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Energy dissipation properties of
backfill materials under
compaction in solid waste
backfill mining
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1Institute of Construction Engineering Technology, Changzhou Vocational Institute of Engineering,
Changzhou, China, 2Wuxi RL Precision Machinery Co., Ltd., Wuxi, China

The compaction of backfill materials is critical in Solid Waste Backfill Mining
(SWBM) systems, as it can reduce the chance of dynamic hazards effectively.
Despite its importance, the compaction and energy dissipation properties
of backfill materials are still not fully understood. In this research, a series
of laboratory tests were conducted to explore the deformation, particle
morphology, and energy dissipation properties of gangue particles. The results
indicated that the process of axial strain increase encompassed three stages:
rapid increase (0∼2 MPa) stage, slow increase (2∼8 MPa) stage, and slight
increase (8∼16 MPa) stage. For the specimen (n = 0.4), the particle flatness
ranges from 1.38 to 1.75 and decreases gradually with some fluctuations.
The total surface area and particle crushing energy exhibit a similar trend,
both increasing monotonically with the increase of axial stress, varying within
0.688∼2.092 m2 and 4.81∼14.35 kJ/m3, respectively. The relationship between
particle crushing energy and axial strain is approximated by a linear function.
The energy consumed by particle breakage constitutes a small proportion
(0.7%∼7.8%) of the total energy consumption for specimen deformation, while
the majority of energy consumption is attributed to inter-particle friction,
especially in the later compaction stage. However, the initial particle size
distribution has negligible influence on the total surface area and particle
crushing energy.

KEYWORDS

solid waste backfill mining, backfill materials, particle morphology, energy dissipation,
particle crushing energy

1 Introduction

With the development of underground mining, the complexity and depth of
undergroundmining operations has led to an increasing risk of dynamic hazards, including
rock bursts, coal and gas outbursts, and shockwaves (Zhou et al., 2016; Wu et al., 2020;
Wu et al., 2022; Shi et al., 2023a; Wu et al., 2024; Zhang et al., 2025). These events
may have devastating consequences for mine safety and productivity. Therefore, it is
critical to develop effective measures to control and mitigate these dynamic hazards.
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FIGURE 1
Compacting device.

FIGURE 2
Gangue particles in different diameter ranges.

In recent years, solid waste backfill mining (SWBM) technology,
which is the core technology to realize green mining, has been
widely applied in more than 20 mining areas in China (Zhang et al.,
2022; Shi et al., 2023b). The basic principle of strata movement
control in SWBM is achieved by an independent backfilling system.
Solid waste backfill materials (e.g., gangue, fly ash, and other solid
wastes on the ground) are pre-treated, transported to underground,
and then backfilled into the goaf to replace the original coal seam
supporting the roof, thus restrict overlying strata movement. As the
working face advances, the backfill materials are further compacted
and effectively support the overlying strata. Simultaneously, during
the compaction process, the energy released from the deformation
and failure of the roof is absorbed. SWBM has demonstrated
its potential to not only reduce the chance of dynamic hazards

effectively (Zhang et al., 2019a; Li et al., 2021), but also provide
an environmental-friendly method for the dispose of gangue or
other solid wastes (Huang et al., 2011). As SWBM continues to
gain attention in the mining industry, it is essential to understand
the compaction characteristics and energy dissipation properties
of backfill materials. These two factors play important roles in
understanding the effectiveness of SWBM to mitigate dynamic
hazards and ensure safe mining operations.

The compaction properties of backfill materials are affected
by many factors, such as particle morphology, particle size, and
particle type (Hamdani, 1983; Day et al., 2000; Cho et al., 2006;
Ma et al., 2014; Yu et al., 2020; Li et al., 2023; Shi et al., 2024;
Zhang et al., 2023; Yang et al., 2024; Xu et al., 2024). The particles
can be crushed during the loading (Hardin, 1985; Coop et al., 2004;
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TABLE 1 The mass amount in each diameter range of each specimen.

Specimen no. Talbot exponent Mass in each diameter range (g)

2.5–5 mm 5–8 mm 8–10 mm 10–12 mm 12–15 mm

1 0.2 690 525.5 267.2 227.5 289.8

2 0.4 610 521 283.9 251.5 333.6

3 0.6 534.4 511.6 298.3 275.2 380.5

4 0.8 464.3 497.7 310.4 298.1 429.5

FIGURE 3
Testing procedure.

Guerrero and Vallejo, 2005; Casini et al., 2013; De and Mcdowell,
2016), whichmay be influenced by various factors including applied
stress, the initial grading of the tested specimens (Coop et al., 2004),
the change in particle mixture (Ma et al., 2015), the geological

framework (Aydin et al., 2006) and the complex shape in physics
and geometry.

Studies have been conducted broadly to investigate the energy
dissipation properties of rocks (Liu et al., 2014; Meng et al., 2016;
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FIGURE 4
Feret’s diameters of the particle.

Zhou et al., 2020; Han et al., 2022; Yan et al., 2024; Deng et al.,
2023; Reches and Wetzler, 2025). In the process of rock failure,
energy dissipation always exists, which is an irreversible process
(Rezaei et al., 2015; Sangkyu et al., 2019; Zhang et al., 2019b;
Yu et al., 2020). The energy dissipation properties are closely
related to the types of rocks, water content, and loading methods
(Hou et al., 2021; Jin et al., 2022).

This study is motivated by understanding the significance of the
compaction and energy dissipation properties of backfill materials
in SWBM. Specifically, this study aims to (1.) design a compacting
device that can be installed on the electro-hydraulic servo-controlled
test system to simulate the compaction of backfill materials in
SWBM; (2.) test specimens of gangue particles with different size
distributions to characterize the deformation, particle morphology
evolution, and energy dissipation properties during compaction;
and (3.) investigate the correlation between particle crushing energy
and axial stress.

2 Materials and methods

2.1 Testing system

Backfill materials in working faces of SWBM are confined
horizontally by sidewalls and the internal friction between
themselves. A compacting device was designed to simulate the
compaction of backfill materials in SWBM and characterize their
energy dissipation properties. As shown in Figure 1, the compacting
device consisted of three main parts: a piston, a cylinder tube, and
a pedestal. The piston was employed to apply axial load to the
test backfill materials. The cylinder tube was fabricated from fully
quenched 45# steel, of which the elastic modulus was 210 GPa. The
inner diameter and the wall thickness of this steel cylinder were 100

and 10 mm, respectively. The test accuracy of the pressing machine
were axial force 20 N and axial stress 0.001 mm.

2.2 Experimental materials and specimen
preparation

The gangue specimens used as backfill materials in this research
were collected from the −592 m deep strata of Xiaojihan coal mine
in Shanxi province of China. The main mineral composition of
the tested gangue was determined through experimental analysis,
showing that the gaugue specimens consist of 32% feldspar, 28%
quartz, 12% kaolinite, 9% illite, 7% chlorite, 4% calcite, 3%
siderite, and 5% other minerals. The average dry density was
2,562 kg/m3. The uniaxial compressive strength, tensile strength,
cohesion, internal friction angle, elasticity modulus, and fracture
toughness were 58.61 MPa, 7.65 MPa, 10.32 MPa, 34.08°, 30.40 GPa
and 0.44 MPa m1/2, respectively.

The test specimenswere prepared in the laboratory following the
procedure below: (1.) The gangue blocks were initially crushed into
particles; (2.)The particles were separated by separation screens into
five groups by their sizes, with diameters ranging from 2.5 to 5 mm
(group A), 5∼8 mm (group B), 8∼10 mm (group C), 10–12 mm
(group D), and 12∼15 mm (group E), as shown in Figure 2; and (3.)
Specimenswere prepared bymixing particles fromgroupsA∼E,with
a total mass of 2000 g. To account for the diverse size distribution
of backfill materials and overcome the dimension disaster, each
specimenwas created using a combination of particles fromdifferent
diameter ranges, according to Talbot theory (Yu et al., 2020). The
Talbot formula is written in the following form

P = ( d
dmax
)
n
× 100% (1)

where P is the passing rate of each diameter size in gangue particles,
d is the particle diameter, dmax is the maximum particle diameter,
and n is the Talbot exponent. Based on Equation 1, the mass amount
in each diameter range of the gangue specimens for four different
cases (n = 0.2, n = 0.4, n = 0.6, and n = 0.8) are provided in Table 1.

2.3 Testing procedure

Due to the movement of the overlying strata, the backfill
materials in the working face are subjected to varying levels of
loading over time. The compaction level increases gradually from
beginning to end. Therefore, the impact of the compaction level
(axial stress) on the energy dissipation of the backfill materials need
to be considered. Given the working face depth (−592 m) and the in-
situ strata stress (average bulk density of 0.024 MN/m3), amaximum
axial stress of 16 MPa was prescribed for the compacting test. In
this test, the axial stress was set to five different levels (2, 4, 8, 12,
and 16 MPa). Thus, the energy dissipation properties of the four
specimens were tested under six different conditions (including the
initial state). A total of 24 sets of experiments were conducted.

To obtain the energy dissipation properties under different
axial stresses, an axial force control mode was applied and the
specimens were separated after the test. Each set of experiments was
repeated three times, and the average test results were used in the
analysis. Figure 3 illustrates the testing procedure.
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FIGURE 5
Axial strain vs. axial stress curves. (a) n = 0.2 (b) n = 0.4 (c) n = 0.6 (d) n = 0.8.

TABLE 2 Particle flatness of the specimen under compaction (n = 0.4).

Axial stress (MPa) Particle flatness under compaction

0–2.5 mm 2.5–5 mm 5–8 mm 8–10 mm 10–12 mm 12–15 mm

Initial state — 1.61 1.75 1.69 1.69 1.52

2 1.45 1.60 1.61 1.61 1.49 1.48

4 1.44 1.58 1.52 1.60 1.46 1.47

8 1.43 1.47 1.49 1.49 1.51 1.43

12 1.38 1.42 1.55 1.52 1.38 1.41

16 1.38 1.40 1.43 1.44 1.42 1.40
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FIGURE 6
Particle flatness vs. axial stress curves.

2.4 Particle flatness calculation

In this research, particle flatness, f, was employed to quantify
the evolution of particle morphology. It was expressed by the
following equation.

f = d f max/d f min (2)

where d f max and d f min are the maximum and minimum Feret’s
diameters of the particles, respectively. The specific notation for the
two diameters is shown in Figure 4. Based on Equation 2, this value
is always greater than or equal to 1. Particle flatness characterizes the
elongation of particles; the closer a particle is to a spherical shape, the
closer this value is to 1. Conversely, themore flattened and elongated
the particle, the higher the value.

2.5 Energy dissipation parameters
calculation

Strain energy density is used to express the energy consumed by
the deformation of specimens per unit volume under compaction.
In this test, the elastic deformation of testing equipment (e.g., dowel
bar, compacting head, piston, cylindrical tube, and pedestal) played
a negligible role, and the work done by the pressure machine was
mainly consumed by the deformation of specimens and friction
between the gangue particles and cylindrical tube inner wall. The
work done by compaction per unit volume of specimen W can be
calculated by

W = ∫
ε

0
σ1dε (3)

Based on Equation 3, the unit energy dissipation of the friction
between the gangue particles and the cylindrical tube’s inner wall
Wm can be calculated by

Wm =
∫
ε

0
[μλσ2πrh0(1− ε)]

h0
2
dε

πr2h0(1− ε)
=
λμh0
r

W (4)

where μ, λ, r and h0 are the friction coefficient, lateral pressure
coefficient, radius of the cylindrical tube inner wall, and initial
height of specimen, respectively. In Equation 4, the friction
coefficient and lateral pressure coefficient were set at 0.25 and 0.43,
respectively (Zhou et al., 2016).

Therefore, the strain energy density νε of the specimen can be
expressed as

νε =W−Wm = (1− 0.1075
h0
r
)W (5)

Based on Equation 5, the energy consumption during the
compaction process of a unit volume specimen includes particle
crushing energy, νb, frictional energy dissipation, νf, between
particles, particle deformation energy, νd, and other forms of energy
dissipation, νe, which can be expressed by Equation 6

νε = νb + νf + νd + νe (6)

According to Griffith’s fracture mechanics theory, the energy
consumption Wb associated with the formation of new fracture
surfaces during particle breakage can be expressed (Lawn, 1993)

Wb = 2K2
ICΔA/E (7)

whereKIC is the fracture toughness of the particlematerial,ΔA is the
area of the new fracture surfaces generated by particle breakage, and
E is the elastic modulus of the particle material.

The relationship between the surface area, AS, of an
individual gangue particle and its particle size, ds, can be
expressed by Equation 8

As ∝ d2s (8)

In this test, gangue particles of different size ranges were sieved
using circular perforated sieves. Considering that gangue particles
are irregular polyhedra and that their particle circularity decreases
during compaction (Yu et al., 2020), in this research, spherical shapes
were used to simulate gangue particles for volume calculation. For
a single spherical particle with a diameter of ds, its volume, Vs, is
calculated as follows

Vs = πds3/6 (9)

For gangue particles within a certain size range, considering
their irregular shape, the average of the upper and lower sieve
aperturesDi andDi+1 was taken as the characteristic value, di, of the
particle size for that range, which can be expressed as

di = (Di +Di+1)/2 (10)

By substituting di in Equation 10 into Equation 9 instead of ds,
Equation 9 can be rewritten as Equation 11.

Vs = πdi3/6 (11)

Assuming the number of particles within this size range is Ni,
the total surface area, Ai, of all particles can be expressed as

Ai = Niπdi
2 (12)

Frontiers in Materials 06 frontiersin.org

https://doi.org/10.3389/fmats.2025.1600681
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Yu et al. 10.3389/fmats.2025.1600681

TABLE 3 Strain energy density of the specimens under compaction.

Specimen no. Talbot exponent Strain energy density under compaction (kJ·m-3)

2 MPa 4 MPa 8 MPa 12 MPa 16 MPa

1 0.2 74.05 187.59 355.43 519.98 596.77

2 0.4 77.89 204.59 349.39 453.61 614.87

3 0.6 83.37 206.78 351.59 477.74 592.93

4 0.8 87.76 204.59 346.10 494.20 594.03

TABLE 4 Total surface area of the specimens under compaction.

Talbot exponent Total surface area of the specimens (m2)

Initial state 2 MPa 4 MPa 8 MPa 12 MPa 16 MPa

0.2 0.789 1.411 1.692 1.829 1.904 2.092

0.4 0.754 1.416 1.459 1.803 2.010 2.049

0.6 0.720 1.295 1.585 1.690 1.812 1.950

0.8 0.688 1.211 1.452 1.708 1.881 1.927

FIGURE 7
Total surface area vs. axial stress curves.

Thus, the total mass,mi, of particles within this size range can be
expressed as

mi = ρNiπdi
3/6 (13)

where ρ is the density of the gangue particles.
By combining Equations 12, 13, we obtain

Ai = 6mi/ρdi (14)

During the compaction process of the specimens, under a
certain axial stress, σj1, the mass,mi, of gangue particles in each size
range can be obtained through sieving and weighing. Substituting
these values into Equation 14, we obtain the total surface area,
Ai, of gangue particles for that size range. Summing the values
calculated for each size range provides the total surface area of
gangue particles, Aj, in the entire specimen, which can be expressed
by Equation 15.

Aj =
6

∑
1
Ai (15)

Using the data from the previous axial stress, σj−11 , the
increment, ΔAj, in the surface area of gangue particles can
be obtained.

ΔAj = Aj −Aj−1 (16)

Substituting Equation 16 into Equation 7, the energy required to
generate new surfaces during gangue particle breakage, Wj

b, can be
calculated.

Therefore, under axial stress, σj1, the particle crushing energy
consumption, νjb, per unit volume of the specimen can be
expressed by Equation 17

νbj = (
j

∑
1
Wj

b)/Vj (17)

where Vj is the volume of the specimen under axial stress.
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TABLE 5 Particle crushing energy of the specimens under compaction.

Talbot exponent Particle crushing energy under compaction (kJ·m-3)

2 MPa 4 MPa 8 MPa 12 MPa 16 MPa

0.2 5.56 8.77 10.79 12.05 14.29

0.4 5.96 6.97 10.99 13.51 14.35

0.6 5.23 8.64 10.27 11.95 13.75

0.8 4.81 7.68 10.85 13.18 13.96

FIGURE 8
The particle crushing energy vs. axial stress curves.

3 Results

3.1 Deformation properties

Based on the test data of axial stress and axial strain,
the relationship between axial strain and axial stress was
investigated (Figure 5). As observed, the axial strain increased
with the increase in axial stress. The increase in axial strain
consisted of three stages: the rapid increase (0∼2 MPa) stage, the
slow increase (2∼8 MPa) stage, and the slight increase (8∼16 MPa)
stage. During the rapid increase stage, the axial strain increased
quickly by 45.87%–50.97% of the total increment (0∼16 MPa).
During the slight increase stage, the axial strain increased slightly by
12.43%–13.51% of the total increment and tended to become stable.

The relationship between axial strain and axial stress was
approximated by a negative exponential function, and the
correlation coefficients were all above 0.99. The axial strain was
expressed by Equation 18

ε = a(1− e−bσ1) (18)

where ε is the axial strain, σ1 is the axial stress, and a and b are fitting
parameters.

3.2 Particle morphology evolution

To investigate the evolution of particle morphology, the particle
morphology and size measurement method proposed by Yu et al.
was applied (Yu et al., 2020). The “Analyze Particles” function of
ImageJ was employed in this research to calculate themaximum and
minimumFeret’s diameters of each particle.The particle flatness was
then calculated using Equation 2.

Table 2 exhibits the calculated particle flatness (n
= 0.4), and Figure 6 shows the relationship between particle flatness
and axial stress. As seen, the particle flatness varied from 1.38 to 1.75
across different axial stress levels. With the increase of axial stress,
the particle flatness decreased gradually with some fluctuations.
This can be mainly explained by the constant particle breakage
during compaction, leading to the detachment of particle edges and
corners. Hence, the gangue particles becamemore andmore regular
in shape. Interestingly, the particle flatness of gangue particles in
the 0∼2.5 mm range was relatively low and stable as compared to
larger particles, ranging from 1.38 to 1.45. This is mainly because
smaller particles are more regular in shape and less likely to break
again. In contrast, for the gangue particles with diameters of
5∼8 mm, 8∼10 mm, and 10∼12 mm ranges, the particle flatness
values fluctuated significantly, mainly due to random breakage of
larger particles during compaction. Under 16 MPa axial stress, the
particle flatness values ranged from 1.39 to 1.42. The flatness values
of particles in the 0∼2.5 mm, 2.5∼5 mm, and 12∼15 mm ranges
were relatively lower, while those in the 5∼8 mm, 8∼10 mm, and
10∼12 mm ranges were relatively higher.

3.3 Energy dissipation properties

Table 3 exhibits the calculated strain energy density values,
which varied from 74.05 kJ/m3 to 614.87 kJ/m3. When the
compaction started, the specimen structure was loose, with many
voids, low friction between gangue particles, and many particle
edges, making them prone to breakage. Consequently, the energy
consumption for specimen deformationwas low.Thus, the specimen
was easily deformed, and the strain energy density increased
slowly. During the 0∼4 MPa process, axial strain accounted for
69.41%∼73.48% of the total strain, while strain energy density
accounted for only 31.43%∼34.88% of the total increment. As
the compaction progressed, the specimen structure became dense,
featuring close contact among gangue particles, higher friction, and
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FIGURE 9
The relationship between the particle crushing energy and axial strain. (a) n = 0.2 (b) n = 0.4 (c) n = 0.6 (d) n = 0.8.

reduced particle movement and breakage. As a result, significant
energy was required for the specimen to deform.

Table 4 exhibits the calculated total surface area, and Figure 7
shows the relationship between total surface area and axial stress.
As indicated in Figure 7, the total surface area varied from 0.688 m2

to 2.092 m2 and increased monotonically with the increase of the
axial stress. When the axial stress was lower than 4 MPa, the
total surface area increased rapidly, accounting for 54.44%–70.33%
of the total increment. This was observed primarily due to the
particlemorphology in the initial stage of compaction, duringwhich
particles had numerous edges, and some were slender. When the
specimen was compressed, stress concentration easily occurred,
forming large new fracture surfaces.The total surface area increased
slowly between 4 MPa and 16 MPa. However, the initial particle size
distribution (Talbot exponent) had negligible influence on the total
surface area.

Table 5 exhibits the calculated particle crushing energy, and
Figure 8 shows how the particle crushing energy vary with axial
stress. As illustrated in Figure 8, the particle crushing energy varied
from 4.81 kJ/m3 to 14.35 kJ/m3 and increased monotonically with
the increase of the axial stress. The trend in strain energy density
is similar to that of the total surface area and can be divided into
two stages, with 4 MPa as the inflection point: a rapid increase stage
below 4 MPa and a slow increase stage above 4 MPa.

4 Discussion

As illustrated in Figure 9, the relationship between particle
crushing energy νb, and axial strain ε, was approximated by a linear
function, and the correlation coefficients were all above 0.94. The
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FIGURE 10
The ratio between increment in particle crushing energy and
increment in strain energy density.

particle crushing energy was expressed by Equation 19.

νb = a2ε (19)

where a2 is a fitting parameter.
The energy consumption during the compaction of a unit

volume specimen includes particle crushing energy νb, frictional
energy dissipation νf between particles, particle deformation energy
νd, and other forms of energy dissipation νe. Considering the
mutual filling of large and small gangue particles in the specimen
and the absence of significant elastic deformation observed during
the test, νd and νe can be neglected. The energy consumption
during the compaction process mainly includes νb and νf between
particles. Based on the test data, the relationship between the
increment in particle crushing energy and the increment in strain
energy density can be established, as shown in Figure 10. As
indicated in Figure 10, with the increase of the axial stress, the
ratio of particle crushing energy to strain energy density decreased
overall, varying from 0.7% to 7.8%. Within the 0∼2 MPa range,
the increment in particle crushing energy was 5.88%∼7.81% of the
increment in strain energy density. Within the 12∼16 MPa range,
the increment in particle crushing energy was 1.45%∼2.34% of the
strain energy density. This trend suggests that throughout the entire
compaction process, the energy consumed by particle breakage
accounted for a small proportion of the total energy consumption
for specimen deformation.Themajority of energy consumption was
contributed by inter-particle friction. In particular, during the later
stages of compaction, particles became more regular in shape and
breakage primarily occurred in the form of grinding, which requires
less energy.

Asmentioned above, the deformation, particlemorphology, and
energy dissipation properties of gangue particles were obtained, and
the change rules of particle flatness and particle crushing energy
were analyzed.Our results can provide some theory and information
for the further research on materials and technologies to reduce
dynamic hazards in underground mining, such as selection of
backfill materials, optimization of particle gradation, prediction of
surface subsidence and mine pressure hazards.

However, it should be pointed out that in this research, due to
the limitations of test equipment and test scheme, gangue particles
were simplified into spherical particles when calculating the particle
morphology characteristics, and the surface roughness of gangue
particles was not considered.Therefore, the data such as surface area,
volume and crushing energy dissipationwere different from the facts
to some extent. In the following research, high-precision 3D scanner
will be used to accurately scan the morphology parameters of
particles, and the energy dissipation properties during compaction
will be obtained.

5 Conclusion

This research aimed to investigate the compaction behavior of
gangue particles in SWBM using a custom-designed testing system.
Specifically, this study characterized the deformation, particle
morphology, and energy dissipation of gangue particles under
various axial stresses. The key findings of this study are as follows:

1) The relationship between axial strain and axial stress was
approximated by a negative exponential function, with three
stages of axial strain increase: rapid increase (0∼2 MPa), slow
increase (2∼8 MPa), and slight increase (8∼16 MPa).

2) For the specimen (n = 0.4), the particle flatness ranged from
1.38 to 1.75. With the increase of axial stress, the particle
flatness decreased gradually with some fluctuations. Among
them, the flatness of gangue particles in the 0∼2.5 mm range
was relatively small and stable, ranging from 1.38 to 1.45.

3) The total surface area varied from 0.688 m2 to 2.092 m2,
increasing monotonically with the increase of the axial stress.
When the axial stress was lower than 4 MPa, the total surface
area increased rapidly, while the total surface area increased
slowly between 4 MPa and 16 MPa. Besides, the initial particle
size distribution (Talbot exponent) had a negligible impact on
the total surface.

4) The particle crushing energy increased monotonically from
4.81 kJ/m3 to 14.35 kJ/m3 with the increase of the axial stress,
following a similar trend to that of the total surface area and
could be divided into two stages with 4 MPa as the inflection
point. The relationship between particle crushing energy and
axial strain was approximated by a linear function.

5) The ratio between increment in particle crushing energy
and increment in strain energy density ranged from 0.7%
to 7.8% and tended to decrease on the whole. Throughout
the compaction process, particle breakage accounted for
a small proportion of the total energy consumption for
specimen deformation, while inter-particle friction dominated
the energy dissipation process, especially during the later
compaction stages.

The findings of this study highlight the importance of
understanding the compaction behavior of gangue particles in
SWBM, as it can help prevent dynamic hazards and ensure safety
in mining operations. By understanding the importance of the
compaction and energy dissipation properties of backfill materials,
effective measures can be taken to minimize the risk of dynamic
hazards. Ultimately, this knowledge can contribute to a safer and
more sustainable mining industry.
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