properties of graphene can
indeed inhibit the penetration of corrosivemedia and provide short-
term protection for metals. However, after the long-term immersion
in a corrosive environment, defects in the graphene film can allow
corrosive media to penetrate into the substrate, causing corrosion of
the metal substrate. Due to the conductivity of graphene, it can form
a primary battery with the metal substrate, which accelerates the
corrosion of the substrate (Cui et al., 2017). Many works have been
conducted to improve the intrinsic barrier properties of graphene
films by reducing the conductivity of graphene films or avoiding
direct contact between graphene films and metal substrates, such
as multilayer design strategies (Stoot et al., 2015), atomic layer
deposition methods (Hsieh et al., 2014), and heterogeneous atom
doping methods (Ren et al., 2018). However, these strategies are not
suitable for large-scale anticorrosion applications. Therefore, since
pure graphene films are difficult to meet the long-term protection
requirement of industrial equipment, the dispersion of graphene
powder into organic coatings is a practical way to exert the excellent
barrier properties of graphene (Zhao et al., 2024).
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FIGURE 2
Barrier properties of graphene. (a) Intrinsic impermeability of graphene (Berry, 2013). (b) Barrier properties of graphene film on metal surface
(Chen et al., 2011). (c) Graphene film exacerbated the corrosion of copper substrate after 6 months in the atmosphere (Zhou et al., 2013). (d)
Electrochemical reaction mechanism of copper corrosion exacerbated by graphene film (Schriver et al., 2013).

2.2 Applications of graphene in
anticorrosion coatings

Graphene can be added to various organic coatings as a filler.
It can adapt to different organic coatings and make up for the
poor barrier properties of coatings caused by coating defects. Tong
et al. studied the effect of graphene structure on the anticorrosion
performance of coatings (Tong et al., 2017). Comparing multilayer
graphene and few-layer graphene, they found that the anticorrosion
performance of few-layer graphene in polyurethane coatings was
significantly better than that of multilayer graphene. The results
showed that the few-layer graphene had a larger specific surface
area and could be better dispersed in the coating to block corrosive
media. Qiang et al. studied the effect of different amounts of added
graphene on the anticorrosion performance of acrylic resin coatings
(Qiang et al., 2020). The results showed that with the increase
of addition amount, the anticorrosion performance of the coating
first increased and then decreased. Because the flake structure of
graphene had a great barrier effect on corrosive media, but it
was prone to agglomeration after exceeding an optimal amount
of 0.6 wt%, which promoted the formation of coating cracks.
Ding et al. further enhanced the barrier properties of graphene
by doping boron nitride nanodots and added the composite as
a filler to epoxy resin to evaluate the anticorrosion performance
of the coating (Ding et al., 2019). The results showed that only
0.1 wt% of graphene with boron nitride nanodots could reduce the
corrosion rate of the steel substrate by 280 times and increase the
electrochemical impedance modulus by two orders of magnitude,
showing excellent anticorrosion performance.

Thedispersibilityofgraphene in thecoating is thekey toenhancing
the barrier properties of the graphene-based coatings (Zhang et al.,

2020; Liu et al., 2021). However, due to the strong van derWaals force
and π-π interaction between graphene sheets, graphene is prone to
stacking and agglomeration in the coating (Jin B. et al., 2021;Wu et al.,
2022). The main dispersion methods currently used include physical
dispersion methods such as adding surfactants and intercalating
agents, and chemical dispersion methods such as modifying and
grafting. For the physical dispersion method, Chen et al. used poly(2-
butylaniline) as a dispersant to weaken the interaction of graphene
sheetsby intercalation,whichachievedefficientdispersionofgraphene
in organic solvents, as shown in Figure 3a (Chen et al., 2017).
The results showed that the impedance modulus of the composite
epoxy coating after enhanced dispersion increased by two orders of
magnitude. Qiu et al. used polypyrrole as a dispersant and assisting
with ultrasonic dispersion technology to achieve efficient dispersion
of graphene in the coating (Qiu et al., 2017). As a result, the graphene
composite coating showed a more positive corrosion potential and a
higher impedance modulus.

The chemical dispersion method is based on the principle of
“like dissolves like”. Functional groups similar to the matrix groups
are grafted onto graphene to enhance its dispersibility in the resin
matrix. Dong et al. used KH-570 silane coupling agent to covalently
graft graphene oxide and added it to acrylic resin as a filler (Dong
and Liu, 2016). The results showed that the modified groups could
form covalent bonds with the coating matrix. The modification
process not only improved the dispersibility of graphene oxide in the
coating, but also enhanced its compatibility with the resin interface.
Ye et al. synthesized the graphene oxide modified by polyhedral
oligomeric silsesquioxane (POSS-GO) by a one-step condensation
reaction. They added the composites to epoxy resin to achieve
efficient dispersion of fillers and enhance the barrier properties
of the coating (Ye et al., 2019). The results showed that after
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FIGURE 3
Applications of graphene in anticorrosion coatings. (a) Poly(2-butylaniline) as an intercalating agent for physical dispersion of graphene in organic
solvents (Chen et al., 2017). (b) Preparation of uniformly dispersed and oriented graphene-based epoxy coatings by spraying method (Ding et al., 2021).
(c) Graphene modified by hydrophobic fluorosilane enhanced superhydrophobic properties (Uzoma et al., 2019). (d) Schematic diagram of corrosive
medium penetration into pure organic coatings (Ding et al., 2021). (e) Schematic diagram of corrosive medium penetration into graphene-based
organic coatings (Ding et al., 2021).

adding 0.5 wt% of POSS-GO, the impedance modulus of the epoxy
coating increased by two orders of magnitude, which was attributed
to the great dispersibility of POSS-GO. Ding et al. prepared a
graphene-based epoxy coating by spraying oligomer-functionalized
graphene oxide, which had the directional arrangement structure
of graphene in the coating, as shown in Figure 3b (Ding et al.,
2021). The results showed that the impedance modulus of the
coating increased by 3 orders of magnitude due to the excellent
barrier properties of the uniformly dispersed graphene. In addition
to improving the dispersibility of graphene in the coating matrix,
chemical modification can also give graphene or graphene-based
coatings specific functions to meet the requirements of different
applications. Wu et al. proposed a strategy for fluorinated graphene
modified by ionic liquid as a filler in coatings (Wu et al., 2020). This
work not only achieved stable dispersion of graphene in water-based
epoxy resin, but also reduced the conductivity of graphene powder,
which inhibited the microcurrent corrosion of the substrate. Uzoma
et al. prepared the organic siloxane acrylic resin by acrylic monomer
polymerization, and added the graphene modified by hydrophobic
fluorosilane as a filler (Uzoma et al., 2019). The results showed
that the well-dispersed modified graphene not only improved the
anticorrosion and mechanical properties of the coating, but also
brought superhydrophobic properties to the coating with a water
contact angle of ≥152°, as shown in Figure 3c.

In summary, the anticorrosion performance of graphene is
mainly based on its unique two-dimensional conjugated structure.
This structure can effectively inhibit the penetration of corrosive

media such as water, oxygen, and chloride ions, forming a dense
and anti-penetration barrier layer as shown in Figure 3d. The
low surface energy and hydrophobicity of graphene also make it
difficult for water molecules to penetrate into the coating (Liu et al.,
2019). Well-dispersed graphene can be stacked layer by layer in the
coating to form a maze-like anticorrosion structure, as shown in
Figure 3e (Ding et al., 2021). This “maze effect” can not only fill
the defects of the coating matrix, preventing bubbles or cracks in
the coating from further expanding, but also increase the diffusion
path of the corrosive medium in the coating. The electro-chemical
results revealed that the impedance modulus of the graphene-
based coatings (∼109 Ω‧cm2) was improved more than by 3 orders
than that of pure organic coatings (3.15 × 105 Ω‧cm2). Therefore,
dispersing graphene in an organic coating can enhance the barrier
properties of the coating, thereby reducing the corrosion rate of the
metal substrate.

2.3 Research of graphene in self-healing
anticorrosion coatings

Although the barrier structure of graphene in coatings can
effectively block the penetration of corrosivemedia, the effectiveness
of the structuremust be based on the absence of mechanical damage
to the coating. Once the coating is scratched or cracked, the barrier
effect of the graphene in the coating will fail. Conventional methods
usually remove the damaged coating and replacing it with an intact
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one. However, it brings new problems such as the poor compatibility
between the old and new interfaces, which affects the bonding
and mechanical properties of the coating. Therefore, graphene-
based anticorrosion coatings with only passive barrier properties are
difficult to meet the long-term anticorrosion requirements of high-
end equipment. In order to improve the long-term anticorrosion
performance of graphene-based anticorrosion coatings and enhance
the resistance of coatings to mechanical damage, self-healing
anticorrosion coatings with both passive barrier and active healing
properties have gradually attracted the attention of researchers
(Shchukin and Mohwald, 2013; Cui et al., 2023; Cui et al., 2020).

Graphene-based self-healing anticorrosion coatings use graphene
as a carrier platform to load and encapsulate corrosion inhibitors.
This not only exerts the barrier properties of graphene in coatings,
but also utilizes the corrosion inhibition effect of the corrosion
inhibitors to further enhance the corrosion resistance of the coating
(Mustehsin et al., 2024; Wu et al., 2024). Even when mechanically
damaged, such self-healing coatings can form a protective layer on the
metal surface via the release of the corrosion inhibitors on graphene,
realizing the healing of the anticorrosion performance of damaged
coatings (Zhang M. et al., 2018; Cho et al., 2009; Jia et al., 2020; Yan
et al., 2021; Zhong et al., 2021; Cao et al., 2020; Ma et al., 2020). Hao
et al. grafted polyaniline onto graphene, and loaded corrosion
inhibitor, benzotriazole (BTA), via interactions between the
polyaniline and the BTA, as shown in Figure 4a (Hao et al., 2020).
The results of the electrochemical measurements showed that the
impedance modulus of the composite coating decreased and then
increased with immersion time, indicating that the composite coating
exhibited the self-healing properties. This was attributed to the
barrier effect of graphene and the formation of a protective film
on the metal substrate by the released BTA. Ramezanzadeh et al.
noncovalentlymodified the grapheneoxidewith a corrosion inhibitor,
1H-benzimidazole,andthendispersedthecomposites intoepoxyresin
(Kasaeian et al., 2018). The results showed that the composite filler
couldactively inhibit thecorrosionofthesubstrate,exhibitingexcellent
self-healing effects and long-term anticorrosion performance. The
impedance modulus values of almost greater than 1010 Ω‧cm2 were
obtained for this system at long immersion time of 35 days. Ye et al.
inserted functionalized carbondots (CDs) as corrosion inhibitors into
the interlayers of graphene via π-π interactions, and then dispersed
the CDs-modified graphene into epoxy resin (Ye et al., 2021). The
electrochemical results showed that the coating exhibited excellent
anticorrosion performance after the addition of CDs-modified
graphene. After 50 days of immersion in corrosive environment, the
water absorption of the composite coating was only 4.4%.

One of the main challenges of current graphene-based self-
healing anticorrosion coatings is the low loading amount of
corrosion inhibitors, resulting from the limited spatial sites and
chemical inertness of the graphene platforms (Borisova et al.,
2011). Researchers have proposed to load nanocontainers
with pore structures on graphene to enhance the loading of
corrosion inhibitors. In recent years, many works have made great
efforts in designing various kinds of nanocontainers with large
capacity, such as hollow or mesoporous nanorods, nanotubes,
nanocages, covalent organic frameworks (COFs), andmetal-organic
frameworks (MOFs) to continuously improve the loading capacity
of graphene for corrosion inhibitors. Zhang et al. synthesized COF
nanocontainers on graphene oxide sheets for encapsulating the

BTA corrosion inhibitor. The loading amount of the composite
was 8.53 wt% (Zhang et al., 2022). The results showed that the
impedance modulus of the epoxy coating with the composite fillers
was still as high as 8.58 × 108 Ω‧cm2 after 60 days of immersion
in salt water, which was one order of magnitude higher than that
of the coating with the pure graphene oxide. Li et al. encapsulated
the corrosion inhibitor of 2-mercaptobenzimidazole into a MOF
nanocontainer (ZIF-8) (Li et al., 2021). The nanocontainers were
loaded onto graphene oxide with a loading amount of corrosion
inhibitors up to 10.21 wt%. The composite filler was then dispersed
into epoxy resin to prepare a composite coating with pH-responsive
and self-healing properties. The results showed that the composite
coating could respond to pH changes caused by metal corrosion,
and release the corrosion inhibitor to form a protective film in
the corrosion region of the metal substrate, as shown in Figure 4b.
The changes of the electrochemical impedance modulus proved the
effective self-healing properties of the composite coating. Ye et al.
grafted octa-amino polyhedral oligomeric silsesquioxane (8-POSS)
onto graphene oxide as a nanocontainer to load the BTA corrosion
inhibitor, as shown in Figure 4c (Ye et al., 2020). The 8-POSS
was designed with a cage-like structure, which could load more
corrosion inhibitor with the loading amount up to 18.6 wt%. The
composite coating showed a decreasing trend of conductivity at local
defectswith the increase of immersion time.Moreover, the corrosion
area was significantly reduced, which reflected the self-healing
properties of the composite coating. Liu et al. synthesized a novel
graphene-based anticorrosion coating via the design of bowl-shaped
β-cyclodextrin supramolecular nanocontainers (Liu et al., 2018).
The loading amount of corrosion inhibitors was further increased to
24 wt%.The composite coating not only had the barrier properties of
graphene, but also could release corrosion inhibitors triggered by the
pH change from corrosion as shown in Figure 4d, showing excellent
self-healing properties and long-term anticorrosion performance.

In summary, the response and release behaviors of corrosion
inhibitors in graphene composites are the keys to the anticorrosion
performance of self-healing coatings. The lagging response or
uncontrollable release behavior can lead to the untimely interfacial
healing and the loss of corrosion inhibitors, which cannot exert
the corrosion inhibition effects of the loaded corrosion inhibitors
on the metal substrate (Zhou et al., 2020). The response and
release characteristics are closely related to the chemical properties
of graphene. Therefore, seeking suitable chemical modification
strategies for graphene and designing novel modified graphene
fillers with more corrosion inhibitors, sensitive response and
intelligent release functions are the keys to enhance the performance
of graphene-based self-healing anticorrosion coatings.

3 Development of polydopamine in
graphene-based anticorrosion
coatings

Inspired by marine mussels, the multifunctional chemical
properties of polydopamine present new opportunities for the
modified graphene-based self-healing anticorrosion coatings
(Zhang and Pan, 2019). Polydopamine, a derivative of mussel
adhesion protein, is formed by the self-polymerization of dopamine
monomer in an alkaline environment. Due to the advantages of
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FIGURE 4
Applications of graphene in self-healing anticorrosion coatings. (a) Preparation of polyaniline-modified graphene loaded with BTA (Hao et al., 2020).
(b) Preparation and self-healing mechanism of graphene composite coating based on MOF encapsulated with corrosion inhibitor (Li et al., 2021). (c)
Preparation of graphene modified with 8-POSS nanocontainers (Ye et al., 2020). (d) Preparation and self-healing mechanism of graphene modified
with β-cyclodextrin supramolecular nanocontainers in coatings (Liu et al., 2018).

adhesion properties, modification properties, metal affinity, and
pH-responsive properties, polydopamine has been widely used in
the field of anticorrosion as modifier, green corrosion inhibitor,
dispersant, and adhesion agent. Moreover, due to the abundance of
nitrogen-containing functional groups, polydopamine can also act
as an amine curing agent in epoxy resin to enhance the compatibility
of fillers with the epoxy coating matrix (Li et al., 2016). Therefore,
polydopamine shows considerable research value and application
prospects in the field of anticorrosion coatings. It also provides new
opportunities for the chemical modification of graphene and the
enhancement of the performance of graphene-based self-healing
anticorrosion coatings.

3.1 Properties of polydopamine

Marine mussels can adhere to the surfaces of metal, glass and
polymers via the mucus secreted by their byssus. This universal

adhesion capacity has attracted great attention from researchers in
the field of surface coating and functional modification (Ryu et al.,
2018; Becherer et al., 2015). The strong adhesion properties are
attributed to the adhesion proteins in the mucus secreted by mussel
byssus (Anderson et al., 2010; Lee et al., 2006; Lin et al., 2007).
These adhesion proteins mainly contain dihydroxyphenylalanine
(DOPA) and a small amount of lysine residues (Li et al., 2015).
The synergistic effect of the catechol group in DOPA and lysine
can replace water molecules on the surface of the substrate, thereby
achieving underwater adhesion (Maier et al., 2015; Shin et al., 2021;
Qureshi et al., 2021). In 2007, Lee et al. published a pioneering
work that applied the adhesion of mussels to the field of surface
coating (Lee et al., 2007). They oxidized dopamine under weak
alkaline conditions, and the dopamine was self-polymerized on
the surfaces of various substrates to form a polydopamine film,
as shown in Figure 5a. Dopamine, as a derivative of DOPA, has
similar properties to DOPA because it has both the catechol group
and the terminal amino residue of lysine (Jin et al., 2024). In that
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FIGURE 5
Properties and corrosion inhibition effect of polydopamine. (a) Structure of dopamine and formation of polydopamine (Lee et al., 2007). (b)
pH-responsive behaviors of polydopamine (Yu et al., 2010). (c) Self-healing mechanism of Mefp-1/CeO2 composite film (Chen et al., 2016). (d)
Anticorrosion mechanism of BTA-loaded polydopamine microcapsules (Cheng et al., 2021).

work, they just needed to place the target material in a dopamine
alkaline solution at room temperature and immersed for a short
time. Dopamine can then spontaneously adsorb on the surface of
the target material and form a polydopamine film via covalent
and non-covalent self-assembly (Hong et al., 2012). Owing to the
convenient modifiability of the hydroxyl and amino groups on
the polydopamine film, other functional molecules can be grafted
onto the polydopamine film, resulting in functional modification
of the substrate (Dreyer et al., 2013). In addition, other studies
showed that by introducing other functional molecules during
the dopamine polymerization process, a functional polydopamine
composite film could be directly formed on the substrate in one
step (Kang et al., 2012; Kang et al., 2010; Qiu et al., 2018).
Therefore, the surfacemodification strategy based on polydopamine
overcomes the limitations of traditional methods and opens up
a new path for rapid modification and multifunctionality of
material surfaces, which has attracted great attention in the field of
functional coatings and material modification (Barclay et al., 2017;
Lee et al., 2019; Zhan et al., 2018).

Due to the reducing and weak acidity of phenolic hydroxyl
groups, along with the strong coordination ability of catechol for

soluble metal ions, dopamine has a strong affinity for metal ions
(Ye et al., 2011). Many works have shown that the complexation
reaction between dopamine and metal ions such as Cu2+, Fe3+,
Ti3+, Ti4+, Mn2+, Mn3+, and Zn2+ can be used to modify metal
ions or capture metal ions on the surface of polydopamine films.
Due to the bidentate chelation or bridging effect between catechol
and oxides such as TiO2, Fe2O3, Fe3O4, ZrO2, MnO2, and SiO2,
polydopamine can also be adsorbed on the surface of these oxides
(Ye et al., 2011). Therefore, based on the adhesion properties on
metal ions andmetal oxides, polydopamine is expected to be used as
a corrosion inhibitor or passivation film for corrosion protection of
metal materials. Moreover, polydopamine with amino groups and
phenolic hydroxyl groups can show different charges in different
pH environments and has been used to construct pH-responsive
biosensors (Jin Z. et al., 2021). Yu et al. studied the permeability
selectivity of polydopamine membranes to cations and anions in
different pH environments, as shown in Figure 5b (Yu et al., 2010).
The results showed that the polydopaminemembranewas negatively
charged at high pH and exhibited the behavior of repelling anions
but passing cations. And it was positively charged at low pH and
could pass anions but repel cations. Therefore, this pH-responsive
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properties of polydopamine are expected to be used to construct a
smart self-healing anticorrosion coating that can quickly respond
with controllable release of corrosion inhibitors to the pH changes
induced by corrosion.

3.2 Applications of polydopamine as
corrosion inhibitors

The traditional anticorrosion methods based on chromate
corrosion inhibitors are harmful to the natural environment and
human health. Mussel adhesion proteins and polydopamine have
strong affinity for metal surfaces and can be used as new corrosion
inhibitors that are green, efficient, and have self-healing properties
(Zhang et al., 2019). Zhang et al. demonstrated that mussel adhesion
proteinMefp-1 could effectively protect carbon steels exposed to salt
water (Zhang et al., 2011). Under acidic conditions, the corrosion
inhibition effect was mainly attributed to the complexation of
DOPA with Fe3+. By capturing Fe3+ on the surface of carbon steel,
the corrosion reaction of the carbon steel was inhibited, and the
effect could last up to 7 days. Under alkaline conditions, DOPA
could self-oxidize and form a polydopamine passivation film on
the surface of carbon steel to block the corrosive medium. In
addition, mussel adhesion protein Mefp-1 has also been used for
the surface protection of 304 L stainless steel and aluminum, which
can effectively delay the metal dissolution and pitting (Hansen et al.,
1995; Hansen and McCafferty, 1996). Sababi et al. utilized the
affinity of DOPA for metal ions and deposited a nanocomposite film
composed of Mefp-1 and CeO2 nanoparticles on carbon steel to
provide great long-term corrosion protection (Sababi et al., 2012).
Chen et al. found that the Mefp-1/CeO2 composite film had a
self-healing capacity on carbon steel (Chen et al., 2016). The Fe3+

released by corrosion on the steel surface could be captured by the
passivation film and continuously form newDOPA-Fe3+ complexes,
as shown in Figure 5c. Therefore, the corrosion area could be
covered by the new complex, thereby delaying further dissolution
and achieving the self-healing effects. Zhang et al. further found that
phosphate could synergize with Mefp-1/CeO2 composite films for
corrosion protection (Zhang et al., 2013).They could form a double-
layer protective film to prevent the invasion of corrosive media,
which achieved the industrial anticorrosion application of Mefp-
1/CeO2/phosphate composite film in reinforced concrete structures.
Cheng et al. prepared amultifunctionalMefp-1/graphene composite
film on the surface of carbon steel (Cheng et al., 2020). The
anticorrosion effect of the carbon steel surface was enhanced due
to the complexation between the corrosion products and Mefp-1.
In addition, the physical adsorption between Mefp-1 and graphene
enhanced the adhesion between graphene and the substrate, thereby
improving the friction reduction and wear resistance of the
carbon steel.

In addition to dissolving polydopamine corrosion inhibitors
in solutions to exert their corrosion inhibition effects, dispersing
them in an organic coating can also achieve great anticorrosion
effects (Wang et al., 2025). Cheng et al. prepared polydopamine
microcapsules loaded with the BTA corrosion inhibitor, and added
the composites to epoxy resin for the corrosion protection of steel
substrates (Cheng et al., 2021). BTA released from polydopamine
microcapsules could form a passivation film on the steel surface

to inhibit the anodic corrosion of the steel surface, as shown in
Figure 5d. Moreover, polydopamine could also react with Fe3+ to
form a complex and block the invasion of corrosive media. Long-
term electrochemical tests proved that the coating had excellent
anticorrosion effects. Shchukin et al. coated polydopamine on
the surface of mesoporous silica loaded with BTA and added
the composite as a filler to the alkyd resin (Qian et al., 2019).
Polydopamine could not only control the release of BTA, but also
reacted with corrosion products as a corrosion inhibitor to form
a passivation film. The results showed that after immersion in
salt water for 20 days, the composite coating exhibited excellent
anticorrosion performance. Chen et al. prepared a composite
(BTA@PDA) consisted of polydopamine (PDA) nanoparticles as the
carrier and BTA as the released corrosion inhibitor (Chen et al.,
2022a). Based on the pH-dependent changes in charge of amine
groups and hydroxyl groups, they further regulated the pH-
responsive behaviors of BTA@PDA by controllable group tailoring
to enhance the corrosion inhibition effects in coatings.The scratched
coatings exhibited an increased impedance modulus due to the
dual corrosion inhibition effects of BTA and PDA, triggered by the
corrosion-induced pH variation.Moreover, the impedancemodulus
of the coating maintained at 2.03 × 109 Ω‧cm2 after 21 days of
immersion.

3.3 Research of polydopamine in
graphene-based anticorrosion coatings

Due to the unique chemical properties of polydopamine,
it is expected to make up for the defects of pure graphene-
based anticorrosion coatings and accelerate the development
and application of multifunctional graphene-based anticorrosion
coatings. At present, the research on polydopamine modification
in graphene-based anticorrosion coatings mainly includes
the following four directions: enhancing the intrinsic barrier
properties of graphene, enhancing the dispersibility of graphene
in coatings, modifying graphene with other functional materials,
and introducing pH-responsive properties to graphene.

3.3.1 Enhancing the intrinsic barrier properties of
graphene

Based on the π-π interaction between polydopamine and
graphene, polydopamine can fill the defects on the graphene film
and thus enhance its barrier properties. Zheng et al. prepared
a polydopamine-modified graphene composite film on a copper
substrate to reduce the structural defects of the graphene film
(Zheng et al., 2021). The work showed that the polydopamine
could repair the conjugated structure of graphene through π-π
interactions. Meanwhile, the contact between graphene and Cu
substrate could be prevented by non-conductive polydopamine,
and the galvanic corrosion between graphene and Cu was
effectively inhibited. Hence, the synergistic effects of polydopamine-
modified graphene effectively improved the anti-permeability
performance of the graphene film, with a protection factor of
up to 99%, as shown in Figure 6a. Ding et al. applied this
strategy to graphene-based epoxy coatings (Ding et al., 2022).
They alternately sprayed a polydopamine-modified graphene layer
and an epoxy resin layer on the steel surface to obtain a
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graphene-based anticorrosion coating. In that composite coating,
the polydopamine not only reduced the defects of the graphene
layer and enhanced its barrier effect, but also bridged the graphene
layer and the epoxy resin layer to form an “interlocking” structure.
Electrochemical tests showed that the impedance modulus of the
composite coating increased by about three orders of magnitude,
representing the excellent anticorrosion performance. Chen et al.
synthesized an activation-induced ultrathin graphene (UG-BP)
with the homogeneous growth of polydopamine nanocontainers
encapsulated with BTA (Chen et al., 2023). They found that the
polydopamine could assemble on graphene by strong π−π stacking
to fill the defects. The conclusion was further proved by the results
of electron energy loss spectroscopy. With the structural evolution
from the adsorption to the growth of polydopamine, the Iπ∗/Iπ∗+Iσ∗
value gradually increased, indicating that polydopamine could grow
at the defect sites and enhance the sp2 structure of etched graphene.
It meant that the growth of polydopamine on graphene could ensure
the integrity of graphene flakes. Thus, the barrier effects of graphene
in anticorrosion coatings could be improved by polydopamine,
whichwas confirmed by the enhanced anticorrosion performance of
the coating (4.21 × 109 Ω·cm2 over 60 days).Theseworks showed the
advantages of PDAmodification in enhancing the barrier properties
of graphene. The modification process was convenient, low-cost,
and green, compared with other defect repair techniques. Therefore,
repairing the conjugated structure of graphene by polydopamine
was of great significance for the preparation of high-performance
graphene-based anticorrosion coatings.

3.3.2 Enhancing the dispersibility of graphene in
coatings

The stable dispersion of graphene in coatings is the key to
exerting its excellent barrier properties. However, due to the
interlayer interaction of graphene, its agglomeration problem in
the coating matrix often limits the application of graphene-
based anticorrosion coatings. Through polydopamine modification,
graphene can obtain abundant functional groups such as hydroxyl
and amine groups, so it can bewell dispersed inwater-based coatings
and amine curing agents. Cui et al. enhanced the dispersibility
of graphene oxide in waterborne epoxy coatings by introducing
hydrophilic functional groups via the π-π interaction and covalent
bonding between graphene oxide and polydopamine, as shown
in Figure 6b (Cui et al., 2018). The results showed that well-
dispersed polydopamine-modified graphene oxide significantly
enhanced the anticorrosion performance of the coating. Zhao et al.
prepared polydopamine-modified graphene oxide that could be
stably dispersed in waterborne polyurethane (Zhao et al., 2019).
The results showed that the addition of only 0.5 wt% of modified
graphene filler could enhance the anticorrosion performance of
waterborne polyurethane. Zhu et al. prepared cationic dopamine-
reduced graphene oxide (DRGO+) through the self-polymerization
and ionization reaction of dopamine (Zhu et al., 2020).The obtained
DRGO+ could be stably dispersed in commercial water-based epoxy
emulsion for more than 45 days without precipitation. Due to
the presence of NH3

+, DRGO+ could be arranged in parallel in
the coating under an electric field. This parallel DRGO+ greatly
improved the physical barrier properties of the coating via extending
the penetration path of corrosive media, as shown in Figure 6c.
Electrochemical impedance spectroscopy showed that when the

DRGO+ content was 0.5 wt%, the impedancemodulus of the coating
was one order of magnitude higher than that of the pure epoxy
coating, showing excellent anticorrosion performance.

3.3.3 Modifying graphene with other functional
materials

The chemical inertness of graphene limits its ability to be
composited with other functional materials, which restricts
the development of multifunctional graphene-based coatings.
Based on the excellent modification capacity of polydopamine,
polydopamine-modified graphene composite fillers have been
rapidly developed. Huang et al. prepared polydopamine-modified
graphene oxide with hexagonal boron nitride (h-BN-rGO@PDA)
nanofillers, and dispersed them into polyvinyl butyral coating
(Huang et al., 2019). With the rigid h-BN nanosheets attached,
h-BN-rGO@PDA nanohybrids became less folding and curling
after functionalization, and reveals a superior physical barrier effect
to prevent the penetration of corrosive media. Moreover, hexagonal
boron nitride weakened the interlayer interaction of graphene oxide,
resulting in the great dispersion of h-BN-rGO@PDA in the coating.
The results showed that when the mass ratio of hexagonal boron
nitride to graphene oxide was 1:1, the impedance modulus of the
composite coating (2.07 × 107 Ω‧cm2) was two orders of magnitude
higher than that of the blank coating (7.83×105 Ω‧cm2) during the
48 h immersion. Yang et al. modified polyaniline onto graphene
oxide by polydopamine to enhance the anticorrosion performance
ofwater-based alkyd varnish (Yang et al., 2019). Owing to the barrier
effect of graphene oxide and the hydrophobicity of polyaniline, the
composite coating showed excellent anticorrosion performance.
Moreover, polydopamine further enhanced the compatibility
between the fillers and the coatingmatrix. Therefore, the impedance
modulus increased by more than two orders of magnitude. Zhang
et al. prepared a superhydrophobic graphene-based anticorrosion
coating based on the great modification capacity of polydopamine
(Zhang et al., 2019). They synthesized SiO2 nanoparticles in situ
on polydopamine-modified graphene and further modified the
compositewith silane.The superhydrophobic composite coatingwas
prepared on the steel surface by electrostatic spraying with a contact
angle up to 156.3° ± 1.5°. Owing to the uniform adsorption of SiO2
on polydopamine, a unique multi-layer nanostructure was formed
on the coating surface, which could maintain its superhydrophobic
properties even after being immersed in salt water for 60 days. Ma
et al. modified mesoporous SiO2 nanocontainers uniformly onto
graphene oxide via polydopamine modification, and loaded BTA
in the nanocontainers, as shown in Figure 6d (Ma et al., 2021).
The obtained graphene-based epoxy coating showed effective self-
healing properties. After immersion in NaCl solution for 30 days,
the impedance modulus of the composite coating was two orders of
magnitude higher than that of the blank coating.

3.3.4 Introducing pH-responsive properties to
graphene

In graphene-based self-healing anticorrosion coatings, the
encapsulation and release of corrosion inhibitors by nanocontainers
is the key to achieving self-healing properties of the coating.
Polydopamine with sensitive pH responsiveness is expected to be
used as a switch to achieve smart release of corrosion inhibitors
triggered by the corrosion-induced pH variation. Habibiyan
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FIGURE 6
Applications of polydopamine in graphene-based anticorrosion coatings. (a) Methods and mechanisms for repairing structural defects in graphene by
polydopamine (Zheng et al., 2021). (b) Preparation of polydopamine-modified graphene oxide and its dispersion stability (Cui et al., 2018). (c)
Dispersion stability and oriented alignment of DRGO+ in coatings (Zhu et al., 2020). (d) Preparation of polydopamine-modified graphene composite
filler loaded with SiO2 nanocontainers (Ma et al., 2021).

et al. prepared polydopamine-modified graphene to capture Zn2+

and added the fillers to epoxy resin (Habibiyan et al., 2020).
When corrosion occurred in the damaged area of the coating,
polydopamine was able to detect pH variation and release Zn2+.
The Zn2+ formed zinc hydroxide compounds in the cathode area,
which could reduce the corrosion current on the steel surface.
Chen et al. prepared BTA-loaded halloysite nanotubes encapsulated
by polydopamine, which were assembled on graphene oxide via
π-π interactions (Chen G. et al., 2020). The polydopamine used
for encapsulation could be destroyed in an acidic environment to
release the BTA in the nanotubes. The results showed that the water-
based epoxy resin with the addition of the fillers exhibited excellent
barrier properties and self-healing properties. Cheng et al. prepared
polydopamine as pH-responsivemicrocapsules and assembled them
on graphene oxide to encapsulate the BTA corrosion inhibitor,
as shown in Figure 7a (Cheng et al., 2022). The fillers not only
enhanced the barrier properties of the epoxy resin, but also
introduced the self-healing properties to the composite coating. The
polydopamine could respond quickly to local corrosion areas and
released BTA. Even after immersion for 60 days, the impedance
modulus of the composite coating remained above 108 Ω‧cm2.
Chen et al. prepared a self-healing coating with the enhanced
loading of inhibitors enabled by ultra-highly exfoliated graphene

and polydopamine modification (Chen et al., 2022b). The work
showed that the polydopamine effectively promoted the adsorption
of BTA on graphene. The smart self-healing behavior of the coating
was triggered by the polydopamine decomposition from corrosion-
induced pH variations and the release of BTA. Thus, the coating
exhibited an increased impedance modulus (3.31 × 1010 Ω‧cm2)
even after 30 days of immersion, owing to the outstanding barrier
effect of the ultra-highly exfoliated graphene and the corrosion
inhibition effect of PDA/BTA.

The smart pH-responsive mechanism and the interfacial
anticorrosion mechanism of polydopamine in self-healing
anticorrosion coatings have been revealed in detail. The amine
and hydroxyl groups of the polydopamine-modified filler exhibits
different charging properties at different pH environments, as shown
in Figure 7b. Chen et al. further investigated the intermolecular
interaction of polydopamine and encapsulated BTA by density
functional theory (Chen et al., 2023).The electrostatic potential map
of polydopamine and encapsulated BTA exhibits the ability to get
and give electrons in different regions, indicating the pH-sensitive
properties in polydopamine-modified fillers. In acidic solutions,
both polydopamine and encapsulated BTA are positively charged,
so the release process of BTA is mainly driven by electrostatic
repulsion. In alkaline solutions, the negatively charged hydroxyl
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FIGURE 7
Applications of polydopamine in graphene-based self-healing anticorrosion coatings. (a) Preparation of graphene nanofillers loaded with
polydopamine microcapsules (Cheng et al., 2022). (b) Different release mechanisms of PDA encapsulated with BTA in acidic and alkaline environments
(Chen et al., 2022a). (c) Microanalysis of the corrosion interface and schematic of anticorrosion mechanism for polydopamine-modified graphene in
self-healing anticorrosion coatings (Chen et al., 2023).

groups will break down polydopamine into oligomers, and release
BTA and polydopamine by weakening their π-π interaction. The
released polydopamine and BTA can be adsorbed on the corrosion
areas of the coating to react with corrosion products. The released
polydopamine can react with the interfacial oxides, as shown in
Figure 7c. A dehydration process between C−OH of polydopamine
and Fe−OH of Fe(OH)2 occurs by the formation of Fe−O−C,
which promotes the transformation of the corrosion product from
Fe(OH)2 to Fe3O4 (Chen C. et al., 2020). Thus, polydopamine
contributes to the inhibition of the formation of Fe2O3-xH2O by
depleting Fe−OH of iron oxides. Moreover, polydopamine can form
a complex with the interfacial Fe2+, which inhibits the oxidation
of Fe2+. Therefore, polydopamine can introduce pH-responsive
properties to graphene fillers along with the effective interfacial
anticorrosion effects, which is important for the construction of
smart self-healing graphene-based anticorrosion coatings.

4 Conclusion and perspectives

Graphene as the anticorrosion filler has the advantages of great
barrier properties, light weight and environmental friendliness.
Graphene-based anticorrosion coatings have developed as the ideal
upgraded alternative for traditional anticorrosion coatings. In order
to enhance the long-term anticorrosion performance of graphene-
based anticorrosion coatings, the development of self-healing

anticorrosion coatings is an effective way, which has important
theoretical and application value. In addition, polydopamine has
been widely used for chemical modification of graphene due
to its excellent modification capacity, pH-responsive properties,
and corrosion inhibition effects. Polydopamine-modified graphene
nanofillers have shown the advantages in anticorrosion coatings.
In particular, a research foundation has been established for the
enhancement of graphene dispersion and the introduction of smart
pH-responsive properties. This review systematically summarizes
the current research progress and application of graphene and
polydopamine-modified graphene in the field of anticorrosion
coatings. Firstly, the barrier properties of graphene are briefly
described. Then, the applications and current problems of graphene
in anticorrosion coatings are systematically reviewed, especially in
self-healing anticorrosion coatings. Next, the properties and the
applications of polydopamine and its derivatives in anticorrosion are
discussed. Finally, the applications and the possible anticorrosion
mechanism of polydopamine in graphene-based anticorrosion
coatings are analyzed.

Despite the remarkable progress in the application of graphene-
based anticorrosion coatings, some issues still need to be resolved,
which are described as follows:

(1) The microstructure of graphene and the arrangement of
graphene in the coating have always been the focus of research.
Current commercial graphene fillers are synthesized by
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different methods and usually have different flake structures.
And the microstructure and arrangement of graphene directly
affects its barrier properties in coatings. Researchers have
investigated the effects of graphene’s microstructure or specific
surface area on its barrier properties and the loading content of
corrosion inhibitors. In addition, some works have attempted
to modulate the arrangement of graphene in the coating
through the coating process or an applied electric field.
However, there is a lack of systematic research on relatedworks,
and the intrinsic mechanism remains unrevealed. Therefore,
the systematic research of the optimal preparation method
of graphene with ideal microstructure and arrangement is of
great significance to enhance the anticorrosion performance of
graphene-based anticorrosion coatings.

(2) Substantial research efforts are still required to precisely
modulate and optimize the pH-responsive properties of self-
healing anticorrosion coatings. The pH-responsive behavior
of coatings is closely related to their self-healing properties.
Although some research works have been carried out on
the pH-responsive properties of polydopamine-modified
graphene, the research is limited to the verification of
its pH-responsive behavior. In those works, researchers
can only passively accept the results of the pH-responsive
behavior without mastering the optimization strategy. Some
researchers have investigated the charge evolution patterns
of polydopamine-modified nanofillers in different pH
environments to enable the regulation of their pH-responsive
behaviors. However, these related works are still at the research
stage of the design of composite fillers. There is still a long way
to go to bridge the pH-responsive properties of fillers with the
self-healing properties of coatings.

(3) Further systematic investigations are imperative to achieve
the quantitative correlation between the loading content of
corrosion inhibitors and the anticorrosion performance of
the coating. Corrosion inhibitors are fundamental to the self-
healing properties of anticorrosion coatings. Therefore, how
many corrosion inhibitors need to be encapsulated in the
filler? How long does it take for the corrosion inhibitors to
be consumed? These are questions that researchers need to
think about at the research stage of the design of composite
fillers. However, there is a lack of mathematical models to
guide the design of fillers.Therefore, the simulation calculation
related to the dosage and depletion of corrosion inhibitors will
be an important research direction in the future, which will
promote the design of optimal fillers and the development of
high-performance anticorrosion coatings.

Although numerous efforts are still needed to promote the
wide applications of graphene-based anticorrosion coatings, the
requirements for sustainable equipment development in harsh
corrosive environments are expected to accelerate the utilization of
graphene-based anticorrosion coatings from the laboratory to the

market. We hope that this review will stimulate further interest in
graphene-based materials for the development of next-generation
anticorrosion coatings.
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