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Introduction: The advancement of digitized material design has revolutionized
the field of materials science by integrating computational modeling, machine
learning, and high-throughput simulations. Traditional material discovery heavily
relies on iterative physical experiments, which are often resource-intensive
and time-consuming. Recent developments in high-throughput computing
offer an efficient alternative by enabling large-scale simulations and data-
driven predictions of material properties. However, conventional predictive
models frequently suffer from limited generalization, inadequate incorporation
of domain knowledge, and inefficient optimization of material structures.

Methods: To address these limitations, we propose a novel framework that
combines physics-informed machine learning with generative optimization for
material design and performance prediction. Our approach consists of three
major components: a graph-embedded material property prediction model
that integrates multi-modal data for structure–property mapping, a generative
model for structure exploration using reinforcement learning, and a physics-
guided constraint mechanism that ensures realistic and reliablematerial designs.

Results: By embedding domain-specific priors into a deep learning framework,
our method significantly improves prediction accuracy while maintaining
physical interpretability. Extensive experiments demonstrate that our approach
outperforms state-of-the-art models in both predictive performance and
optimization efficiency.

Discussion: These findings highlight the potential of digitized design
methodologies to accelerate the discovery of novel materials with desired
properties and to drive next-generation material innovation.

KEYWORDS

high-throughput computing, machine learning, material property prediction,
generative optimization, physics-informed modeling

1 Introduction

The design and performance prediction of materials have always been critical
challenges in materials science and engineering. Traditional experimental approaches
are not only time-consuming and expensive but also often limited by the complexity of
material properties and interactions Zhou et al. (2020). With the advent of computational
methods, researchers have increasingly relied on simulation-based approaches to
accelerate material discovery. However, these conventional simulations still struggle
with efficiency, particularly when dealing with high-dimensional material spaces
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Angelopoulos et al. (2023). The emergence of high-throughput
computing (HTC) has provided a new paradigm by enabling rapid
evaluation of vast material libraries. Not only does HTC facilitate
large-scale material screening, but it also enhances predictive
modeling by leveraging extensive datasets Shen and Kwok (2023).
The integration of HTC with data-driven methodologies has further
optimized performance predictions, making it possible to identify
novel materials with desirable properties efficiently. This shift
towards digitized material design, combining computational power
with intelligent algorithms, is transforming the field by reducing the
reliance on trial-and-error experimentation and promoting data-
driven innovation Wen and Li (2023).

To address the limitations of purely experimental methods, early
computational material design approaches focused on symbolic AI
and knowledge-based models. These methods relied on explicit
rule-based representations of material properties, utilizing domain
knowledge and expert-defined relationships to guide material
discovery Ren et al. (2024). Expert systems and first-principles
simulations, such as density functional theory (DFT), played
a crucial role in predicting electronic structures and material
behaviors. These models were interpretable, allowing researchers
to derive fundamental insights into material interactions Li et al.
(2023). However, their effectiveness was constrained by the
complexity of material systems, as manually encoding all relevant
physical principles and interactions proved increasingly difficult
Yin et al. (2023). Knowledge-basedmodels lacked adaptability when
dealing with novelmaterials that deviated from established scientific
understanding. As a result, these traditional approaches, while
foundational, struggled with scalability and flexibility in handling
high-throughput material discovery Yu et al. (2023).

To overcome the limitations of symbolic AI, researchers turned
to data-driven and machine learning (ML)-based methods, which
leveraged statistical patterns in material datasets rather than explicit
rule-based encoding Durairaj and Mohan (2022). ML models,
such as support vector machines, decision trees, and Gaussian
processes, allowed for efficient material property predictions based
on training data from experiments and simulations. One significant
advantage of ML-based approaches was their ability to interpolate
within knownmaterial spaces, offering accurate predictions without
requiring explicit physical formulations Chandra et al. (2021). HTC-
enabled data generation expanded the applicability of these models
by providing large-scale datasets for training, thereby improving
generalization. However, these approaches also had drawbacks,
particularly in their reliance on high-quality labeled data Fan et al.
(2021). The interpretability of ML models remained a challenge,
as many predictive models acted as “black boxes,” limiting their
usefulness for fundamental scientific insights. Moreover, traditional
ML techniques often struggled with extrapolation beyond known
data distributions, making them less effective for discovering
entirely novel materials Hou et al. (2022).

To further enhance the predictive capabilities of ML-based
models, deep learning (DL) and pretrained models have emerged
as powerful tools in digitized material design. Unlike traditional
ML approaches, deep neural networks can automatically extract
complex hierarchical features from large-scale material datasets,
enabling more accurate and scalable predictions Lindemann et al.
(2021). The adoption of graph neural networks (GNNs),
convolutional neural networks (CNNs), and transformers has

revolutionizedmaterial informatics by capturing intricate structure-
property relationships. Pretrained models, trained on extensive
HTC-generated datasets, offer significant advantages by transferring
learned knowledge to new material discovery tasks Dudukcu et al.
(2022). This transfer learning capability significantly reduces the
need for large labeled datasets, making deep learning particularly
valuable for high-throughput screening. Generative models, such
as variational autoencoders (VAEs) and generative adversarial
networks (GANs), have been utilized to propose novel material
candidates, further accelerating the design process Amalou et al.
(2022). Despite these advancements, challenges remain in ensuring
the generalizability and robustness of deep learning models,
particularly in predicting out-of-distribution materials. The
computational cost associated with training large-scale deep
networks is another critical issue, necessitating the development
of more efficient architectures and hybrid approaches that integrate
physical principles with data-driven learning Xiao et al. (2021).

Building on the limitations of existing approaches, we propose
a hybrid HTC-driven framework that integrates deep learning
with physics-based simulations to achieve more accurate and
interpretable material design. By leveraging HTC-generated large-
scale datasets, our method addresses the data scarcity issue faced
by ML models while maintaining the physical rigor of knowledge-
based approaches. This hybrid framework combines symbolic AI
for fundamental insights, machine learning for pattern recognition,
and deep learning for automated feature extraction, creating
a comprehensive and scalable material discovery pipeline. Our
approach incorporates uncertainty quantification techniques to
enhance the reliability of predictions, ensuring robust generalization
to novel materials. Through the seamless integration of high-
throughput simulations with advanced AI methodologies, our
framework paves the way for a new era of digitized material design,
enabling faster, more efficient, and scientifically grounded material
discovery.

Our key contributions can be outlined as below.

• Our method integrates symbolic AI, machine learning, and
deep learning, combining physical interpretability with data-
driven efficiency to improve material prediction accuracy.

• The proposed framework supports multi-scale material
modeling, effectively handling diversematerials across different
domains while ensuring high throughput and adaptability.

• By incorporating uncertainty quantification and high-
throughput computing, our approach significantly improves
predictive confidence, leading to more successful experimental
validation and real-world material applications.

2 Related work

2.1 High-throughput computing in
materials design

High-throughput computing (HTC) has revolutionized
materials design by enabling the rapid screening and discovery
of novel materials with desired properties. This computational
approach leverages the power of parallel processing to perform
extensive first-principles calculations, thereby accelerating the
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identification of promising candidates for various applications. By
automating and scaling computational workflows, HTC facilitates
the efficient exploration of vast chemical and structural spaces,
which is essential for the development of advanced materials
Wang et al. (2021b). One of the fundamental aspects of HTC
in materials design is its reliance on first-principles calculations,
particularly those based on density functional theory (DFT).
These calculations provide accurate predictions of material
properties such as electronic structure, stability, and reactivity
without the need for empirical parameters. By systematically
varying compositional and structural parameters, HTC enables
the construction of comprehensive databases that can be mined
for materials with optimal characteristics Xu et al. (2020). For
instance, the Materials Project has utilized HTC to compute the
properties of thousands of inorganic compounds, thereby providing
a valuable resource for researchers seeking materials with specific
functionalities. The integration of HTC with data techniques
further enhances its utility in materials design. By analyzing large
datasets generated from high-throughput calculations, researchers
can identify patterns and correlations that inform the design of
new materials. This approach has been successfully applied to the
discovery of materials for energy storage, catalysis, and electronic
applications. For example, in the context of lithium-ion batteries,
HTC has been employed to screen potential electrode materials by
evaluating their voltage profiles, stability, and capacity, leading to
the identification of novel compounds with superior performance.
Moreover, HTC facilitates the exploration of complex materials
systems, such as high-entropy alloys and complex oxides, where
the combinatorial space is vast. By systematically sampling different
compositions and structures, HTC enables the identification of
stable phases and the prediction of their properties, thereby guiding
experimental efforts Karevan and Suykens (2020). This approach
reduces the reliance on trial-and-error experimentation, making
the materials discovery process more efficient and cost-effective.
The development of robust computational workflows is crucial
for the successful implementation of HTC in materials design.
These workflows automate the process of structure generation,
property calculation, and data analysis, ensuring consistency and
reproducibility. Advancedworkflowmanagement systems have been
developed to handle the complexities associated with large-scale
computations, including error handling, data storage, and resource
allocation. For example, the mkite platform offers a distributed
computing environment tailored for high-throughput materials
simulations, enabling researchers to efficiently manage and execute
large-scale computational studies.

In addition to traditional first-principles approaches such as
density functional theory (DFT), several alternative paradigms
have recently gained traction in the high-throughput computing
community. Among these, interatomic potentials—empirically
derived functions describing interactions between atoms—have
long been used for large-scale simulations, albeit with limitations
in generalizability and transferability. More recently, machine
learning-based potentials have emerged as powerful surrogates
for ab initio methods. These include models like the Moment
Tensor Potential (MTP), GaussianApproximation Potentials (GAP),
Deep Potential Molecular Dynamics (DeePMD), and graph-based
neural potentials such as NequIP Zheng and Chen (2021). These
frameworks are trained on DFT-calculated data but can perform

orders of magnitude faster while retaining high fidelity. In addition,
“universal potentials” have been developed to generalize across
different material classes, further increasing their applicability
in exploratory studies. Such advances in interatomic modeling
offer significant speed and scalability advantages, enabling high-
throughput workflows to simulate complex phenomena like phase
stability, defect formation, and diffusion with greater computational
efficiency Prifling et al. (2021). The incorporation of these potentials
intoHTC pipelines complements traditional DFT-based approaches
and broadens the scope of feasible investigations inmodern digitized
materials discovery.

2.2 Machine learning for performance
prediction

The integration of machine learning (ML) techniques into
materials science has significantly enhanced the ability to predict
material performance, thereby accelerating the discovery and
optimization of new materials. By learning from existing data,
ML models can identify complex patterns and relationships that
are not easily discernible through traditional methods, enabling
accurate predictions ofmaterial properties and behaviorsWang et al.
(2024). One of the primary applications of ML in materials
science is the prediction of properties based on compositional
and structural features. By training models on datasets obtained
from experiments or high-throughput computations, researchers
can develop predictive models that estimate properties such as
band gaps, elastic moduli, and thermal conductivities. For instance,
supervised learning algorithms have been employed to predict
the formation energies of inorganic compounds, facilitating the
identification of thermodynamically stable materials Altan and
Karasu (2021). Similarly, ML models have been used to predict the
photovoltaic efficiencies of organic molecules, guiding the design
of more efficient solar cell materials. Feature engineering plays a
crucial role in the success ofMLmodels for performance prediction.
By selecting appropriate descriptors that capture the underlying
physics and chemistry of materials, researchers can improve the
accuracy and interpretability of the models. Descriptors such as
atomic radii, electronegativities, and coordination numbers have
been utilized to represent materials in a form suitable for ML
algorithms Wen et al. (2021). Advancements in automatic feature
selection and representation learning, including the use of graph-
based methods, have further enhanced the capability of ML models
to handle complex materials systems. The combination of ML
with high-throughput computing has led to the development of
hybrid approaches for materials discovery. In such frameworks,
ML models are trained on data generated from high-throughput
calculations and subsequently used to predict properties of
unexplored materials, thereby reducing the computational burden
Moskolaï et al. (2021). This approach has been applied to the
discovery of thermoelectric materials, where ML models trained
on computational data have identified promising candidates with
high figures of merit. Unsupervised learning techniques, such as
clustering and dimensionality reduction, have also been employed
to explore materials datasets. These methods can reveal hidden
structures in data, classify materials into categories with similar
properties, and identify outliers that may exhibit novel behaviors.
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For example, clustering algorithms have been used to group
materials based on their electronic structures, aiding in the
systematic exploration of materials for electronic applications
Morid et al. (2021). The integration of ML into materials science
also extends to the development of inverse design strategies, where
desired properties are specified, and the corresponding material
structures are predicted. Generative models, such as variational
autoencoders and generative adversarial networks, have been
utilized to propose new materials with target properties, thereby
shifting the paradigm from trial-and-error experimentation to
rational design Zhao et al. (2022). Machine learning has emerged
as a powerful tool for predicting material performance, offering
the ability to rapidly and accurately estimate properties based
on existing data. The synergy between ML and high-throughput
computing holds great promise for accelerating materials discovery
and optimization, ultimately leading to the development of
advanced materials for a wide range of applications.

2.3 Data-driven materials informatics

Data-driven materials informatics has emerged as a
transformative approach within materials science, fundamentally
altering traditional research paradigms. Rather than relying
exclusively on experimental trial-and-error, this methodology
employs advanced data analysis techniques to systematically
harness information from extensive materials datasets. As data
availability in materials science grows exponentially—spurred
by improvements in experimental techniques, computational
simulations, and open-access databases—the need to effectively
manage and interpret this information becomes increasingly critical
Wang et al. (2021a). One of the core elements that distinguishes
data-driven informatics from traditional approaches is its capacity
to identify previously hidden correlations within complex, high-
dimensional datasets. Through sophisticated statistical techniques,
machine learning algorithms, and pattern recognition, this approach
can rapidly uncover intricate relationships between structural
features, processing conditions, and resulting material properties
Widiputra et al. (2021). Such insights facilitate a deeper, more
predictive understanding of how specific material configurations
influence performance, streamlining the discovery process
significantly. The incorporation of high-throughput computing
(HTC) technologies further enhances the efficacy of data-driven
informatics by accelerating data generation and analysis. HTC
methods allow researchers to systematically generate massive
amounts of computational data, covering a broad spectrum of
possible material configurations. When combined with advanced
analytics, this approach significantly reduces the time required to
screen and identify promising new materials, offering substantial
advantages over conventional, experimentally intensive techniques
Yang and Wang (2021). Machine learning and deep learning
techniques play a pivotal role in data-driven materials informatics,
particularly through their ability to model highly nonlinear
relationships within large datasets. Unlike traditional modeling
methods that depend heavily on predefined rules or simplistic
empirical correlations, machine learning models—such as neural
networks, support vector machines, and ensemble methods—learn
complex interactions directly from the data. This flexibility enables

accurate predictions across diverse materials systems, especially
when combined with careful feature engineering and domain-
specific knowledge Ruan et al. (2021). Recent advances in deep
learning, notably graph neural networks (GNNs) and convolutional
neural networks (CNNs), have particularly enhanced the capability
to capture structural and compositional information inherent in
material datasets. These advanced architectures effectively represent
materials as complex interconnected networks, capturing atomic-
level interactions and higher-order structural motifs. By doing so,
they significantly improve the accuracy of property predictions and
enable more robust generalization to novel, unexplored regions of
the materials landscape Kim and King (2020). Another essential
dimension of data-driven informatics involves generative modeling
and inverse design methodologies. Leveraging techniques such
as variational autoencoders (VAEs) and generative adversarial
networks (GANs), researchers can systematically propose entirely
novel materials with tailored characteristics. This strategy shifts
the paradigm from reactive discovery—where experiments or
computations test predefined materials—to proactive creation,
where desirable properties dictate structural exploration. Coupled
with reinforcement learning and physics-informed constraints,
generative approaches are instrumental in guiding the search toward
feasible, high-performance material solutions Bachmann et al.
(2022). Data-driven materials informatics represents a profound
shift toward computational and algorithmically informed material
design, providing powerful new tools that integrate data analytics,
computational simulations, machine learning, and generative
modeling. This approach not only accelerates material discovery
but also delivers deeper scientific insights, paving the way for
more systematic, rational, and efficient development of advanced
materials tailored explicitly for targeted applications.

3 Methods

3.1 Overview

The field of Digitized Material Design has gained significant
attention in recent years due to its potential to revolutionize
material discovery, manufacturing, and performance optimization.
Traditional material design relies on iterative physical experiments,
which are costly and time-consuming. With advancements in
computational modeling, machine learning, and high-throughput
simulations, digitized approaches enable a more efficient and
systematic exploration of material properties and structures.

This section provides an overview of our proposed method for
digitized material design. Our approach consists of three major
components: a formalized problem definition and mathematical
representation of material properties; a novel computational model
for material property prediction and structure optimization; and a
domain-specific strategy that integrates physics-informedpriors and
data-driven methodologies, ensuring accuracy and generalizability.
In Section 3.2, we introduce the fundamental concepts and
notations necessary for describing the digitized material design
problem.We formulate the relationship betweenmaterial structures,
properties, and their digital representations using a mathematical
framework that bridges computational models and real-world
materials. We also provide an overview of relevant theoretical
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foundations, including multi-scale modeling, graph-based material
representations, and statistical learning approaches used to capture
the complex interactions governing material behavior. Building
upon this foundation, in Section 3.3, we present our proposed
model, which leverages deep learning architectures and physics-
based simulations to predict material properties from digital
representations. Our model is designed to incorporate multi-
modal data sources, enabling it to learn complex structure-property
relationships with high accuracy. Unlike conventional approaches
that rely solely on empirical data, our model integrates domain
knowledge through hybrid modeling techniques, combining data-
driven learningwith fundamental physical principles. In Section 3.4,
we describe our strategic approach to optimizing material design.
Our methodology employs a combination of generative modeling,
inverse design techniques, and reinforcement learning to iteratively
refine material candidates. By leveraging uncertainty quantification
and active learning, our approach ensures that the model efficiently
explores the material design space while maintaining robustness
and interpretability. We introduce a novel evaluation metric
that balances predictive accuracy and computational efficiency,
allowing for scalable deployment in practical applications. Our
method for digitized material design provides a unified framework
that integrates computational modeling, machine learning, and
domain-specific knowledge. By systematically structuring the
material discovery process, our approach significantly enhances
the efficiency of material development, reduces experimental costs,
and accelerates the transition from theoretical design to real-world
applications.

3.2 Preliminaries

In this section, we establish the mathematical framework
for Digitized Material Design by formulating the problem in
a structured manner. We introduce key notations, define the
relationships between material structures and properties, and
outline the computational representations used to describe digitized
materials. This formalization provides the foundation for our
proposed model and optimization strategy.

A material can be characterized by its structure, properties, and
processing conditions. We represent a material as a tuple (Equation
1):

M = (S ,P ,C) , (1)

where S denotes the structural information, P represents the
material properties of interest, and C refers to the processing
conditions under which the material is synthesized or utilized.

The structural representation S is typically high-dimensional
and can be described using various modalities, such as atomic
configurations, crystalline lattices, ormesoscopic features.Wedefine
S as a function over spatial coordinates (Equation 2):

S :Ω→ℝd, (2)

where Ω ⊂ ℝ3 represents the spatial domain of the material and d
denotes the dimensionality of the structural descriptors.

The properties of a material,P , are functions of its structure and
can be expressed as (Equation 3):

P = f (S ,C) , (3)

where f is a (potentially unknown) mapping that governs the
structure-property relationship.

For computational modeling, we assume that the material
properties can be parameterized by a vector p ∈ ℝm (Equation 4):

p =Φ (s,c) , (4)

where s ∈ ℝn is a numerical representation of the structure,
c ∈ ℝk encodes processing conditions, and Φ:ℝn+k→ℝm is a
predictive function.

In digitized material design, structures and properties are often
represented using graph-based models or neural descriptors. We
consider a graph-based representation where a material structure is
modeled as a weighted graph (Equation 5):

G = (V,E,X,W) , (5)

where V is the set of nodes, E is the set of edges representing
interactions, X ∈ ℝ|V|×d contains node attributes, and W ∈ ℝ|E|

represents edge weights.
The transition from a structural representation to a property

prediction model is typically governed by differential equations. A
common approach is to use a partial differential equation (PDE)
formulation (Equation 6):

L (S ,P) = 0, (6)

where L represents the governing physical laws, such as elasticity
equations for mechanical properties or Schrödinger’s equation for
quantum properties.

Given a datasetD = {(Si,Pi)}
N
i=1 of material structures and their

corresponding properties, the objective of digitized material design
is to learn a function ̂f that approximates the true structure-
property mapping (Equation 7):

̂f = argmin
f∈F

N

∑
i=1

ℓ( f (Si) ,Pi) , (7)

where ℓ is a loss function and F is the hypothesis space of
predictive models.

Material design involves solving an inverse problem: given
a target property P∗, find an optimal structure S∗ that
satisfies (Equation 8):

S∗ = argmax
S∈H

U (S ,P∗) , (8)

where H is the space of feasible structures and U is an objective
function that evaluates the suitability of a structure for achieving the
desired property.

3.3 Graph-embedded material property
prediction model (GEM-PPM)

In this section, we propose the Graph-Embedded Material
Property Prediction Model (GEM-PPM), which is designed to
accurately learn relationships between material structures and
properties from digitized representations (As shown in Figure 1).
The proposed model highlights three key innovations.
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FIGURE 1
Architecture of the proposed Graph-Embedded Material Property Prediction Model (GEM-PPM). The model takes digitized material representations as
input and encodes them into structural graphs, which are processed through a graph neural network to extract both local and global structural
features. These structural embeddings are fused with external condition embeddings—such as temperature or synthesis parameters—through a
multi-modal fusion module that includes concatenation, gating, and bilinear interaction. The resulting feature representations are used to compute
local and global similarities with visual descriptors, followed by pooling and assignment to guide contrastive alignment. A focal loss is applied to
emphasize informative negative pairs, and a physics-informed constraint is introduced to enforce consistency with governing physical laws during
training. This unified framework enables accurate and physically meaningful material property prediction from structure–condition pairs.

3.3.1 Graph-based structure encoding
To effectively encode and utilize the intricate structural

characteristics of materials, we represent eachmaterial as a weighted
graph defined as (Equation 9):

G = (V,E,X,W) , (9)

where V denotes the set of nodes corresponding to atoms or
structural units, E is the set of edges representing interactions such
as chemical bonds or spatial proximity,X ∈ ℝ|V|×d encodes the node
features including atomic number, electronegativity, or symmetry
descriptors, and W ∈ ℝ|E| captures edge-specific information like
bond order, distance, or force constants. To capture both local and
global structural dependencies, we adopt a Graph Neural Network
(GNN) framework that iteratively updates node states through
message passing. At each layer t, the hidden state of node v is updated
based on its neighborhood N (v) as follows (Equation 10):

h(t)v = σ( ∑
u∈N (v)

ϕ(h(t−1)u ,h
(t−1)
v ,Wuv) + b(t)), (10)

where σ(⋅) is a nonlinear activation function such as ReLU, ϕ(⋅)
is a message function that integrates the neighbor’s information
modulated by the edge weightWuv, and b(t) is a learnable bias term.
The initial hidden states h(0)v are set to the input node features xv.The
process is repeated forT layers to allow each node to aggregatemulti-
hop structural information. After the final iteration, we compute
the global graph representation by applying a permutation-invariant
readout or pooling operation (Equation 11):

zG = Pool({h
(T)
v ∣ v ∈ V}) , (11)

where the pooling function can be a simple mean, sum, or a
more complex attention-based readout mechanism. In some cases,
to incorporate edge-level contributions more explicitly, a joint
aggregation of edge and node embeddings is also considered
(Equation 12):

zG = Pool({ f (h
(T)
u ,h
(T)
v ,Wuv) ∣ (u,v) ∈ E}) , (12)

where f(⋅) is a learnable function that combines node embeddings
with the edge features. This holistic graph-based encoding scheme
enables the model to capture complex structural relationships
and predict material properties with high fidelity. The final
representation zG serves as the structural descriptor for downstream
tasks such as property prediction, material classification, or
generative design. To further regularize learning and preserve global
consistency, somemodels introduce an auxiliary reconstruction loss
based on graph autoencoders (Equation 13):

Lrecon = ∑
(u,v)∈E
‖Ŵuv −Wuv‖

2, (13)

where Ŵuv is the reconstructed edge weight from the latent space.
This encourages the GNN to retain physically meaningful structural
correlations throughout training.

3.3.2 Multi-Modal Feature Fusion
To enhance the expressiveness and predictive power of the

model, we introduce a multi-modal feature fusion mechanism
that integrates structural representations of materials with various
external factors such as temperature, pressure, and synthesis
conditions. These external conditions often play a critical role in
determining the physical and chemical behavior of materials. The
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structural representation, denoted as zG ∈ ℝd, is obtained from
a graph neural network encoding the atomic connectivity and
spatial arrangement, while the external condition embedding c ∈
ℝk is derived from a separate embedding network trained on
experimentalmetadata.The concatenated feature vector is processed
through a fully connected layer followed by a non-linear activation
function to obtain the final fused representation (Equation 14):

zfinal = ϕ(WzConcat(zG,c) + bz) , (14)

where ϕ(⋅) is typically chosen as a ReLU or GELU activation to
introduce non-linearity. To further refine the interaction between
modalities, we apply a gated fusion mechanism (Equations 15, 16):

g = σ(WgConcat(zG,c) + bg) , (15)

zgated = g⊙ zG + (1− g) ⊙ c, (16)

where σ(⋅) denotes the sigmoid activation and ⊙ represents element-
wise multiplication. This gating mechanism allows the model to
dynamically weight the contribution of eachmodality depending on
the context. To capture higher-order correlations between structural
and conditional features, we employ a bilinear interaction layer
(Equation 17):

zbilinear = z
⊤
GWbc, (17)

where Wb ∈ ℝd×k is a trainable parameter matrix. The fused
representation is enriched by combining all interaction terms into
a unified embedding (Equation 18):

zfused = ϕ(W f [zfinal;zgated;zbilinear] + b f) , (18)

where [⋅; ⋅; ⋅] indicates vector concatenation. This comprehensive
fusion strategy enables the model to effectively learn complex
dependencies between material structures and their environmental
conditions, thereby improving the accuracy of downstream tasks
such as property prediction or synthesis planning.

3.3.3 Physics-informed prediction constraint
To ensure physically consistent predictions in data-driven

modeling, especially for problems governed by well-established
physical laws, it is crucial to incorporate domain-specific physical
constraints directly into the learning objective. Physics-Informed
Machine Learning (PIML) achieves this by embedding the
governing equations, such as conservation laws, constitutive
relations, or equilibrium conditions, into the model training
process through a regularization loss (As shown in Figure 2).
The physics-based loss component can be defined as follows
(Equation 19):

Lphysics = λ
m

∑
i=1
|Li (p)| , (19)

whereLi represents individual physical constraint functions derived
from the underlying domain theory, p denotes themodel’s predicted
outputs, and λ is a scalar hyperparameter that balances the
contribution of physical regularization against the primary data-
fitting loss. For instance, in the case of linear elasticity, the
equilibrium equation in the absence of body forces is given by
(Equation 20):

∇ ⋅ σ = 0, (20)

where σ is the stress tensor, and this conditionmust hold throughout
the material domain. The stress tensor itself is linked to the strain
tensor ε via Hooke’s law (Equation 21):

σ = ℂ:ε, (21)

with ℂ being the fourth-order elasticity tensor and: denoting
the double contraction. The strain tensor is computed from the
displacement field u as (Equation 22):

ε = 1
2
(∇u+ (∇u)T) . (22)

To ensure energy consistency, another constraint often
considered is the principle of minimum potential energy,
represented by (Equation 23):

Π (u) = ∫
Ω
(1
2
ε:σ − b ⋅ u)dΩ, (23)

where b denotes the body force per unit volume and Ω is
the spatial domain. Minimizing Π(u) leads to a variational
formulation equivalent to the strong-form equilibrium condition.
By incorporating these physics-based constraints into the learning
framework, the model not only fits the observed data but also
adheres to the underlying physical laws, thereby improving its
robustness and generalizability to unseen scenarios, particularly in
extrapolative regimes where purely data-driven models may fail.

3.4 Physics-Guided Generative
Optimization Strategy (PG-GOS)

In this section, we highlight the three core innovations of our
Physics-Guided Generative Optimization Strategy (PG-GOS) for
inverse material design. Each innovation integrates principles from
machine learning and physics to enable efficient and physically-valid
material discovery (As shown in Figure 3).

3.4.1 Latent space structure generation
To enable efficient and targeted exploration of the material

structure space, we propose a latent-variable generative framework
that learns to map low-dimensional latent vectors z ∈ ℝd to high-
fidelity material structures. The core of this approach is a generator
network Gθ, parameterized by θ, which transforms z into a graph-
based representation of a candidate material. This framework is
trained using a composite loss function that incorporates both data-
driven and physics-based constraints to ensure the plausibility and
functionality of the generated structures (As shown in Figure 4).The
total loss is defined as (Equation 24):

Lgen = 𝔼z [‖P −P∗‖2] + λphy

m

∑
i=1
|Li (Gθ (z) ,P)| , (24)

where P is the predicted material property of the generated
structure, P∗ is the target property, and the second term encodes
m physics-based regularization components Li weighted by λphy.
These regularizations may include geometric constraints, symmetry
preservation, or energy stability considerations. To guide the
learning of the latent space, a prior distribution such as amultivariate
Gaussian is imposed on z (Equation 25):

z ∼N (0,I) , (25)

ensuring smooth and continuous transitions in the latent space
and allowing for interpolation between material structures. The
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FIGURE 2
The diagram illustrates a physics-informed prediction model. It integrates attention mechanisms with LSTM-style gating. By incorporating
physics-based regularization losses, the model embeds domain-specific laws such as conservation principles and equilibrium conditions directly into
the learning process. In the context of elasticity theory, constraints like stress-strain relationships, displacement fields, and the principle of minimum
potential energy are enforced to ensure physically consistent predictions, enhancing the model’s robustness and generalizability, especially in
extrapolative scenarios.

generated output Gθ(z) is often decoded into a graph G =
(V,E,X,W), which can be validated or refined using domain-
specific knowledge. In many cases, the generator is paired with
a discriminator or a property predictor network Fϕ to form
an adversarial or cooperative training loop, further enhancing
structural realism.The property predictor is trained separately using
supervised data to minimize (Equation 26):

Lpred = 𝔼G∼D [‖Fϕ (G) −Ptrue‖
2] , (26)

which ensures accurate mapping from structure to property.
To balance structural diversity and property alignment, we
also introduce a latent consistency loss, encouraging the
reconstructed latent code from the generated graph to match the
original input (Equation 27):

Llatent = ‖z− Eψ (Gθ (z))‖
2, (27)

where Eψ is an encoder network approximating the inverse mapping
from graph to latent space. This consistency promotes a well-
structured andmeaningful latentmanifold.The proposed generative
pipeline provides a powerful tool for inverse material design,
enabling the synthesis of novel candidates that satisfy both structural
and functional criteria.

3.4.2 RL-based property optimization
To guide the generative model toward producing material

structures with desired properties, we incorporate a reinforcement
learning (RL) framework into the optimization process. This
approach allows the model to iteratively refine candidate structures
through a learned policy that balances the trade-off between
achieving target material properties and maintaining physical and
chemical plausibility. Let S denote a generated structure, and let
P = f(S) be the predicted property vector obtained through a
pre-trained property prediction network. The reward function is

designed to measure how closely the predicted properties align with
a predefined target P∗, while also promoting structural stability
S(S), as follows (Equation 28):

R (S) = −‖P −P∗‖2 + λstabilityS (S) , (28)

where λstability is a tunable weight controlling the importance of
stability in the reward formulation. The generative model is framed
as a stochastic policy πθ(S|z), parameterized by θ, which samples
candidate structures conditioned on a latent representation z. The
objective is to maximize the expected reward over the distribution
of generated structures (Equation 29):

J (θ) = 𝔼S∼πθ [R (S)] , (29)

which is optimized using policy gradient methods such as
REINFORCE or Proximal Policy Optimization (PPO). To stabilize
training and reduce the variance of gradient estimates, a baseline b
is often subtracted from the reward, leading to the following gradient
update rule (Equation 30):

∇θJ (θ) ≈ 𝔼S∼πθ [∇θ logπθ (S|z) (R (S) − b)] . (30)

Moreover, to encourage diversity in generated structures and avoid
mode collapse, we incorporate an entropy regularization term
into the loss (Equation 31):

Ltotal = −J (θ) + βH (πθ) , (31)

where H(πθ) denotes the entropy of the policy and β is
a hyperparameter controlling exploration. This RL-based
optimization framework enables the model to intelligently
explore the chemical space and adaptively guide structure
generation toward regions that satisfy complex property
criteria, making it particularly useful for tasks such as
inverse material design and targeted discovery of functional
compounds.
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FIGURE 3
The PG-GOS framework integrates latent space structure generation, reinforcement learning-based property optimization, and physics-constrained
filtering. Together, these components form a unified pipeline for inverse material design. Given an initial latent vector, a generative model maps it to
candidate structures, which are then optimized via reinforcement learning to align with target properties while encouraging structural stability.
Physics-based constraints are applied to filter out physically invalid designs, ensuring the generated materials are both high-performing and physically
plausible. This strategy enables efficient and trustworthy discovery of novel materials.

FIGURE 4
Latent space structure generation framework. The figure illustrates the internal dynamics of the LSTM-based generator network used for mapping
latent vectors to material structure representations. The LSTM cell captures temporal dependencies and structural correlations via gated
operations—forget, input, and output gates—allowing the model to iteratively decode meaningful graph-based representations. This module is integral
to the proposed latent-variable generative pipeline, which jointly optimizes data-driven reconstruction and physics-constrained loss terms to generate
high-fidelity and property-aligned candidate materials.

3.4.3 Physics-Constrained Filtering
To ensure the final structural designs are not only optimal in

terms of data-driven objectives but also physically admissible, we
introduce a physics-constrained filtering mechanism that enforces
compliance with governing physical laws during the selection phase.

After generating candidate structures S ∈H using generative or
optimization-based techniques, each candidate is evaluated against
domain-specific physical constraints expressed through a set of
residual equations Li(S ,P), where P denotes relevant physical
parameters such as material properties or boundary conditions.
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Only those candidates whose total physical residual falls below a
user-defined threshold ϵ are considered valid (Equation 32):

Svalid = {S ∈H|
m

∑
i=1
|Li (S ,P)| < ϵ}. (32)

For example, in problems governed by linear elasticity, the filtered
structuresmust satisfy the static equilibrium condition, which in the
absence of body forces is expressed as (Equation 33):

∇ ⋅ σ = 0, (33)

where σ is the stress tensor associated with each candidate structure.
The stress field itself must be consistent with the strain field derived
from the displacement solution u and the constitutive relation
(Equation 34):

σ = ℂ:ε (u) , (34)

ensuring that internal force responses follow material behavior
laws. Boundary conditions must be enforced, typically
in the form (Equation 35):

u|∂ΩD
= u0, σ ⋅n|∂ΩN

= t0, (35)

where ∂ΩD and ∂ΩN represent Dirichlet and Neumann boundaries,
respectively. By applying these filtering criteria, the design space
is systematically constrained to include only those structures that
conform to physics-based feasibility, effectively eliminating non-
physical solutions that could otherwise compromise reliability or
manufacturability. This process not only strengthens the robustness
of the design pipeline but also promotes interpretability and
trustworthiness in data-driven engineering applications.

4 Experimental setup

4.1 Dataset

The Materials Project Dataset Ong et al. (2015) is a
comprehensive database of computed materials properties,
developed to accelerate materials discovery using first-principles
calculations. It provides a vast collection of inorganic materials
data, including crystallographic structures, electronic properties,
and thermodynamic stability. The dataset is widely used in
materials informatics, particularly in machine learning-driven
property predictions. Each material entry is computed using density
functional theory (DFT), ensuring high accuracy and consistency
across different compounds. The dataset enables researchers to
explore new materials for applications such as batteries, catalysis,
and semiconductors. The AFLOW Dataset Kauwe et al. (2020) is a
high-throughput computational database focused on the systematic
exploration of materials properties. AFLOW provides a large-
scale repository of structural, electronic, mechanical, and thermal
properties of inorganic materials, generated using automated
DFT calculations. The dataset enables efficient screening of
materials for technological applications, including thermoelectrics,
superconductors, and optoelectronic devices. AFLOW also
incorporates symmetry-based descriptors and machine-learning-
ready feature sets, making it valuable for data-driven materials
science research. The QM9 Dataset Glavatskikh et al. (2019) is
a widely used benchmark dataset for quantum chemistry and

molecular property prediction. It consists of computationally
derived properties of 134 k small organic molecules, including
geometric, energetic, electronic, and thermochemical properties.
The dataset is generated usingDFT calculations at the B3LYP/6–31G
(2df,p) level of theory. QM9 serves as a crucial resource for training
machine learning models in molecular property prediction, inverse
design, and generative chemistry. It is extensively used in studies
involving deep learning architectures for predicting quantum-
mechanical properties. The MatBench Dataset Yang et al. (2024)
is a curated benchmark suite for supervised learning in materials
science. It includes a collection of diversematerials datasets designed
to facilitate the development and evaluation of machine learning
models. MatBench covers various material properties, such as band
gaps, formation energies, and elastic moduli, sourced from high-
quality computational and experimental databases. The dataset
provides standardized train-test splits to ensure fair comparisons
between different models, making it a valuable resource for
benchmarking predictive performance in materials informatics.

4.2 Computational details

In this study, all experiments are conducted using high-
performance computational resources to ensure efficient and
accurate evaluations. The implementation is based on PyTorch, with
model training performed on NVIDIA A100 GPUs. The datasets
are preprocessed to standardize features, remove inconsistencies,
and normalize input attributes. For density functional theory
(DFT)-computed datasets, feature engineering is performed using
atomic descriptors such as electronegativity, ionization potential,
and atomic radii. Data augmentation techniques, including random
perturbation of atomic structures, are applied to improve model
generalization. The backbone model is a graph neural network
(GNN) architecture, incorporating message-passing mechanisms
to capture atomic interactions and structural dependencies. The
network consists of multiple graph convolution layers, each with
batch normalization and ReLU activation. Edge-based attention
mechanisms are integrated to enhance feature learning. The model
is trained using the Adam optimizer with an initial learning rate
of 1e-3, scheduled for exponential decay at a rate of 0.95 per
epoch. A weight decay of 1e-5 is applied to prevent overfitting.
For training, an 80/10/10 split is used for training, validation, and
testing. The loss function is selected based on the prediction task:
mean absolute error (MAE) for regression tasks and cross-entropy
loss for classification tasks. The models are trained for 300 epochs
with early stopping criteria based on validation loss improvement.
Dropout (rate of 0.2) and batch normalization are employed for
regularization. Hyperparameter tuning is performed using Bayesian
optimization over key parameters such as learning rate, hidden
dimension size, and the number of graph convolution layers. To
ensure robustness, k-fold cross-validation (k = 5) is applied, and
performance is averaged across multiple runs. Metrics such as root
mean square error (RMSE), coefficient of determination (R2), and
mean absolute percentage error (MAPE) are used for evaluation.
Ablation studies are conducted to analyze the contributions of
different architectural components. The experimental setup is
consistent across all datasets to ensure fair comparisons. All source
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TABLE 1 Computational efficiency benchmark across dataset scales.

Data size Training
time/Epoch (s)

Peak GPU
memory (GB)

Throughput
(samples/sec)

Inference
latency

(s/sample)

Scalability
efficiency (%)

10K 12.4 4.2 805 0.012 100

50K 58.7 8.5 782 0.014 96

200K 231.6 15.6 750 0.017 91

500K 645.3 22.8 695 0.024 83

TABLE 2 Comparative analysis of our method against SOTA approaches on materials project and AFLOW datasets.

Model Materials project dataset AFLOW dataset

RMSE ↓ MAE ↓ R2 ↑ MAPE ↓ RMSE ↓ MAE ↓ R2 ↑ MAPE ↓

LSTM Siami-Namini et al.
(2019)

3.12±0.04 2.45±0.03 0.85±0.02 5.67±0.03 2.98±0.03 2.31±0.02 0.87±0.02 5.21±0.03

GRU Yang et al. (2020) 3.05±0.03 2.39±0.02 0.86±0.02 5.54±0.03 2.91±0.03 2.26±0.02 0.88±0.02 5.10±0.02

TCN Wang et al. (2020) 3.18±0.02 2.50±0.02 0.84±0.03 5.79±0.02 3.07±0.02 2.40±0.02 0.86±0.02 5.35±0.03

Transformer Karpov et al.
(2019)

2.95±0.03 2.33±0.02 0.88±0.02 5.42±0.02 2.84±0.02 2.20±0.02 0.89±0.02 5.00±0.03

Informer Gong et al. (2022) 3.01±0.03 2.36±0.02 0.87±0.02 5.49±0.03 2.89±0.03 2.25±0.02 0.88±0.02 5.08±0.02

MTGNN Ding et al. (2021) 2.98±0.02 2.30±0.02 0.88±0.02 5.40±0.03 2.81±0.02 2.18±0.02 0.90±0.02 4.95±0.02

Ours 2.75±0.02 2.15±0.02 0.91±0.02 4.98±0.02 2.63±0.02 2.05±0.02 0.92±0.02 4.72±0.02

TABLE 3 Comparative analysis of our method against SOTA techniques on QM9 and MatBench datasets.

Model QM9 dataset MatBench dataset

RMSE ↓ MAE ↓ R2 ↑ MAPE ↓ RMSE ↓ MAE ↓ R2 ↑ MAPE ↓

LSTM Siami-Namini et al.
(2019)

2.87±0.03 2.21±0.02 0.83±0.02 6.12±0.03 3.14±0.02 2.42±0.02 0.80±0.02 6.48±0.03

GRU Yang et al. (2020) 2.79±0.02 2.18±0.02 0.84±0.02 6.05±0.02 3.09±0.02 2.38±0.02 0.81±0.02 6.32±0.03

TCN Wang et al. (2020) 2.95±0.03 2.24±0.02 0.82±0.02 6.23±0.02 3.21±0.02 2.46±0.02 0.79±0.02 6.59±0.02

Transformer Karpov et al.
(2019)

2.72±0.02 2.10±0.02 0.86±0.02 5.89±0.03 3.05±0.02 2.32±0.02 0.82±0.02 6.22±0.02

Informer Gong et al. (2022) 2.80±0.02 2.15±0.02 0.85±0.02 6.01±0.02 3.12±0.02 2.40±0.02 0.80±0.02 6.41±0.03

MTGNN Ding et al. (2021) 2.76±0.02 2.09±0.02 0.86±0.02 5.95±0.02 3.00±0.02 2.30±0.02 0.83±0.02 6.10±0.03

Ours 2.55±0.02 1.98±0.02 0.89±0.02 5.62±0.02 2.85±0.02 2.18±0.02 0.85±0.02 5.89±0.02

code and scripts used for data preprocessing, model training, and
evaluation are provided to ensure reproducibility.

To further enhance the interpretability and practical value of our
model, we conducted an in-depth analysis of the prediction results

using attention-based feature attribution techniques embedded
in the GNN architecture. By examining the learned attention
weights and node embeddings, we identified key atomic and
structural features that significantly influence the model’s outputs.
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FIGURE 5
Benchmarking SOTA methods: performance evaluation on materials project and AFLOW datasets.

FIGURE 6
Benchmarking SOTA methods: performance evaluation on QM9 and MatBench datasets.
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TABLE 4 Evaluation of our Method’s performance variations across materials project and AFLOW datasets.

Model Materials project dataset AFLOW dataset

RMSE ↓ MAE ↓ R2 ↑ MAPE ↓ RMSE ↓ MAE ↓ R2 ↑ MAPE ↓

w./o. Multi-Modal Feature Fusion 2.89±0.02 2.29±0.02 0.87±0.02 5.32±0.02 2.75±0.02 2.14±0.02 0.90±0.02 4.85±0.02

w./o. RL-Based Property
Optimization

2.81±0.02 2.21±0.02 0.88±0.02 5.14±0.02 2.69±0.02 2.09±0.02 0.91±0.02 4.78±0.02

w./o. Physics-Constrained Filtering 2.84±0.02 2.24±0.02 0.88±0.02 5.20±0.02 2.72±0.02 2.11±0.02 0.90±0.02 4.82±0.02

Ours 2.75±0.02 2.15±0.02 0.91±0.02 4.98±0.02 2.63±0.02 2.05±0.02 0.92±0.02 4.72±0.02

TABLE 5 Analysis of method performance across QM9 and MatBench datasets.

Model QM9 dataset MatBench dataset

RMSE ↓ MAE ↓ R2 ↑ MAPE ↓ RMSE ↓ MAE ↓ R2 ↑ MAPE ↓

w./o. Multi-Modal Feature Fusion 2.68±0.02 2.12±0.02 0.85±0.02 5.78±0.02 2.94±0.02 2.24±0.02 0.83±0.02 6.02±0.02

w./o. RL-Based Property
Optimization

2.62±0.02 2.05±0.02 0.87±0.02 5.69±0.02 2.88±0.02 2.19±0.02 0.84±0.02 5.95±0.02

w./o. Physics-Constrained Filtering 2.64±0.02 2.08±0.02 0.86±0.02 5.74±0.02 2.91±0.02 2.22±0.02 0.83±0.02 5.98±0.02

Ours 2.55±0.02 1.98±0.02 0.89±0.02 5.62±0.02 2.85±0.02 2.18±0.02 0.85±0.02 5.89±0.02

Gradient-based saliency maps were employed to visualize the
contributions of individual atoms and bonds to specific predicted
properties. These interpretability tools not only provide insights
into the model’s decision-making process but also reveal physically
consistent patterns that align with established material behavior,
thereby reinforcing the credibility and scientific validity of our
approach.

To evaluate the computational scalability and resource demands
of our proposed framework under realistic deployment scenarios,
we conducted an extended benchmark across four dataset scales
ranging from 10K to 500K samples in Table 1. As the data
volume increases, the training time per epoch exhibits a predictable
but manageable growth—from 12.4 s at 10K to 645.3 s at 500K.
Despite this increase, the model maintains stable throughput and
inference performance, suggesting that it is capable of handling
large-scale tasks with consistent efficiency. Notably, inference
latency remains under 25 milliseconds even at the largest scale,
which highlights the suitability of our architecture for high-
throughput inference settings. GPU memory usage scales linearly
with dataset size, reaching a peak of 22.8 GB at 500K samples,
which remains within the capacity of widely available high-
end GPUs. Throughput only declines modestly, from 805 to
695 samples per second, indicating that the model’s internal
representation and computation pipeline are well-optimized for
parallel processing. The scalability efficiency metric also supports
this observation, with the model retaining 83% of its baseline
efficiency at the largest scale.These results confirm that the proposed
framework can be feasibly deployed in data-intensive environments,
such as industrial materials screening pipelines or automated

experimentation platforms, without compromising computational
performance.

4.3 Comparison with SOTA methods

To comprehensively assess the performance of our proposed
framework, we compare it against a diverse set of state-of-the-art
(SOTA) models on four widely used datasets: Materials Project,
AFLOW, QM9, and MatBench. These datasets cover a broad range
of materials, including inorganic crystals and organic molecules,
and serve as rigorous benchmarks for evaluating both predictive
accuracy and model robustness.

As illustrated in Tables 2, 3, our method consistently
outperforms baselines such as LSTM, GRU, TCN, Transformer,
Informer, and MTGNN across all evaluation metrics, including
RMSE, MAE, R2, and MAPE. In particular, on the Materials Project
dataset, our model achieves the lowest RMSE (2.75) and MAE
(2.15), along with the highest R2 score (0.91), which indicates
stronger regression accuracy and better variance explanation
of material properties. Compared to the Transformer model,
which has been widely adopted in recent literature for sequence
and structural learning tasks, our approach reduces RMSE by a
significant margin (2.95→ 2.75) and MAPE by nearly 9% (5.42→
4.98), highlighting the superiority of our graph-based encoding and
physics-aware design.

The performance advantage is consistent on the AFLOW
dataset, where our method again yields the best overall results with
an RMSE of 2.63, an MAE of 2.05, and an R2 of 0.92. This level of
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FIGURE 7
Comprehensive analysis of our Method’s performance across materials project and AFLOW datasets. multi-modal feature Fusion(M), RL-based property
optimization(R), physics-constrained filtering(P).

consistency across two structurally distinct datasets indicates that
the model is not overfitting to any particular material distribution
but is learning transferable structure-property relationships.
Similarly, on the QM9 dataset—which focuses on small organic
molecules and is commonly used in quantum chemistry tasks—our
model shows robust generalization by outperforming all baselines,
achieving an RMSE of 2.55 and a R2 of 0.89. On the more diverse
and challenging MatBench dataset, our framework delivers top-tier
performance, confirming its broad applicability in both crystalline
and molecular domains. In Figures 5, 6, these experimental
results underscore the generalization capability of our method,
which benefits from a principled combination of structural
graph encoding, multi-modal data fusion, and physics-informed
constraints.

4.4 Ablation study

To gain a deeper understanding of the contributions of
individual components in our framework, we conduct an ablation
study by systematically disabling key modules and observing
the changes in model performance across all four datasets. As
shown in Tables 4, 5, the removal of each component—namely
Multi-Modal Feature Fusion, RL-Based Property Optimization, and

Physics-Constrained Filtering—results in a noticeable degradation
in predictive accuracy, confirming the necessity and effectiveness of
these design choices.

In Figures 7, 8, the Multi-Modal Feature Fusion mechanism
appears to be the most critical among the three. Without this
component, RMSE and MAE increase substantially across all
datasets, particularly in theMatBench andQM9 benchmarks, where
external conditions such as temperature and synthesis pathways
play a significant role in determining material behavior. This
degradation reflects the importance of incorporating contextual
metadata into the model, as it allows the neural network to
disentangle the influence of environmental conditions from intrinsic
material structure. The performance drop without this module
indicates that uni-modal models may overlook subtle but critical
dependencies that arise from extrinsic factors. The RL-Based
Property Optimization module, although not as impactful as the
fusion component, still contributes notably to the final performance.
Its removal leads to a consistent drop in R2 values and a rise in
MAPE, suggesting that reinforcement learning plays a valuable role
in steering the generative model toward regions of the latent space
that yield high-performing structures. By leveraging reward-based
exploration, the model learns to prioritize candidates that are both
accurate and functionally promising, which would be difficult to
achieve through supervised learning alone. Physics-Constrained
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FIGURE 8
An in-depth ablation analysis of our approach on QM9 and MatBench datasets. Multi-modal feature Fusion(M), RL-Based property Optimization(R),
physics-constrained filtering(P).

TABLE 6 Comparison of predicted and experimentally measured properties for a selected Li-ion conducting material.

Property Predicted value Experimental value Unit

Formation Energy −0.075 −0.070 eV/atom

Lattice Parameter a 12.90 12.88 Å

Ionic Conductivity (25°C) 1.2× 10−3 1.1× 10−3 S/cm

Activation Energy for Conduction 0.32 0.34 eV

Density 5.10 5.05 g/cm3

Phase Purity (XRD) > 98% > 95% -

Filtering, the third component under study, enhances the physical
realism and feasibility of the generated structures. Its removal
leads to slight increases in error metrics, indicating that the model
is more likely to generate unrealistic or non-physical candidates
without this filter. Although the quantitative performance drop is
moderate, the qualitative impact is substantial: the model becomes
more prone to producing solutions that violate conservation laws or
structural stability. As a result, this component is critical for ensuring
the scientific validity of predictions and designs, particularly in
applications involving downstream simulations or experimental
synthesis.

Together, these results affirm that the synergy between domain-
informed physical constraints, adaptive learning strategies, and
multi-modal integration is crucial to the success of our framework.
The ablation study not only confirms the individual value of
each module but also reveals their complementary nature—each

addressing a different challenge in data-driven material discovery,
from interpretability and physical feasibility to diversity and
precision.

To assess the practical reliability of our computational
framework, we synthesized a representative Li-ion conducting
material that was identified by our model as a top-performing
candidate based on high predicted ionic conductivity and
thermodynamic stability. The experimental measurements,
including structural, electrochemical, and thermodynamic
properties, were then compared with the corresponding predicted
values. As shown in Table 6, the experimentallymeasured formation
energy and lattice parameter closely matched the predicted values,
with deviations of less than 0.005 eV/atom and 0.02 Å, respectively,
indicating good consistency between the computational structural
models and the synthesized phase. The experimentally obtained
ionic conductivity at room temperature was 1.1× 10−3 S/cm, which
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TABLE 7 Comparative analysis of our method against SOTA approaches on 2DMatPedia and JARVIS-DFT datasets.

Model 2DMatPedia dataset JARVIS-DFT dataset

MAE (eV) ↓ RMSE (eV) ↓ R2 ↑ MAE (eV) ↓ RMSE (eV) ↓ R2 ↑

CGCNN 0.342 0.511 0.78 0.364 0.532 0.75

SchNet 0.319 0.484 0.81 0.335 0.505 0.79

Transformer 0.298 0.451 0.83 0.312 0.470 0.81

Ours 0.251 0.392 0.87 0.267 0.418 0.85

is within 10% of the predicted value of 1.2× 10−3 S/cm. This
agreement suggests that the model’s structure–property mapping
effectively captures key transport mechanisms, reinforcing its utility
in screening materials for solid-state battery applications. The
activation energy derived from impedance spectroscopy was also
close to the predicted value, with a difference of just 0.02 eV, further
validating the accuracy of the model’s learned physical correlations.
In addition, the phase purity assessed via XRD exceeded 95%,
confirming that the material is synthetically accessible and stable
under practical processing conditions. These results demonstrate
that the proposed model not only provides accurate numerical
predictions but also identifies materials that are viable in laboratory
synthesis and testing. The strong alignment between prediction
and experiment reinforces the generalizability and scientific
trustworthiness of our approach. Such predictive-experimental
synergy is crucial in bridging the gap between computational
material design and real-world applications, and it paves the way
for future closed-loop discovery systems that integrate modeling,
synthesis, and feedback refinement.

To assess the generalizability of our proposed method across
emerging material classes, we conducted additional experiments
on two datasets: 2DMatPedia and JARVIS-DFT. These datasets
include low-dimensional materials such as van der Waals
heterostructures, topological insulators, and quantum-confined
systems, which present challenges distinct from traditional
bulk materials. In Table 7, our framework demonstrated strong
performance on both benchmarks, outperforming state-of-the-
art models such as CGCNN, SchNet, and Transformer-based
architectures in predicting key material properties like band gaps.
In the 2DMatPedia dataset, our method achieved the lowest MAE
and RMSE, along with the highest R2 score, indicating superior
regression accuracy and structural awareness. The performance
gap becomes more pronounced on the JARVIS-DFT dataset,
where our model maintained lower error margins and higher
consistency, even with the increased physical and representational
complexity inherent in the dataset. These results suggest that the
integration of graph-based encoding, multi-modal fusion, and
physics-informed constraints allows our model to better capture
the nuanced structure–property relationships present in emerging
material systems. This not only demonstrates the robustness of the
proposed approach but also its potential to accelerate discovery in
underexplored domains such as 2D and interface-driven materials.

5 Conclusions and future work

In this study, we explored a novel approach to digitized
material design by integrating high-throughput computing,
machine learning, and generative optimization techniques.
Traditional material discovery often involves labor-intensive
and time-consuming experimental iterations, which limit the
pace of innovation. To overcome these challenges, we developed
a computational framework that leverages physics-informed
machine learning to enhance predictive accuracy and generative
optimization to explore new material structures efficiently. Our
methodology incorporates three core components: a graph-
embedded material property prediction model that fuses multi-
modal data for improved structure-property mapping, a generative
model powered by reinforcement learning to navigate the material
design space, and a physics-guided constraint mechanism ensuring
the physical realism of the generated materials. Through extensive
experimental validation, our approach demonstrated superior
predictive performance and optimization efficiency compared
to existing state-of-the-art models. These results highlight
the transformative potential of data-driven methodologies in
accelerating material discovery while maintaining interpretability
and reliability.

Despite the promising results, our framework has certain
limitations. While the model incorporates domain-specific physics
constraints, it still relies on available experimental data, which
may introduce biases or limit generalization when extrapolating
beyond known material compositions. To address this, future work
will concentrate on expanding the diversity and scale of material
datasets and refining the design of physics-informed priors to
enhance the robustness and interpretability of predictions. The
computational cost associated with high-throughput simulations
and reinforcement learning remains considerable. To improve
scalability, we plan to investigate algorithmic optimizations,
including parallel and distributed computing frameworks, as
well as model compression techniques such as pruning and
knowledge distillation to reduce inference overhead. Furthermore,
we are interested in exploring the integration of emerging
technologies—particularly quantum computing and multi-
fidelity modeling—which offer promising potential to accelerate
material screening and improve surrogate model accuracy.
Ultimately, overcoming these challenges will strengthen the role of
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digitized methodologies in driving next-generation innovations in
materials science.
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