
TYPE Original Research
PUBLISHED 02 July 2025
DOI 10.3389/fmats.2025.1594770

OPEN ACCESS

EDITED BY

Giuseppe Puglisi,
Politecnico di Bari, Italy

REVIEWED BY

Mohan Surya Raja Elapolu,
Clemson University, United States
Iurii Vozniak,
Polish Academy of Sciences, Poland

*CORRESPONDENCE

Xiangyang Fan,
18827600227@189.cn

RECEIVED 17 March 2025
ACCEPTED 11 June 2025
PUBLISHED 02 July 2025

CITATION

Liu B, Yang J, Zhang K and Fan X (2025)
Development of micromechanical model of
asphalt mixture in complex form for dynamic
modulus characterization.
Front. Mater. 12:1594770.
doi: 10.3389/fmats.2025.1594770

COPYRIGHT

© 2025 Liu, Yang, Zhang and Fan. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Development of
micromechanical model of
asphalt mixture in complex form
for dynamic modulus
characterization

Bin Liu1, Junlin Yang2, Kai Zhang1 and Xiangyang Fan1*
1Jiangxi Provincial Transportation Investment Maintenance Technology Group Co., Ltd., Nanchang,
Jiangxi, China, 2Powerchina Jiangxi Electric Power Engineering Co., Ltd., Nanchang, Jiangxi, China

Asphalt mixture is a multiphase composite viscoelastic material, with its
fundamental viscoelastic properties primarily determined by its material
composition and internal microstructure. The application of composite
micromechanics and the development of mathematical models to predict
the mechanical performance of asphalt mixtures are of great significance.
However, existing self-consistent micromechanics models primarily focus on
the magnitude of the complex modulus of asphalt mixtures, often neglecting
the phase angle. Tomore comprehensively evaluate the viscoelastic mechanical
properties of asphalt mixtures, this study extends the self-consistent model
to its complex form. By predicting the storage modulus and loss modulus of
the mixture, the goal of simultaneously predicting the dynamic modulus and
phase angle is achieved. The effectiveness of the model was validated using four
types of asphalt mixtures through forward and inverse modeling approaches. By
integrating inverse and forward solutions within the complex micromechanical
model, the dynamic modulus and phase angle can be accurately predicted. The
coefficients of determination between the predicted results and the measured
data are all above 0.9, demonstrating the model’s robust predictive capabilities.
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1 Introduction

The objective of asphalt mixture material design is to determine the proportion of
coarse and fine aggregates, the amount of asphalt, and the most reasonable skeleton
structure, internal void distribution, and mortar content, so that the mixture exhibits
favorable mechanical properties (ARA and ERES Consultants Division, 2004). Currently,
the Marshall design method and the Superpave design method are the two commonly
used approaches for mixture design (Kandhal and Koehler, 1985; Lytton et al., 1993;
Chakroborty et al., 2010; D’Angelo, 2001). These methods differ in terms of gradation
design, compaction methods, equipment used, and the approach to determining
asphalt content (Kandhal and Koehler, 1985; Lytton et al., 1993; Chakroborty et al.,
2010; D’Angelo, 2001). However, for performance evaluation, both methods rely on
empirical and macroscopic mechanical testing to reflect the actual pavement performance
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of the mixture, and corresponding macro-mechanical indicators
are proposed to assess the quality of the mixture design (Kandhal
and Koehler, 1985; Lytton et al., 1993). Nevertheless, years of
engineering practice have shown that these seemingly reasonable
mechanical indicators often exhibit poor correlation with the actual
pavement performance (ARA and ERES Consultants Division,
2004). There are instances where asphalt mixtures with excellent
laboratory macro-mechanical indicators develop rutting, moisture
damage, and other distresses shortly after paving, significantly
compromising the service life of the asphalt pavement (ARA and
ERES Consultants Division, 2004). While insufficient construction
quality may contribute to such issues, the primary reason lies
in the design phase’s failure to accurately link laboratory test
indicators with pavement serviceability. At present, neither the
Marshall designmethodnor the Superpave designmethod considers
the mechanical properties of the mixture from a microstructural
perspective during the design process. Factors such as the
size, shape, surface characteristics of aggregates, the contact
characteristics between aggregates, and the spatial distribution of
voids and asphalt all influence the serviceability of the mixture in
various ways (Karki et al., 2015).

At present, the macroscopic pavement performance of asphalt
mixtures is a key research focus, with most research methods
relying on two approaches: one being empirical formula methods
(ARA and ERES Consultants Division, 2004; Lytton et al., 2010),
and the other being laboratory testing methods (AASHTO, 2022;
A ASHTO, 2020; Zeng et al., 2021; Zeng et al., 2023a). Empirical
formulas are derived from extensive laboratory test data through
numerical analysis and mathematical fitting, resulting in models
with high fitting accuracy to predict the fundamental mechanical
properties of mixtures (Christensen et al., 2003; Zhang et al.,
2020). For example, one of the most well-known dynamic modulus
prediction equations, the Witczak model shown in Equation 1,
was developed under the National Cooperative Highway Research
Program (NCHRP) Project 1-40D (Zhang et al., 2020). As shown, it
is essentially a regressionmodel built on a large dataset.However, the
validity of such empirical formulas depends on extensive laboratory
data obtained under specific experimental conditions. As a result,
when applied to environments different from those in which the
formulas were originally developed, the prediction results may
deviate significantly (Zeng et al., 2021). For instance, Zhang et al.
reported that the Witczak 1-40D model achieved an R2 value of
only 0.66 (Zhang et al., 2020).

log |E∗| = −0.349+ 0.754(|G∗|)−0.0052

[[

[

6.65− 0.032p200 + 0.0027p
2
200 + 0.011p4 − 0.0001p

2
4

+0.006p38 − 0.00014p
2
38 − 0.08Va − 1.06(

Vbef f

Va +Vbef f
)
]]

]

+
2.558+ 0.032Va + 0.713(

Vbeff

Va+Vbeff
)+ 0.0124p38 − 0.0001p

2
38 − 0.0098p34

1+ exp(−0.7814− 0.5785 log |G∗| + 0.8834 log δb)

(1)

where: |E
∗
| is the dynamic modulus predicted by the Witczak’s

1-40D model; |G
∗
| is the dynamic shear modulus of asphalt

binder measured by dynamic shear rheometer; p200, p4, p38, p34 are
measured parameters related to aggregate gradation; Va is the air
voids of asphalt mixture; Vbef f is the effective asphalt volume of
asphalt mixture; δb is the measured phase angle of asphalt binder.

Laboratory testing methods involve testing specimens
formed under controlled conditions to evaluate their mechanical
properties under specific loads and environmental conditions,
yielding highly accurate results. For instance, AASHTO T
378 was developed to measure the dynamic modulus using
the Asphalt Mixture Performance Tester (AMPT) (AASHTO,
2022). This test not only requires a dynamic modulus testing
system and data processing software, but also a conditioning
chamber, balance, and specimen fabrication equipment, making
it difficult to operate in practice. Additionally, each specimen
must be compacted, cored, and cut to dimensions of 100 mm
in diameter and 150 mm in height for a single test (AASHTO,
2022). As a result, laboratory testing is both time-consuming
and costly.

Furthermore, both empirical formulas and laboratory methods
are based on the macroscopic mechanical behavior of the mixture,
which prevents an understanding of its mechanical response
mechanisms from the standpoint of its constituent materials and
internal structure. Asphalt mixtures can be regarded as composites
composed of aggregates, asphalt, air, and other materials with
different properties. These materials are discretely and non-
uniformly distributed within the mixture, resulting in a distinctly
heterogeneous structure (Underwood and Kim, 2013).The inherent
anisotropy of the mixture is a significant manifestation of this
heterogeneity, which is also the primary reason why traditional
continuum mechanics theories fail to accurately describe the
damage mechanisms of asphalt mixtures (Zhang et al., 2011).
It is evident that the properties of the constituent materials
and their structural distribution within the mixture are decisive
factors for the macroscopic mechanical properties of the mixture.
By applying micromechanics theory to investigate the influence
mechanisms of material composition on the mechanical properties
of the mixture and establishing quantitative analysis models, the
goal of efficiently obtaining the mechanical parameters of the
mixture can be achieved (You and Buttlar, 2006; Abbas et al.,
2007). This approach lays the foundation for developing design
methods grounded in mechanical theories, making asphalt mixture
design more scientific, rational, and economical, while ensuring its
stability and durability.

Dynamic modulus and phase angle are two critical viscoelastic
parameters of asphalt mixtures (Zeng et al., 2023b). These two
properties are primarily influenced by the material composition
and internal structure of the mixture (Zeng et al., 2024; Shu and
Huang, 2008). Therefore, analyzing the structural composition
of asphalt mixtures and establishing mechanical models that link
the properties of the constituent materials to the macroscopic
mechanical properties (dynamic modulus and phase angle) of the
mixture enable the prediction of dynamic modulus and phase
angle values under different conditions. This approach allows
for the quick and straightforward acquisition of fundamental
mechanical parameters during the initial design phase of the
mixture, providing mechanical guidance for material design.
The fundamental idea of studying composite materials through
micromechanics is to homogenize the constituent phases,
establishing the relationship between the properties, composition,
and structure of each phase and the macroscopic mechanical
properties of the composite material, thereby constructing the
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TABLE 1 Asphalt mixture types.

Asphalt
mixture

Asphalt
binder

Aggregate Gradation

A
SBS-modified

binder

Limestone AC-20C

B Diabase AC-13C

C
70# neat binder

Limestone AC-20C

D Diabase AC-13C

material’s constitutive model (Kachanov and Sevostianov, 2018;
Hashin, 1960).

2 Modulus characterization using
self-consistent micromechanics

In the 1950s, Eshelby proposed the equivalent inclusion theory,
which largely addressed the homogenization of heterogeneous
materials and laid the foundation for the study of micromechanics
in composite materials (Eshelby, 1957; Eshelby, 1959). Building on
Eshelby’s inclusion theory, extensive exploration and derivation
by numerous scholars led to the development of classical
micromechanical theories for composite materials (Böhm, 1998;
Molladavoodi and RahimiRezaei, 2018; Tan et al., 2005; Hill,
1965; Huang et al., 1994). Among these, the self-consistent
micromechanics model has gained significant attention in the
asphalt community due to its rigorous formulation and practical
applicability (Yin et al., 2008; Luo et al., 2011; Alam andHammoum,
2015; Nguyen et al., 2024). The self-consistent micromechanics
model was initially established for simple two-phase composite
materials (Luo et al., 2011). During the homogenization process,
one material is designated as the matrix phase, and the other as
the inclusion phase (Yin et al., 2008; Luo et al., 2011; Alam and
Hammoum, 2015; Nguyen et al., 2024). In the 1970s, Hashin and
Shriskman, while studying the equivalent mechanical parameters of
composite materials, derived boundary expressions for the effective
modulus of multiphase composite materials based on the average
strain energy theory (Hashin and Shtrikman, 1962; Hashin and
Shtrikman, 1963). As shown in Equations 2–5, they established the
lower and upper bounds for the bulk modulus and shear modulus
of composite materials (Hashin and Shtrikman, 1962; Hashin and
Shtrikman, 1963). The rationale behind these bounds is that for a
two-phase composite, Equations 2, 4 represent the case where phase
one forms the matrix and spherical inclusions of phase two are
embedded within it. Similarly, Equations 3, 5 apply when phase two
is the matrix and phase one forms the spherical inclusions. These
bounds are the most restrictive limits that can be derived based on
the known volume fractions and moduli of the constituent phases
(Hashin and Shtrikman, 1962; Hashin and Shtrikman, 1963).

K∗(−) = K1 +
c2

1
K2−K1
+ 3c1

3K1+4G1

(2)

G∗(−) = G1 +
c2

1
G2−G1
+ 6(K1+2G1)c1

5G1(3K1+4G1)

(3)

K∗(+) = K2 +
c1

1
K1−K2
+ 3c2

3K2+4G2

(4)

G∗(+) = G2 +
c1

1
G1−G2
+ 6(K2+2G2)c2

5G2(3K2+4G2)

(5)

where: K
∗
(−) and K

∗
(+) are the lower and upper boundaries of the

composite material’s bulk modulus, respectively; G
∗
(−) and G

∗
(+) the

lower and upper boundaries of the composite material’s shear
modulus, respectively; K1, K2 and K

∗
are the bulk modulus of the

inclusion phase, matrix phase, and composite material, respectively;
G1, G2 and G

∗
are the shear modulus of the inclusion phase, matrix

phase, and composite material, respectively; c1 and c2 are volumetric
fractions of the constituent materials.

In 2010, based on the modulus boundary for two-phase
composite materials proposed by Hashin and Shriskman, Luo and
Lytton decomposed the lower bound expression, as shown in
Equations 6, 7 (Luo et al., 2011; Hashin and Shtrikman, 1963).

K∗(−) = K1 + (3K1 +G1)
c2

K2−K1
3K2+4G1

1− 3 c2(K2−K1)
3K2+4G1

(6)

G∗(−) = G1 + 5G1
3K1 + 4G1

K1 + 2G1

c2(G2−G1)
G1

9K1+8G1
K1+G1
+6G2

1− 6 c2(G2−G1)
G1

9K1+8G1
K1+2G1
+6G2

(7)

Furthermore, for heterogeneous materials such as asphalt
mixtures, which are composed of aggregates, asphalt, and air, the
above model can be extended to three-phase composite materials,
as demonstrated in Equations 8, 9. According to Luo and Lytton,
the extension from a two-phase to a three-phase model follows
the same homogenization principles, as each phase, such as air in
asphalt mixtures, can be represented by its own volume fraction and
mechanical properties.This maintains the original framework while
accounting for more complex material structures (Luo et al., 2011).

K∗(−) = K1 + (3K1 +G1)
∑n

i=1
ci

Ki−K1
3Ki+4G1

1−∑n
i=1

3 ci(Ki−K1)
3Ki+4G1

(8)

G∗(−) = G1 + 5G1
3K1 + 4G1

K1 + 2G1

∑n
i=1

ci(Gi−G1)
G1

9K1+8G1
K1+G1
+6Gi

1− 6∑n
i=1

c2(Gi−G1)
G1

9K1+8G1
K1+2G1
+6Gi

(9)

where: Ki, Gi, and ci are the bulk modulus, shear modulus, and
volumetric fraction of the ith phase material.

By applying the ‘self-consistent’ approximation method to solve
Equations 8–11, can be derived. After verification, this model has
been demonstrated to effectively characterize the dynamic modulus
with reasonable trends using one asphalt mixture under three
different aging conditions (Luo et al., 2011).

c1(K1 −K
∗)

3K1 +G∗
+
c2(K2 −K

∗)
3K2 +G∗

+
c3(K3 −K∗)
3K3 +G∗

= 0 (10)

c1(G1 −G∗)

G∗ 9K
∗+G∗

K∗+2G∗
+ 6G1

+
c2(G2 −G∗)

G∗ 9K
∗+G∗

K∗+2G∗
+ 6G2

+
c3(G3 −G∗)

G∗ 9K
∗+G∗

K∗+2G∗
+ 6G3

= 0 (11)

where: K1, K2, K3 and K
∗
specifically represent the bulk modulus of

the aggregate, asphalt binder, air, and asphalt mixture, respectively;
G1,G2,G3 andG

∗
are shearmodulus of the aggregate, asphalt binder,
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FIGURE 1
Gradation of AC-20C.

FIGURE 2
Gradation of AC-13C.
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FIGURE 3
Dynamic modulus configurations.

air, and asphalt mixture, respectively; c1, c2 and c3 are volumetric
fractions of the aggregate, asphalt binder, and air, respectively.

3 Self-consistent micromechanics in
complex form

Although the above self-consistent model inherits the
typical advantages of the micromechanics approach and can be
implemented in a relatively simple manner, it is solely focused
on predicting the modulus magnitude of the mixture and does
not account for the phase angle, which reflects the viscous
behavior of the mixture. It is well known that asphalt mixture is
a typical viscoelastic material, where a higher degree of material
viscosity results in a phase angle closer to 90°, while a higher
degree of material elasticity leads to a phase angle closer to 0°.
Since viscoelastic materials exhibit time-dependent behavior,
with a delayed response after loading, neglecting the phase angle
also means ignoring the corresponding time delay inherent to
viscoelasticity (Luo et al., 2011; Findley and Davis, 2013). Given
the limitations of the existing model, it is necessary to develop a
new model that more comprehensively describes and predicts the
viscoelastic mechanical parameters of the mixture. According to
viscoelastic theory, the modulus should be expressed in complex
form to account for the effect of phase angle (Findley and Davis,
2013). Therefore, the bulk modulus and shear modulus in the
original self-consistent micromechanical model are expressed in
complex form, as shown in Equations 12, 13.

K = K′ + iK″ (12)

G = G′ + iG″ (13)

Substituting the above two equations into the self-consistent
micromechanical model yields Equations 14, 15:

3

∑
i=1

ci[
(K′i + iK

″
i ) − (K

′ + iK″)
3(K′i + iK

″) + (G′ + iG″)
] = 0 (14)

3

∑
i=1

ci
(G′i + iG

″
i ) − (G

′ + iG″)
(G′+iG″)[9(K′+iK″)+8(G′+iG″)]
(K′+iK″)+2(G′+iG″)

+ 6(G′i + iG
″
i )
= 0 (15)

Separating the real and imaginary parts of the equation gives the
following two expressions:

3

∑
i=1

ci
[[[[[

[

3(K′2i +K
″2
i ) + (K

′
i −K
′)G′ + (K″i −K

″)G″ − 3(K′iK
′ +K″i K

″)

(3K′i +G
′)2 + (3K″i +G

″)2
+

i
(K″i G
′ −K′iG

″) + 3(K″i K
′ −K′iK

″) + (G″K′ −G′K″)

(3K′i +G
′)2 + (3K″i +G

″)2

]]]]]

]

= 0 (16)

3

∑
i=1

ci
[[[[[

[

(G′i −G
′)(A+ 6G′) + (G″i −G

″)(B+ 6G″i )

(A+ 6G′i )
2 + i(B+ 6G″i )

2 +

i
(G″i −G

″)(A+ 6G′i ) − (G
′
i −G
′)(B+ 6G″)

(A+ 6G′i )
2 + i(B+ 6G′i )

2

]]]]]

]

= 0 (17)

where: A and B are two expressions related only to the bulk
modulus and shear modulus of the asphalt mixture, as shown in
Equations 18, 19:

A =

{{{{{{
{{{{{{
{

G′[

[

9(K′2 +K″2) + 16(G′2 +G″2) + 26(K′G′ +K″G″)

(K′ + 2G′)2 + (K″ + 2G″)2
]

]
−

G″[
10(K″G′ −K′G″)

(K′ + 2G′)2 + (K″ + 2G″)2
]

}}}}}}
}}}}}}
}

(18)

B =

{{{{{{
{{{{{{
{

G″[

[

9(K′2 +K″2) + 16(G′2 +G″2) + 26(K′G′ +K″G″)

(K′ + 2G′)2 + (K″ + 2G″)2
]

]
−

G′[
10(K″G′ −K′G″)

(K′ + 2G′)2 + (K″ + 2G″)2
]

}}}}}}
}}}}}}
}
(19)

For Equations 16, 17 to hold, both the real and imaginary parts
must be equal to zero, resulting in the following four equations:

3

∑
i=1

ci
3(K′2i +K

″2
i ) + (K

′
i −K
′)G′ + (K″i −K

″)G″ − 3(K′iK
′ +K″i K

″)

(3K′i +G
′)2 + (3K″i +G

″)2
= 0

(20)
3

∑
i=1

ci
(K″i G
′ −K′iG

″) + 3(K″i K
′ −K′iK

″) + (G″K′ −G′K″)

(3K′i +G
′)2 + (3K″i +G

″)2
= 0

(21)
3

∑
i=1

ci
(G′i −G

′)(A+ 6G′i ) + (G
″
i −G
″)(B+ 6G″i )

(A+ 6G′i )
2 + (B+ 6G″)2

= 0 (22)

3

∑
i=1

ci
(G″i −G

″)(A+ 6G′i ) − (G
′
i −G
′)(B+ 6G″i )

(A+ 6G′)2 + (B+ 6G″)2
= 0 (23)

Among the four equations above, there are a total of 16 modulus
parameters for aggregate, asphalt binder, air, and the asphalt
mixture.Themodulus parameters of air are all zero, and themodulus
parameters of asphalt binder can be obtained through DSR testing.
Therefore, knowing the modulus parameters of either the asphalt
mixture or the aggregate allows the other to be determined using
these four equations. Consequently, the self-consistent approach is
still used to solve these as shown in Equations 24–27.

K′ + iK″ = E′ + iE″

3[1− 2(μ′ + iμ″)]
(24)

G′ + iG″ = E′ + iE″

2[1+ (μ′ + iμ″)]
(25)
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K′ + iK″ =
(3− 6μ′)E′ − 6μ″E″

(3− 6μ′)2 + 36μ″2
+ i
(3− 6μ′)E″ + 6μ″E′

(3− 6μ′)2 + 36μ″2
(26)

G′ + iG″ =
(2+ 2μ′)E′ + 2μ″E″

(2+ 2μ′)2 + (2μ″)2
+ i
(2+ 2μ′)E″ − 2μ″E′

(2+ 2μ′)2 + (2μ″)2
(27)

4 Complex Poisson’s ratio

Poisson’s ratio represents the ratio of strain in the compaction
direction to the strain perpendicular to the compaction direction
under loading, as expressed in Equation 28.

μ = −
εh
εv

(28)

ų is the Poisson’s ratio of the asphalt mixture; ɛh and ɛv represent
the strain values in the direction perpendicular to the compaction
direction and along the compaction direction, respectively.

Currently, most researchers use the recommended values
provided in standards for model calculations, typically ranging
from 0.25 to 0.40 (Zeng et al., 2022). However, Poisson’s ratio
is an inherent material property that depends on the mechanical
characteristics of the material itself. For viscoelastic materials,
Poisson’s ratio varies with temperature and frequency and has both
real and imaginary components.

As seen from Equation 28, obtaining Poisson’s ratio requires
measuring strain values in both directions during loading. To extend
this into the complex domain, the Laplace transform is commonly
used to generalize material properties from the elastic domain to
viscoelastic behavior. First, the axial load applied to the mixture can
bemodelled throughEquation 29 (Ling et al., 2020). Simultaneously,
axial and transverse strains of the asphalt mixture are measured
using LVDTs and fitted with Equations 30, 31, respectively.

σ(t) = ασ(1− e−bσt) (29)

εh(t) = αh(1− e−bht) (30)

εv(t) = αv(1− e−bvt) (31)

where: t is time; σ is stress; ασ、 bσ、 αh、 bh、 αv and bv are the
model fitting coefficients.

By applying the Laplace transform to Equations 30–33, can be
obtained. By substituting Equations 30, 31 into Equations 32, 33, the
solution can be derived, as shown in Equations 34, 35.

εh(s) =
t=∞

∫
t=0

εh(t)e−stdt (32)

εv(s) =
t=∞

∫
t=0

εv(t)e−stdt (33)

εh(s) =
αhbh

s(s+ bh)
(34)

εv(s) =
αvbv

s(s+ bv)
(35)

where: s is a complex variable used for Laplace transform.

Thus, Poisson’s ratio can be expressed in Equation 36:

μ(t) = L−1[−
εh(s)
sεv(s)
] (36)

μ(ω) = iωL[μ(t)]s=iω = iω
[[

[

−

αhbh
s(s+bh)

s αvbv
s(s+bv)

]]

]s=iω

(37)

According to viscoelastic theory and as shown in Equation 37,
substituting the Laplace transform variable s with iω yields the
viscoelastic solution (Findley and Davis, 2013). Accordingly, the
real and imaginary parts of Poisson’s ratio are expressed in
Equations 38, 39:

μ′(ω) = −
αhbh(bv +ω2)

αvbv(b2h +ω
2)

(38)

μ″(ω) =
ωαhbh(bv − bh)

αvbv(b2h +ω
2)

(39)

5 Material

Two asphalt binders (a styrene-butadiene-styrene (SBS)-
modified binder and a 70# neat binder) and two types of
aggregate (limestone and diabase) were used in this study, as
shown in Table 1. The gradation design follows the JTG F40-
2004 specification. Two gradations were employed, with the
gradation curves for the diabase AC-13C and limestone AC-
20C shown in Figures 1, 2, respectively (JTG F40, 2004). The
optimal asphalt-aggregate ratios for the four mixtures (A, B,
C, and D) were determined to be 4.3%, 4.5%, 4.1%, and 4.4%,
respectively.

6 Complex modulus measurement

This section describes the laboratory measurement of the
complexmodulus of asphalt mixtures and the processing of raw data
to obtain viscoelastic properties, including dynamic modulus and
phase angle, which serve as the foundation for applying the self-
consistent micromechanical model. In accordance with viscoelastic
theory, the time–temperature superposition principle and the
sigmoidal model were used to construct the master curve (Findley
and Davis, 2013). The test specimens were prepared using
a gyratory compactor, forming cylindrical specimens with a
height of 170 mm and a diameter of 150 mm. These specimens
were then cored and cut to obtain final cylindrical specimens
with a height of 150 mm and a diameter of 100 mm. To
ensure specimen uniformity and test repeatability, the air void
content after coring and cutting was maintained at (4.0 ±
0.5)%, with at least three parallel tests conducted for each
asphalt mixture.

Asphaltmixtures are viscoelasticmaterials, and their viscoelastic
properties are typically represented by the complex modulus,
as shown in Equation 40. The complex modulus consists of a real
part and an imaginary part, where the real part represents the elastic
component, known as the storage modulus, while the imaginary

Frontiers in Materials 06 frontiersin.org

https://doi.org/10.3389/fmats.2025.1594770
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Liu et al. 10.3389/fmats.2025.1594770

FIGURE 4
Dynamic modulus results.

FIGURE 5
Phase angle results.
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FIGURE 6
Dynamic modulus master curves for mixture A.

FIGURE 7
Phase angle master curves for mixture A.
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TABLE 2 Fitting coefficients for the generalized Sigmoid model.

Asphalt
mixture

α β λ γ δ C1 C2

A 2.10 2.63 0.01 −0.76 −0.36 10.17 74.79

C 2.64 2.10 0.34 −0.52 −0.37 12.71 92.85

B 2.19 2.48 0.30 −0.59 −0.39 9.49 71.22

D 2.12 2.51 −0.11 −0.81 −0.36 10.67 79.13

TABLE 3 Coefficients of determination for the master curves.

Asphalt mixture R2 for dynamic
modulus

R2 for phase
angle

A 0.9936 0.9310

B 0.9962 0.8379

C 0.9975 0.9116

D 0.9983 0.9307

FIGURE 8
LVDT configuration.

part, referred to as the loss modulus, characterizes the viscous
component of the mixture.

E∗(ω) = E′(ω) + iE″(ω) (40)

where: E
∗
(ω) is complex modulus; E′(ω) and E″(ω) are storage and

loss modulus, respectively; ω is angular frequency.
The dynamic modulus of the mixture is equal to the magnitude

of the complex modulus, as shown in Equation 41. During the
loading process, due to the viscoelastic effects of the mixture, its
strain always lags behind the stress by a certain angle, known as the

FIGURE 9
Complex Poisson’s ratio test.

FIGURE 10
Real part of Poisson’s ratio of mixture A.

phase angle. The phase angle is related to the storage modulus and
loss modulus as expressed in Equation 42.

|E∗(ω)| = √[E′(ω)]2 + [E″(ω)]2 (41)

tan φ =
E″(ω)
E′(ω)

(42)

where: |E
∗
(ω)| is dynamic modulus of asphalt mixture; φ is

phase angle.
The uniaxial compression dynamic modulus test was conducted

on the specimens using a dynamic testing system (DTS). During
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FIGURE 11
Imaginary part of Poisson’s ratio of mixture A.

loading, the axial deformation of the specimen was recorded by
three Linear Variable Differential Transformers (LVDTs) with a
gauge length of 100 mm, mounted on the surface at 120° intervals,
as shown in Figure 3.

The experiment followed the AASHTOTP 79 test protocol, with
loading applied at frequencies of 0.1, 0.5, 1.0, 5.0, 10, and 25 Hz
at temperatures of 5, 20, 35, and 55°C. Before each test, specimens
were conditioned in a temperature-controlled chamber for at least
3 h to ensure uniform internal temperature. The testing sequence
proceeded from 5°C to 55°C and 25 Hz–0.1 Hz. For each asphalt
mixture, three replicate specimens were tested. Taking mixture A
as an example, the DTS test results are shown in Figures 4, 5. As
seen in these figures, the results are highly consistent across different
temperatures and frequencies, demonstrating good repeatability
and representativeness. It is worth noting that other mixtures
have shown similar trends but with different measured values.
Therefore, only the results for mixture A are presented here for
demonstration purposes.

Figure 4 shows that the dynamic modulus varies with
temperature and frequency. At the same frequency, the modulus
is highest at 5°C and lowest at 55°C. At the same temperature,
the modulus is highest at 25 Hz and lowest at 0.1 Hz. Overall, the
dynamic modulus is at its minimum at 55°C and 0.1 Hz, while it
reaches its maximum at 5°C and 25 Hz. As seen in Figure 5, under
the conditions of 5°C and 20°C, an increase in loading frequency
results in a decrease in the phase angle test results. Under the
conditions of 35°C and 55°C, an increase in loading frequency leads
to an increase in the phase angle test results. At the same loading
frequency, the phase angle reaches its minimum value at 5°C and its
maximum value at 55°C.

To process the measured dynamic modulus and phase
angle shown in Figures 4, 5, a master curve was constructed
by horizontally shifting the data in the log-log space (ARA
and ERES Consultants Division, 2004). This is because the

viscoelastic properties of asphalt mixtures follow the time-
temperature equivalence principle. This principle states that for
thermorheological simple materials, their mechanical properties
exhibit the same trend of change in both the time domain and
frequency domain. Taking the dynamic modulus as an example, the
expression of its time-temperature equivalence principle is shown
in Equations 43, 44.

|E∗(t, f)| = |E∗(tref, fr)| (43)

fr = at f (44)

where: t is temperature; tref is reference temperature; f is
frequency; fr is reduced frequency; |E

∗
(t, f)| is measured dynamic

modulus; |E
∗
(tref, fr)| is dynamic modulus at the reference

temperature and reduced frequency; at is shift factor, as shown
in Equation 45.

lg αt =
−C1(t− tref)
C2 + (t− tref)

(45)

where: C1 and C2 are the fitting constants.
For constructing the dynamic modulus master curve, the

generalized Sigmoid model provides a good fit, with its expression
given in Equation 46. The corresponding phase angle master
curve model is derived using Equation 47, and the final phase
angle master curve model is presented in Equation 48. Note that
Equations 43–48 are derived from viscoelastic theory and used
to construct a single smooth curve by combining data collected
at different temperatures and frequencies. This process eliminates
temperature and frequency dependency, enabling the application of
self-consistent micromechanics (Findley and Davis, 2013). In other
words, once the time–temperature superposition and master curve
are established, the previously presented self-consistent model is
used to fit and represent the data.

lg |E∗( fr)| = α+
β

(1+ λ · eγ+δ lg fr)
1
λ

(46)

φ( fr) ≈
π
2
d ln |E∗( fr)|
d ln( fr)

(47)

lg φ = −(1
λ
+ 1) lg(1+ λeγ+δ lg fr) + (γ+ δ lg fr) lg e+ lg(−

π
2
βδ)

(48)

where: |E
∗
( fr)| is dynamic modulus at reduced frequency; φ( fr)

is phase angle at reduced frequency; α is lower asymptote of
the master curve in the logarithmic scale; β is the difference
between the upper and lower asymptotes of the master curve
in the logarithmic scale; γ is the shape parameter of the
master curve, controlling the horizontal position of the inflection
point; δ is the shape parameter of the master curve, controlling
the steepness; λ is the shape parameter of the master curve,
controlling symmetry.

During the solving process, the objective function was
set as shown in Equation 49, aiming to minimize the errors
of both dynamic modulus and phase angle to achieve the
optimal fitting parameters. Again, taking mixture A as one
example, the dynamic modulus master curves obtained from
the model are shown in Figure 6, while the phase angle
master curves are presented in Figure 7. The fitting parameters
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FIGURE 12
Poisson’s ratio master curve of mixture A.

FIGURE 13
Predicted shear and bulk modulus of mixture A.
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FIGURE 14
Predicted compressive storage modulus and loss modulus
of mixture A.

for the master curves of the different mixtures are listed
in Table 2.

Error = Error|E∗| +Errorφ =

1
N
√

N

∑
i=1
(
|E∗|mea,i − |E

∗|pre,i
|E∗|mea,i

)
2

+ 1
N
√

N

∑
i=1
(
φmea,i −φpre,i

φmea,i
)
2 (49)

For a given asphalt mixture, the shapes of the master curves
plotted at different temperatures are very similar. To evaluate the
goodness of fit between the predicted data from the master curves
and the indoor measured data, the coefficients of determination
were calculated for the four selected mixtures, as shown in Table 3.

The coefficients of determination for dynamic modulus of all
mixtures are above 0.99, indicating that the values predicted by the
master curves are very close to the measured values. For the phase
angle master curves, except for mixture B, which has a coefficient
of determination of 0.8379, the other three asphalt mixtures have
coefficients of determination above 0.90, also demonstrating good
fitting accuracy. However, compared to the dynamic modulus
master curves, the fitting accuracy of the phase angle master curves
is slightly lower. From the measured phase angle data, it can be
observed that at a single temperature, themeasured phase angle data
does not exhibit a clear monotonic increasing or decreasing trend
and includes abrupt changes, which is the main reason for the lower
fitting accuracy.

7 Complex Poisson’s ratio
measurement

Since this study developed the micromechanical model in
complex form, the complex Poisson’s ratio was also considered, as
it is an important property that reflects the anisotropy of the asphalt
mixture (Ling et al., 2020). This section presents the measurement
of the complex Poisson’s ratio and the development of its master
curve. The key to testing the complex Poisson’s ratio of asphalt

mixtures lies in accuratelymeasuring the axial and transverse strains
of the asphalt mixture during the loading process. Since measuring
the transverse strain of cylindrical specimens is challenging, cubic
specimens were chosen for the test. The specimens have dimensions
of 100 mm in length, width, and height. Displacement sensors were
installed on the front and side faces of the cube according to the
configuration shown in Figure 8.

To ensure that the axial and transverse LVDTs do not interfere
with each other, the fixture was designed as a rectangular block
with uneven heights. This design spatially separates the LVDTs,
preventing any interference, with a spacing of 70 mm between
the fixtures. Cylindrical specimens were formed using a rotary
compactor and then cut into cubic specimens using a cutting
saw, with their void content controlled within the range of (4.0
± 0.5)%. The specimens were installed in the Material Test
System (MTS) loading frame, as shown in Figure 9, and tested at
temperatures of 5°C, 20°C, 35°C, and 55°C. Pressure was applied
to the specimens using the MTS testing system, with a loading
duration of 100 s at each temperature. After measurement, the real
and imaginary parts of the Poisson’s ratio at various temperature-
frequency conditions can be determined using Equations 38, 39
shown earlier in this study. Similar to the construction of the
dynamic modulus master curve, Poisson’s ratio values measured
under various temperature–frequency conditions were horizontally
shifted to develop the Poisson’s ratio master curve at 20°C. Using
mixture A as an example, the measured results are shown in
Figures 10–12.

As shown in Figure 12, it can be observed that both the
real and imaginary parts of the measured Poisson’s ratio of the
mixture decrease as the loading frequency increases. With an
increase in test temperature, the real part of the Poisson’s ratio
gradually increases, while the imaginary part gradually decreases.
Additionally, from the Poisson’s ratio master curve, it is evident
that as the loading frequency increases, the Poisson’s ratio of the
mixture gradually decreases, whereas it gradually increases with
rising temperature.

8 Model prediction

While the previous sections present the procedures and results
for determining the complex modulus and Poisson’s ratio, this
section demonstrates how the derived complex self-consistent
model is used to predict corresponding results for self-validation.
The model validation consists of two parts: inverse modeling and
forward modeling. In the inverse model, the modulus parameters
of the aggregate are determined based on the volume fractions of
the constituentmaterials in themixture and thematerial parameters
of the mixture, asphalt, and air. Specifically, One of the four
equations (Equations 20–23) was chosen as the objective function,
with the goal of driving its result to zero, while the remaining
three equations were treated as constraints, also set to zero. The
variables included the real and imaginary parts of the aggregate’s
bulk modulus and shear modulus. Iterations were performed to
determine the numerical solution that best satisfies the equations.

In the forward model, the material parameters of the asphalt
mixture were solved using the aggregate parameters obtained from
the inverse model, along with the material parameters of the asphalt
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FIGURE 15
Predicted dynamic modulus versus measured dynamic modulus.

and air, and the volume fractions of the constituent materials.
Specifically, after determining the real and imaginary parts of
the aggregate’s bulk modulus and shear modulus using the above
method, these values are treated as known conditions. Taking
mixture A as an example, the predicted bulk modulus and shear
modulus obtained through the model are shown in Figure 13.

Subsequently, using Equations 50, 51, the results from the
forward model can be converted into storage modulus and loss
modulus. Similarly, to demonstrate the process, mixture A is taken
as an example, with the calculated storage modulus and loss
modulus shown in Figure 14.

E′ =
3K′[(1− 2μ′)2 + 4μ″] + 4G′[(1− μ′)2 + μ″2]

3
(50)

E″ =
3K″[(1− 2μ′)2 + 4μ″] + 4G″[(1− μ′)2 + μ″2]

3
(51)

To further validate the proposedmodel, additional specimens of
the four selected mixtures were fabricated with different volumetric
compositions than those used to derive the model coefficients. The
dynamic modulus master curves from both the model predictions
and laboratory measurements are shown in Figure 15. Using the
predicted storagemodulus and loss modulus values from themodel,
the phase angle results of the asphalt mixtures were also calculated
and plotted. These curves were then compared with the phase
angle master curves obtained from laboratory measurements, as
illustrated in Figure 16.

To demonstrate the accuracy of the predictions, the coefficients
of determination are shown in Table 4. It can be observed that
for the four types of mixtures selected, the predicted dynamic
modulus values closely match the laboratory measured data
across all temperature-frequency conditions, with coefficients of
determination all above 0.95. The coefficients of determination for
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FIGURE 16
Predicted phase angle versus measured phase angle.

TABLE 4 Coefficients of determination for the predicted master curves.

Asphalt mixture R2 for dynamic
modulus

R2 for phase
angle

A 0.9943 0.9625

B 0.9697 0.9347

C 0.9742 0.9174

D 0.9818 0.9876

the phase angle are also above 0.90, indicating good fitting accuracy.
However, Figures 15, 16 clearly show that the mismatch between
themodel prediction and laboratorymeasurement varies depending

on the mixture. For instance, the dynamic modulus predictions for
the other three mixtures closely match the measurements, whereas
mixture B shows a certain degree of mismatch. On the other hand,
for the phase angle,mixtureDdemonstrates the best fit, while for the
other three mixtures, discrepancies tend to occur at higher or lower
frequencies.This indicates that the mixture type certainly affects the
accuracy of the model predictions.

From the perspective of model derivation, the discrepancy
between the prediction and measurement may arise because
the proposed model assumes that both asphalt and aggregate
have the same influence on the mixture, regardless of whether
the temperature is high or low. In reality, at low temperatures
or high frequencies, the viscoelastic properties of the mixture
are more significantly influenced by the properties of the
asphalt. As the temperature increases or the frequency decreases,
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the flow ability of the asphalt gradually increases, and the
properties of the mixture become more influenced by the
properties of the aggregate. Despite this, the complex self-
consistent model has demonstrated satisfactory and acceptable
accuracy.

9 Conclusions

Within the complex domain, the self-consistent micromechanics
model was extended, leading to the derivation of the model
presented in this study. By designing laboratory experiments to
measure the complex Poisson’s ratio of mixtures and applying it
to the proposed model, the dynamic modulus and phase angle
of four types of asphalt were predicted, and their accuracy was
validated using laboratory-measured values.The research findings are
as follows:

(1) The self-consistent model is extended to the complex domain,
and a complex micromechanics model is established. By
predicting the storage modulus and loss modulus of the
mixture, the dynamic modulus and phase angle of the mixture
can be simultaneously predicted.

(2) Compared to the dynamic modulus master curves, the fitting
accuracy of the phase angle master curves is slightly lower.
This is because, at a single temperature, the measured phase
angle data does not exhibit a clear monotonic increasing or
decreasing trend and includes abrupt changes.

(3) The Poisson’s ratio of the mixtures measured in the laboratory
exhibits different patterns under varying temperatures and
frequencies. As the temperature increases from 5°C to 55°C,
the real part of the Poisson’s ratio gradually increases,
while the imaginary part gradually decreases; however, the
overall Poisson’s ratio value increases. As the frequency
increases, both the real and imaginary parts of the Poisson’s
ratio decrease, and the Poisson’s ratio of the mixture also
decreases.

(4) The dynamic modulus and phase angle master curves
predicted by the developed model are smooth curves that
vary with frequency. The predicted curves closely align with
the measured curves, with coefficients of determination all
above 0.9, demonstrating that themodel’s predictionsmeet the
practical requirements of engineering applications. However,
at low or high frequencies, some deviations in the predictions
of both parameters are observed, which warrants further
attention.

Overall, the prediction accuracy of the phase angle achieved
by the proposed model helps improve the self-consistent
micromechanics approach in obtaining the complete complex
modulus properties. However, further validation is needed
by using more asphalt mixtures for the proposed model.
Additionally, it is believed that further consideration of the
aggregate gradation would further improve the model’s prediction
accuracy.
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