
TYPE Original Research
PUBLISHED 30 July 2025
DOI 10.3389/fmats.2025.1601813

OPEN ACCESS

EDITED BY

Geoffrey Robert Mitchell,
Polytechnic Institute of Leiria, Portugal

REVIEWED BY

Amir R. Masoodi,
Ferdowsi University of Mashhad, Iran
Chitaranjan Pany,
Vikram Sarabhai Space Centre, India

*CORRESPONDENCE

Zhenyu Zhou,
zzy660909@126.com

RECEIVED 28 March 2025
ACCEPTED 03 July 2025
PUBLISHED 30 July 2025

CITATION

Zhou Z (2025) Differential quadrature free
vibration analysis of sandwich plates with
curvilinear fiber variable stiffness composite
face sheets.
Front. Mater. 12:1601813.
doi: 10.3389/fmats.2025.1601813

COPYRIGHT

© 2025 Zhou. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Differential quadrature free
vibration analysis of sandwich
plates with curvilinear fiber
variable stiffness composite face
sheets

Zhenyu Zhou*

College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Free vibration calculations of Sandwich plates with curvilinear fiber variable
stiffness composite face sheets usually require a significant computing effort
to obtain a high computational accuracy. An improved approach integrating the
differential quadrature method (DQM) and first-order shear deformation theory
(FSDT) is introduced in this work. The skins of sandwich plates are composed of
one or several layers of variable stiffness composite laminates (VSCL) with fiber
paths assumed to follow a specific linear pattern. The FSDT and von Kármán
strain–displacement relationship were used to derive the governing equations
of the sandwich plate, and DQM was applied to discretize such governing
equations and solve for the fundamental frequency of the sandwich plate.
The computational results were verified and compared with other FSDT–based
computational results, and there was good agreement with the suggested
model. Also, the variation patterns of the natural frequency under different
parameters such as fiber orientation angles, boundary conditions, number of
layers, and core/skin thickness were investigated. The novelty of this study lies
in the first application of an integrated DQM-FSDT approach to the free vibration
analysis of sandwich plates with variable-stiffness curvilinear fiber composites.
Notably, this method attains accuracy comparable to higher-order models (<5%
error) with merely a 19 × 19 mesh. Key results demonstrate that optimizing the
fiber path can enhance the fundamental frequency of VSCL sandwich plates
by up to 32.7% (CFFF boundary), providing an efficient design tool for vibration
control of aerospace lightweight structures.

KEYWORDS

free vibration, sandwich plate, variable stiffness composite laminates, curvilinear fibers,
differential quadrature method

1 Introduction

The high stiffness-to-weight ratio property of VSCL sandwich plates holds significant
promise for their application in lightweight structures, such as aircraft wings, satellite
fairings, and wind turbine blades. Typically, a sandwich construction has three sections:
a top, middle, and bottom segment with a core located in the center and skins at the
top and bottom (Vinson, 1999), where the skins have the same material and thickness
while the core can be made of almost any material or architecture. The face sheets require
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high strength (Carrera and Brischetto, 2009) and the core requires
light weight. Noor et al. (1996) first systematically demonstrated
that sandwich plates have very high stiffness-to-weight ratio and
strength-to-weight ratio properties, and Noor et al. (1996) further
verified the advantages of the mechanical properties of sandwich
plates through computational modelling. Based on these properties,
sandwich plates are widely used in aerospace, automotive and
other engineering applications (Siriruk et al., 2009). Langdon et al.
(2012) specifically investigated the blast resistance of sandwich
plates in marine structures. Osa-uwagboe et al. (2023), on the other
hand, explored the innovative application of sandwich plates in
large structures such as wind turbine blades. Sandwich structures
offer significant advantages, such as high strength-to-weight ratios.
These benefits, coupled with ongoing discoveries of new materials
(Vinson, 2001), drive their continued use in structural design.
The conventional skins of constant stiffness composite laminates
(CSCL) consist of straight fibers whose stiffness, such as elasticity
and flexibility, remains uniform or constant in all directions in
the plane of the material. While VSCL are typically made by
carefully designing and arranging layers of different materials or
by altering the path of reinforcing fibers (curvilinear fiber) in
the construction. Advanced technologies (e.g., automated layup)
enable curved fiber placement by controlling fiber orientation. This
results in continuous variation of fiber angles, as illustrated in
Figure 1. As a result, the variable stiffness composite plate and
shell with curvilinear fiber can be fabricated, as shown in Figure 2.
(Yaman and Önal, 2016) It is obvious that a more flexible method
of increasing a plate’s rigidity can be achieved by using VSCL.
(Setoodeh et al., 2009) Researchers (Akhavan and Ribeiro, 2018)
have recently used theoretical analysis, empirical and semi-empirical
modelling, numerical simulations, and experimental testing to
examine the mechanical properties of sandwich constructions.
Experimental data is typically used to verify themodelling, (Yazdani
and Ribeiro, 2015), while numerical simulations (Antunes et al.,
2020) are preferred for their computational efficiency and rapid
turnaround time.

The foundation for VSCL has been laid by numerous academics
using the statics analysis of CSCL sandwich plates. Kant and
Swaminathan. (2001) have analyzed the fundamental frequency of
CSCL laminates and sandwich plates and the solution method used
is finite element.They used a higher–order refined theory as the basis
for their modelling and as parametric inputs, they systematically
changed the plate thickness, the ratio of core to skin thickness,
and the boundary conditions. Furthermore, their investigation
included a rigorous comparative analysis with established methods
to demonstrate the precision and robustness of their chosen
theory. Yuan and Dawe. (2002) looked at the vibration properties
of conventional sandwich plates that are rectangular in shape,
including the natural frequencies and modes, using the spline finite
strip method and it was concluded that the techniques of single-
plate analysis were not applicable to the structural analysis of most
plate structures. To lower the computational cost in the fundamental
frequency prediction of sandwich plates and composite laminates,
Mantari and Ore. (2015) presented a simplified FSDT. Reducing
the amount of unknowns in the modelling computations allows for
the reduction of the number of degrees of freedom. Comparing
the computational results with those of other computational models
serves as verification of the method’s accuracy. Rezaiee-Pajand and

FIGURE 1
Automatic wire laying machine and curved fiber layers.

FIGURE 2
Variable stiffness composite plates.

Masoodi. (2019) developed a mixed-interpolated triangular shell
element using MITC theory and total Lagrangian formulation,
effectively mitigating shear/membrane locking in buckling/post-
buckling analysis of plates/shells, with novel benchmarks validating
accuracy for complex curved structures.

The advent of advanced technologies ushered in a new
era of VSCL plates and revolutionized the design landscape of
composite plates. By manipulating the fiber orientation, VSCL
plates offer improved mechanical properties by altering the stiffness
distribution. Gürdal and Olmedo, (1993) used a numerical model
to solve static problems such as displacement field and overall
stiffness of VSCL symmetric laminates. They pointed out that by
choosing an appropriate starting and ending angle, the given loading
conditions can be better considered and a certain stiffness can
be achieved or possibly the buckling behavior can be improved.
Lopes et al. (2008) predicted various failure modes of VSCL
plates in compression and simulated the first layer failure in post-
buckling. Finite element modelling was used to predict the physical
failure criteria for different modes of failure of the VSCL plates.
Khani et al. (2011) applied a new solution to incorporate the failure
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criteria for strength into the parameter space of the laminates.
The numerical results showed an increase in strength compared
with the quasi–isotropic construction. Akhavan and Ribeiro. (2011)
analyzed the law of variation of fundamental frequencies and mode
shapes with fiber orientation angles for VSCL laminates, third-order
shear deformation theory (TSDT) was the modelling technique
applied, and p-version finite elementswere employed in the solution.
Through data comparison, they explored some connections that
exist between fiber orientation angles and fundamental frequencies.

Existing research on VSCL plates focuses on statics and has
only investigated their dynamics to a limited extent, which warrants
further research into their dynamics in future studies. Houmat.
(2020) and Hachemi. (2020); Hachemi. (2022) are among the
few scholars who have performed free vibration analysis of VSCL
sandwich plates. The modelling theory used by Houmat is three-
dimensional elasticity theory, while the analysis of Hachemi is
grounded in both layer-wise theory and HSDT. They both chose
p-version finite elements as the solution method. By adjusting
factors including fiber orientation angles, boundary conditions, and
skin-to-core thickness ratios, the variation patterns of fundamental
frequencies as well as other dynamic responses were examined,
highlighting the benefits of VSCL sandwich plates in structural
investigations.

Systems of partial differential equations that typically have
difficult-to-find closed-form solutions characterize engineering
challenges. (Civalek, 2008) Consequently, engineers and researchers
frequently turn to approximative numerical techniques to solve
such systems. These methods include the finite element, the p-
version finite element, the Rayleigh–Ritz methods, the finite volume
method and so on. Pany. (2022) developed a PS-FEM model using
triangular shell elements to estimate wave propagation constants
in line-supported periodic plates, enabling efficient prediction of
bandgap characteristics and multi-span panel frequencies through
propagation surface discretization. Pany and Li. (2023) combined
periodic structure theory with FEM to model wave propagation
in metamaterials and pressurized frames, enabling non-reciprocal
transmission and prestress simulation. Bellman and Casti. (1971)
developed the differential quadrature technique (DQM) for solving
partial differential equations. DQM has the advantage of having
a smaller number of discrete points with higher computational
accuracy. Liu. (2001) utilized Mindlin plate theory as the modelling
theory and applied DQM to the investigation of rectangular plate
buckling. Liew et al. (1996) used DQM to conduct a static study
of a rectangular plate on Winkler’s basis, utilizing FSDT as the
modelling theory. This is the first successful application of DQM
to thick–plate problems. Based on previous work, Liew et al.
(2003) applied the moving least squares differential quadrature
(MLSDQ) to calculate and study the fundamental frequency of
symmetric laminates ofmedium thickness and themodelling theory
is FSDT. The free vibration problem of sandwich plates with
functional grades on an elastic foundation was investigated by
Fu et al. (2020). They employed DQM, and the modelling theory
is NSDT. Ghandehari et al. (2025) modeled temp-dependent CNT-
reinforced nested conical shells via FSDT/GDQM, introducing
elastic interlayers and arbitrary BCs for vibration analysis under
thermal loads.Mottaghi et al. (2025) employed FSDTandHamilton’s
principle for modelling and GDQM for solving, investigating
the free vibration of CNT-reinforced polymer composite rings,

analyzing agglomeration, porosity, and elastic coupling effects.
Innovatively, they developed a novel CBR model, unraveling
multifactor coupling mechanisms. To the best of our knowledge, no
studies have yet applied the DQM to the free vibration analysis of
VSCL sandwich plates modelling by FSDT.

This work proposes an FSDT-based DQM approach to give a
reasonably accurate and computationally cheap computer model
for the free vibration analysis of VSCL sandwich structures. The
plate consists of two VSCL skins and an isotropic core. Based on
the FSDT, the governing equations were derived using the von
Kármán strain–displacement relationship and Hamilton’s principle.
By applying the DQM, the fundamental frequencies of the sandwich
plates were determined numerically, and the impacts of several
parameters on the plate’s vibration behaviour were examined.
Distinguishing from existing studies that mostly use the finite
element method to analyze VSCL structures, this study is the first
to apply the combination of DQM and FSDT to the free vibration
analysis of VSCL sandwich plates with curvilinear fiber.Themethod
significantly reduces the computational cost by reducing the number
of grid points (only 19 × 19 grids are required) while maintaining
comparable accuracy to higher-order models (see Tables 2, 3),
providing a newway for efficient dynamicmodelling under complex
boundary conditions.

This is how the remainder of the paper is structured. The
modelling procedure and analytical method employed are stated in
the second section. In the third section, numerical applications and
discussion, encompassing bothCSCL andVSCL sandwich plates, are
presented. The last section summarizes the conclusions.

2 Theoretical formulation

2.1 Geometric description

Thegeometrical design andparameterization of a sandwichplate
with variable stiffness skins are displayed in Figure 3.The upper and
lower composite skins, every stratum of the skin consisting of single
or laminated composite layerswith curvilinear fibers, with a soft core
in the centre, make up the entire plate, assume that the dimensions
of the plate are a, b, and h, respectively, for length, breadth, and
thickness. The total thickness h can be decomposed into upper and
lower skins hs and intermediate core hc. It is considered that every
interface on the board is flawlessly integrated. Given that the entire
plate consists ofN layers, the thickness of each single layer of the face
sheet is hlayer = 2hs/(N− 1). The entire plate’s Cartesian coordinate
system is specified as 0 ≤ X ≤ a,0 ≤ Y ≤ b,−h/2 ≤ Z ≤ h/2.

To simplify the definition, the point of central symmetry of
the reference path is typically specified to be at the center of each
individual layer of the skin, as illustrated in Figure 3, and the
Cartesian coordinate system is defined as −a/2 ≤ x ≤ a/2,−b/2 ≤
x ≤ b/2,−hlayer/2 ≤ z ≤ hlayer/2. Assuming that the angle of the fiber
direction varies linearly along the x–direction, it is expressed
mathematically in Equation 1: (Akhavan and Ribeiro, 2011):

{{{
{{{
{

θ(x) =
2(Θ1 −Θ0)

a
|x| +Θ0

y′ =
dy
dx
= tan θ(x)

(1)
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FIGURE 3
Geometric configuration and Cartesian coordinate system of the sandwich plate.

FIGURE 4
Schematic representation of the fiber orientation angles.

where, Θ0 is the starting angle of the fiber, characterizing the angle
between the tangent of the fiber curve at the center point and the
x–axis of the relative horizontal line, the fiber’s ending angle, or Θ1,
is the angle formed by the tangent of the fiber curve and the x-
axis of the relative horizontal line at the location where the layer’s
outer boundary is a/2, and a is the plate length. Figure 4 shows the
schematic diagram of the the fiber orientation angles.

Integrating the above equation gives the reference path for the
curvilinear fiber placement as Equation 2:

y(x) =
{{{{
{{{{
{

a
2(Θ1 −Θ0)

{ln(cos Θ0) − ln[cos(
2(Θ1 −Θ0)

a
x+Θ0)]} (0 ≤ x ≤

a
2 )

a
2(Θ0 −Θ1)

{ln(cos Θ0) − ln[cos(
2(Θ0 −Θ1)

a
x+Θ0)]} (−

a
2 ≤ x ≤ 0)

(2)

2.2 Modelling theory

Between the skin and core materials of sandwich plates, there
are significant differences in stiffness and material properties,

making the performance analysis of the sandwich structure
quite intricate. As a result, the calculation model selected has
a significant impact on how accurately the sandwich structure
is calculated. (Pandey and Pradyumna, 2015). Transverse
shear deformation is not taken into account by the classical
laminated plate theory (CLPT), which is predicated on Kirchhoff ’s
assumptions. Therefore, for plates of moderate thickness, CLPT’s
estimates on both static and dynamic analysis are biased.
(Abrate, 2008; Zare et al., 2015; Pushparaj and Suresha, 2016;
Belarbi et al., 2017). For the purpose of this study’s free vibration
analysis of sandwich plates, the author employed the FSDT
modelling theory, (Reddy, 2004), which accounts for the impact
of shear deformation.

In this study, the FSDT theory and the linear part of the
von Kármán strain-displacement relationship [the nonlinear
term is neglected in Equation 4] are used, which is suitable for
the linear analysis of free vibration under small deformations.
Based on the first two assumptions of Kirchhoff (the normal
remains straight and perpendicular to the midplane), this
study ignores the third assumption (ignoring the positive strain
in the thickness direction), and adopts the FSDT theory to
consider the transverse shear deformation. In case a symmetric
sandwich plate is used, the vibrations in the transverse and
in-plane directions are separated by the symmetry in the
z direction, and the in-plane deformation at z = 0 can be
ignored. The displacement field has the following expression as
Equation 3 (Mindlin, 1951).

u(x,y,z, t) = u0(x,y, t) + zφx(x,y, t)

v(x,y,z, t) = v0(x,y, t) + zφy(x,y, t)

w(x,y,z, t) = w0(x,y, t)

(3)

where the displacements along the three coordinate axes
are denoted by u, v, and w, and the midplane of the
plate rotates about the x and y axes at angles φx and φy,
respectively.
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Per the von Kármán strain-displacement relationship, linear
strain components are:

{{{{{{{{{{
{{{{{{{{{{
{

εx
εy
γyz
γxz
γxy

}}}}}}}}}}
}}}}}}}}}}
}

=

{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{
{

∂u0
∂x
+ 1
2
(
∂w0

∂x
)
2

∂v0
∂y
+ 1
2
(
∂v0
∂y
)
2

∂w0

∂y
+φy

∂w0

∂x
+φx

∂u0
∂y
+
∂v0
∂x
+
∂w0

∂x
∂w0

∂y

}}}}}}}}}}}}}}}}}}
}}}}}}}}}}}}}}}}}}
}

+ z

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

∂φx

∂x
∂φy

∂y

0

0
∂φx

∂y
+
∂φy

∂x

}}}}}}}}}}}}}}}
}}}}}}}}}}}}}}}
}

(4)

Applying Hooke’s law and assuming plane stress, the stress
components of the plate areas are obtained in the following way:

{{{{{{{{{{
{{{{{{{{{{
{

σx
σy
τxy
τxz
τyz

}}}}}}}}}}
}}}}}}}}}}
}

=

[[[[[[[[[[

[

Q11 Q12 Q16 0 0

Q12 Q22 Q62 0 0

Q61 Q26 Q66 0 0

0 0 0 Q55 Q54

0 0 0 Q45 Q44

]]]]]]]]]]

]

{{{{{{{{{{
{{{{{{{{{{
{

εx
εy
γxy
γxz
γyz

}}}}}}}}}}
}}}}}}}}}}
}

(5)

where Qij are given in the following way:

[Q] =
[[[[

[

Q11 Q12 Q16

Q21 Q22 Q62

Q61 Q26 Q66

]]]]

]

= [Tσ]
[[[[

[

Q11 Q12 0

Q21 Q22 0

0 0 Q66

]]]]

]

[Tσ]
T

[Qs] = [

[

Q55 Q54

Q45 Q44

]

]
= [T s][

[

Q55 0

0 Q44

]

]
[T s]

T

[Tσ] =
[[[[

[

cos2 θ sin2 θ −2 sin θ cos θ

sin2 θ cos2 θ 2 sin θ cos θ

sin θ cos θ − sin θ cos θ cos2 θ− sin2 θ

]]]]

]

[T s] = [

[

cos θ sin θ

− sin θ cos θ
]

]

(6)

where

Q11 =
E1

1− ν12ν21
,Q22 =

E2
1− ν12ν21

,Q12 =
ν21E1

1− ν12ν21
,

Q66 = G12 ,Q55 = kG13,Q44 = kG23 

(7)

where Ei, Gij, and νij are the mechanical properties and k =
5/6 is the shear correction factor used in this study. The shear
correction factor k = 5/6 is derived from the Reissner energy
consistency criterion (Birman and Bert, 2002), applicable under the
assumption of a quadratic distribution of transverse shear stresses
for homogeneous or symmetric sandwich cross-sections.

Hamilton’s principle can be used to generate the moving
equations in the following way: (Reddy, 2004):

∫
t2

t1
δ(U−T)dt = 0 (8)

where U is the strain form and T is the kinetic form of energy,
respectively.

The strain energy can be shown in the following way:

U =∭
V

1
2
(σxεx + σyεy + σzεz + τxyγxy + σyzγyz + τxzγxz)dV (9)

The kinetic energy can be shown in the following way:

T =∭
V

1
2
ρ(z)[(∂u

∂t
)
2
+(∂v

∂t
)
2
+(∂w

∂t
)
2
]dV (10)

The moving equations for the sandwich plate’s free vibration
may be acquired by substituting Equations 4,–7,9,10 into
Equation 8:

{{{{{{{{{{
{{{{{{{{{{
{

∂Qx

∂x
+
∂Qy

∂y
= I0

∂2w
∂t2

∂Mx

∂x
+
∂Mxy

∂y
−Qx = I2

∂2φx
∂t2

∂My

∂y
+
∂Mxy

∂x
−Qy = I2

∂2φy
∂t2

, (11)

where Ii = ∫
h
2

− h
2

ρzidz, i = 0,2.

2.3 Equation of motion

The stress resultants Mij and transverse shear force Qij can be
determined by integrating the stresses in each single layer along the
direction of thickness.

{{{{
{{{{
{

Mx

My

Mxy

}}}}
}}}}
}

= ∫
h
2

− h
2

z
{{{{
{{{{
{

σx
σy
τxy

}}}}
}}}}
}

dz =
[[[[

[

D11 D12 D16

D12 D22 D26

D16 D26 D66

]]]]

]

{{{{{{{{{
{{{{{{{{{
{

∂φx
∂x
∂φy
∂y

∂φx
∂y
+
∂φy
∂x

}}}}}}}}}
}}}}}}}}}
}

,

{
{
{

Qy

Qx

}
}
}
= ∫

h
2

− h
2

{
{
{

τyz
τxz

}
}
}
dz = [

[

A44 A45

A45 A55

]

]

{{{
{{{
{

φy +
∂w
∂y

φx +
∂w
∂x

}}}
}}}
}

,

(12)

Equation 11 can be substituted with Equation 12 to assemble the
following formulations for the governing equations of the sandwich
plate’s free vibration.

A55(
∂φx

∂x
+ ∂

2w
∂x2
)+A45(

∂φy

∂x
+
∂φx

∂y
+ 2 ∂2w

∂x∂y
)+A44(

∂φy

∂y
+ ∂

2w
∂y2
) = I0

∂2w
∂t2
, (13)

D11
∂2φx
∂x2
+D12

∂2φy
∂x∂y +D16(2

∂2φx
∂x∂y +

∂2φy

∂x2
)+D26

∂2φy

∂y2
+D66(

∂2φx
∂y2
+
∂2φy
∂x∂y)

−A55(φx +
∂w
∂x
)−A45(φy +

∂w
∂y
) = I2

∂2φx

∂t2
,

(14)

D16
∂2φx
∂x2
+D66(

∂2φx
∂x∂y +

∂2φy

∂x2
)+D12

∂2φx
∂x∂y +D22

∂2φy

∂y2
+D26(

∂2φx
∂y2
+ 2

∂2φy
∂x∂y)

−A45(φx +
∂w
∂x
)−A44(φy +

∂w
∂y
) = I2

∂2φy

∂t2
(15)
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FIGURE 5
Definition of boundary conditions for sandwich plates: (a) CSCS; (b) CFCF; (c) CFFF.

where Aij and Dij are the stretching and bending stiffnesses,
respectively, and the expressions are given in Equation 16.

Aij =
n

∑
k=1
(Qij)k(zk − zk−1)

Dij =
1
3

n

∑
k=1
(Qij)k(z

3
k − z

3
k−1)

(16)

Aij are stiffness coefficients related to internal forces and
midplane strains only, collectively referred to as stretching stiffness.
Dij are stiffness coefficients related to internal moments with respect
to curvature and twist rate, collectively referred to as bending
stiffness.

2.4 Differential quadrature method

DQM is essentially a differential equation in the function at each
node of the derivative with the calculation of the region of all nodes
at the function value of the weighted sum to replace. (Bellman and
Casti, 1971). The required differential equation’s numerical solution
can be found in the resultant system of equations.This is how DQM
transforms the differential equation solution problem into the linear
equation system solving problem. (Shu et al., 2002; 2004; Thai et al.,
2014; Malikan and Far, 2018). Supplementary Appendix SI provides
the specific implementation of this technique.

To simplify the calculation, for the DQM discretization of the
moving equations, the expressions for the weighting coefficients
were obtained:

A(1)ij =
A(1)ij
a
, B(1)ij =

B(1)ij
b
, A(2)ij =

A(2)ij
a2
, B(2)ij =

B(2)ij
b2

(17)

The separating variables for the displacement terms (w, φx, and
φy) can be written in the following way:

w(x,y, t) =W(x,y)eiωt,φx(x,y, t) = ψy(x,y)e
iωt,φy(x,y, t) = ψy(x,y)e

iωt (18)

where W(x,y) is the vibration mode function, φx and φy are the
rotational angles functions and ω is the fundamental frequency of
the sandwich plate.

To facilitate subsequent calculations and comparisons, the
data are dimensionless as follows:

FIGURE 6
DQM implementation flowchart for free vibration analysis of VSCL
sandwich plates.
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TABLE 1 Mechanical properties of the materials.

Material ID Material
name

E1 (GPa) E2 (GPa) G12 (GPa) G13 (GPa) G23 (GPa) ν12 ρ(kg/m3)

Face sheets
I Carbon/Epoxy 131 10.34 6.895 6.205 6.895 0.22 1,627

II Carbon/Epoxy 138 8.96 7.1 7.1 7.1 0.30 1800

Core

III Polyurethane foam 6.89 × 10−3 6.89 × 10−3 3.45 × 10−3 3.45 × 10−3 3.45 × 10−3 0.30 97

IV PVC foam 0.04 0.04 0.016 0.016 0.06 0.25 100

V Balsa wood 0.104 0.104 0.05 0.05 0.05 0.32 130

VI Aluminum
honeycomb

0.057 0.328 0.056 1.115 2.2 × 10−3 0.406 335.762

FIGURE 7
First three orders of natural frequency with the increase of grid points.
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(19)

where D110 represents D11(x) at x = 0 and A440 represents A44(x) at
x = 0.

Substituting Equations 17–19 into Equations 13–15 and
performing a DQM discretization, the governing equations can
be shown as follows:

A55(ξi)
Nx

∑
m=1

A(2)imWmj +A44(ξi)
Ny

∑
n=1

B(2)jn Win + 2A45(ξi)
Nx
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(20)
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(22)

where
Wij =W(ξi,ηj),ψx,ij = ψx(ξi,ηj),ψy,ij = ψy(ξi,ηj) (23)

To simplify the calculation, Equations 20–22 can be stated more
succinctly as Equations 24 or 25:

[[[[

[

K1,W K1,ψx K1,ψy

K2,W K2,ψx K2,ψy

K3,W K3,ψx K3,ψy

]]]]

]

{{{{
{{{{
{

W

ψx

ψy

}}}}
}}}}
}

= −ω2[[[[

[

I0 0 0

0 I2 0

0 0 I2

]]]]

]

{{{{
{{{{
{

W

ψx

ψy

}}}}
}}}}
}

(24)

or
[K]{R} = −ω2[I]{R}, {R} = {{W}T{ψx}T{ψy}T}T (25)

Similarly, the boundary conditions can be derived
by discretization using the DQM

{T}{R} = {0} (26)
The solution of the specificmatrix {T} is given in the next section.
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TABLE 2 The dimensionless fundamental frequency of anti–symmetric [0/90/core/0/90] sandwich plate (a/b = 1, tc/tf = 10).

a/h Methods

Ref(Kant and Swaminathan, 2001) Ref (Mantari and Ore, 2015) Ref (Whitney and Pagano, 1970) Present

2 5.2017 5.6114 5.6114 5.3246

4 9.0312 9.5447 9.5447 9.2547

10 13.8694 14.1454 14.1454 14.2559

20 15.5295 15.6124 15.6124 15.6742

30 15.9155 15.9438 15.9438 15.8596

40 16.0577 16.0655 16.0655 16.0028

50 16.1264 16.1229 16.1229 16.1256

60 16.1612 16.1544 16.1544 16.1698

70 16.1845 16.1735 16.1735 16.1752

80 16.1991 16.1859 16.1859 16.1872

90 16.2077 16.1944 16.1944 16.1966

100 16.2175 16.2006 16.2006 16.2369

TABLE 3 The dimensionless fundamental frequency of anti–symmetric [0/90/core/0/90] sandwich plate (tc/tf = 10, a/h = 10).

a/b Methods

Ref (Kant and Swaminathan, 2001) Ref (Mantari and Ore, 2015) Ref (Whitney and Pagano, 1970) Present

0.5 39.4840 40.3559 40.1511 40.2645

1 13.8694 14.1454 14.1454 14.2559

1.5 9.4910 9.8376 9.7826 9.3789

2 10.1655 8.0759 7.9863 8.1679

2.5 6.5059 6.9340 6.8463 6.9473

3 5.6588 6.0727 5.9993 6.0227

5 3.6841 3.9929 3.9658 4.0763

To find the basic frequencies, or eigenvalues, and the
accompanying eigenvectors, all mesh points were divided into
two groups: internal domain points and boundary points. The
boundary points, indicated by {b} in vector form, are situated at the
plate’s four edges. The domain points are the set of all remaining
interior points and are denoted by {d}. Boundary conditions
are substituted into the governing equations. The resulting
system is then divided and rearranged into the following matrix
equation:

[

[

Kbb Kbd

Kdb Kdd

]

]

{
{
{

Rb

Rd

}
}
}
= −ω2{
{
{

0

Rd

}
}
}

(27)

By eliminating the non–zero element {Rb}, Equation 27 can be
shown in the following way:

(K −ω2){Rd} = 0 (28)
where K = Kdd −KdbKbb

−1Kbd . The fundamental frequencies and
amplitudes of the plate can be determined by solving Equation (28)
using the standard eigenvalue matrix.

2.5 Boundary conditions

This study covers five types of boundary conditions: four-
side clamped support (CCCC), four-side simply support (SSSS),
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TABLE 4 Comparative study of the first four orders of the natural frequency of the VSCL plate.

[<Θ0, Θ1>] Boundary conditions Method Mode

1 2 3 4

[<0, 52>] CCCC

Present 68.428 132.785 134.836 206.419

Hachemi (2020) 70.759 134.180 135.917 207.917

Hachemi et al. (2020) 70.76 134.180 135.920 207.920

[<0, 50>] SSSS

Present 42.587 95.179 96.274 158.179

Hachemi (2020) 45.259 96.156 98.511 159.112

Hachemi et al. (2020) 45.260 96.160 98.510 159.110

[<0, 35>] SFFC

Present 7.923 28.571 70.576 71.891

Hachemi (2020) 8.144 29.578 71.339 72.236

Hachemi et al. (2020) 8.140 29.580 71.270 72.230

[<0, 45>] FCSC

Present 43.271 71.025 120.852 124.932

Hachemi (2020) 44.931 71.638 121.091 125.784

Hachemi et al. (2020) 44.930 71.640 121.090 125.780

The difference between the results and the reference stems from the fact that the reference used layer-wise theory (LWT) to accurately describe the deformation in the thickness direction,
whereas the present study used FSDT to simplify the model, resulting in a deviation of ≤4.8% in the calculation of the higher-order modes.

TABLE 5 First and second natural frequencies of the VSCL sandwich
square plate [±⟨Θ0|Θ1⟩s/core/ ± ⟨Θ0|Θ1⟩s], material II and
material IV, CCCC.

Mode Θ0 Θ1

0 10 30 50 70 90

1

0 6.9527 6.9507 6.9469 6.9353 6.9234 6.9187

10 6.9567 6.9714 6.9709 6.9563 6.9507 6.9457

30 7.0264 7.0402 7.0410 7.0154 6.9912 6.9542

50 9.3974 7.1262 7.1094 7.0565 7.0051 6.9721

70 7.1675 7.1753 7.1462 7.0852 7.0095 6.9871

90 7.0478 7.0756 7.0947 7.0678 7.0145 6.9923

2

0 8.9047 8.9219 8.9851 9.0576 9.1216 9.1347

10 8.9209 8.9581 9.0495 9.1234 9.1876 9.2137

30 9.0898 9.1422 9.2457 9.3088 9.2852 9.2943

50 9.3519 9.4053 9.4747 9.3883 9.2260 9.2127

70 9.5884 9.6095 9.4978 9.2751 9.0877 9.0622

90 9.9746 9.9823 9.9946 9.8496 9.0347 9.0014

TABLE 6 First and second natural frequencies of the VSCL sandwich
square plate [±⟨Θ0|Θ1⟩s/core/ ± ⟨Θ0|Θ1⟩s], material II and
material IV, SSSS.

Mode Θ0 Θ 1

0 10 30 50 70 90

1

0 6.3067 6.3409 6.4822 6.5774 6.5977 6.6124

10 6.3272 6.3885 6.5296 6.6102 6.6269 6.6314

30 6.4312 6.5006 6.6158 6.6561 6.6488 6.6572

50 6.5537 6.5946 6.6688 6.6735 6.6101 6.6016

70 6.5528 6.5856 6.6296 6.6106 6.5174 6.4174

90 6.4736 6.5469 6.6026 6.5863 6.4936 6.4247

2

0 8.3372 8.3594 8.4891 8.6027 8.6967 8.7246

10 8.3577 8.4062 8.5464 8.6607 8.7622 8.8451

30 8.5293 8.601 8.7364 8.8492 8.8618 8.8924

50 8.7891 8.8465 8.9353 8.9003 8.7389 8.7137

70 8.9093 8.9362 8.8803 8.7339 8.5645 8.4547

90 9.3178 9.3267 9.3756 9.3149 8.9146 8.8472

Frontiers in Materials 09 frontiersin.org

https://doi.org/10.3389/fmats.2025.1601813
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Zhou 10.3389/fmats.2025.1601813

TABLE 7 First and second natural frequencies of the VSCL sandwich
square plate [±⟨Θ0|Θ1⟩s/core/ ± ⟨Θ0|Θ1⟩s], material II and
material VI, CCCC.

Mode Θ0 Θ1

0 10 30 50 70 90

1

0 11.0793 11.0781 11.0697 11.0648 11.0453 11.0357

10 11.0771 11.0953 11.0914 11.0766 11.0756 11.0714

30 11.1549 11.1668 11.1625 11.1398 11.1157 11.1047

50 13.5267 11.2479 11.2376 11.1803 11.1316 11.1243

70 11.2943 11.1749 11.3022 11.2033 11.2733 11.3478

90 11.2223 11.2055 11.1914 11.1375 11.1398 11.2047

2

0 36.0282 36.0495 36.1104 36.1777 36.2433 36.2647

10 36.0492 36.0856 36.1773 36.2468 36.3136 36.3224

30 36.2157 36.266 36.3757 36.4304 36.4078 36.3924

50 36.4774 36.5317 36.5965 36.5162 36.3525 36.2176

70 36.7176 37.0954 36.7352 37.1054 36.6247 36.7341

90 37.1175 36.3956 36.9743 36.2134 36.1622 36.1527

TABLE 8 First and second natural frequencies of the VSCL sandwich
square plate [±⟨Θ0|Θ1⟩s/core/ ± ⟨Θ0|Θ1⟩s], material II and
material VI, SSSS.

Mode Θ0 Θ1

0 10 30 50 70 90

1

0 10.4352 10.4633 10.6112 10.7011 10.7187 10.7231

10 10.4534 10.5097 10.6595 10.7313 10.7482 10.7513

30 10.5547 10.6224 10.7407 10.7839 10.7782 10.7924

50 10.6788 10.7174 10.7937 10.7974 10.7397 10.8043

70 10.6768 10.7098 10.7523 10.7334 10.6432 10.6243

90 10.5944 10.6674 10.7316 10.7103 10.6142 10.5378

2

0 35.4595 35.4859 35.6165 35.7305 35.8212 35.8934

10 35.4812 35.5335 35.6683 35.7815 35.8853 35.9136

30 35.6575 35.7275 35.8633 35.9785 35.9869 36.0034

50 35.9093 35.9717 36.0571 36.0281 35.8644 35.9436

70 36.0297 36.0617 36.0074 35.8588 35.6927 35.6219

90 36.4395 36.4497 36.5019 36.4393 36.0425 35.9547

TABLE 9 The first two natural frequencies of the VSCL sandwich square
plate [⟨Θ0|Θ1⟩/core/⟨Θ0|Θ1⟩], CCCC.

Mode Θ0 Θ1

0 30 50 70

1

0 39.6473 39.6247 39.6030 39.5948

30 39.6313 39.3563 39.3423 39.3246

50 39.5363 39.3478 39.2798 39.2636

70 39.6216 39.5347 39.4298 39.4889

2

0 58.9473 59.7766 60.8274 61.2839

30 58.8647 59.5879 59.3649 59.3278

50 58.8897 59.8846 59.8808 59.2867

70 58.9146 59.9078 59.2678 59.2475

Bold indicates straight fiber layups with equal starting and ending angles.

TABLE 10 The first two natural frequencies of the VSCL sandwich square
plate [⟨Θ0|Θ1⟩/core/⟨Θ0|Θ1⟩], SSSS.

Mode Θ0 Θ1

0 30 50 70

1

0 34.2142 35.0553 35.9351 35.1028

30 34.1379 35.6275 35.9874 35.1498

50 34.2378 35.4367 36.0994 35.7698

70 34.5134 35.4793 35.8569 34.9646

2

0 54.0617 55.2244 56.8894 58.1559

30 54.0024 56.2285 56.9712 57.1236

50 54.3478 56.4783 57.0087 56.2863

70 54.7369 56.8923 55.8963 55.1944

Bold indicates straight fiber layups with equal starting and ending angles.

opposite-side clamped support-simply support (CSCS), opposite-
side clamped support-free (CFCF), and three-side clamped support-
free on one side (CFFF), whose mathematical expressions are
presented in Equations 29–31. Figure 5 Illustrates the constraint
schematics of CSCS, CFCF and CFFF.

The following are the boundary condition phrases for each edge.

(a) Clamped (C)

w = φx = φy = 0, x = 0 or x = 1 (y = 0 or y = 1), (29)

(b) Simply supported (S)
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TABLE 11 The first two natural frequencies of the VSCL sandwich square
plate [⟨Θ0|Θ1⟩/core/⟨Θ0|Θ1⟩], CSCS.

Mode Θ0 Θ1

0 30 50 70

1

0 37.5031 37.8185 38.4084 37.9751

30 37.4231 37.3931 37.3647 37.2168

50 37.3895 37.3678 37.3476 37.1678

70 37.2336 37.1436 37.0247 36.8877

2

0 57.8964 58.7024 60.1376 58.7718

30 57.6423 58.3142 59.1235 57.9871

50 57.1278 58.1756 57.8934 57.9923

70 56.5671 56.2726 56.3179 56.1968

Bold indicates straight fiber layups with equal starting and ending angles.

TABLE 12 The first two natural frequencies of the VSCL sandwich square
plate [⟨Θ0|Θ1⟩/core/⟨Θ0|Θ1⟩], CFCF.

Mode Θ0 Θ1

0 30 50 70

1

0 25.3726 25.8954 27.2084 29.2269

30 25.7569 26.5778 27.5736 29.7863

50 26.7126 27.1244 28.5534 29.9713

70 28.5698 28.9347 29.5431 30.5653

2

0 31.2536 31.9102 33.0809 34.7477

30 31.8534 33.8788 34.1746 34.3478

50 32.4782 34.2378 34.3559 34.6023

70 33.4789 34.2478 34.4823 34.6283

Bold indicates straight fiber layups with equal starting and ending angles.

w = φy =
∂φx
x
= 0, x = 0 or x = 1,

w = φx =
∂φy
y
= 0, y = 0 or y = 1,

(30)

(c) Free (F)

Qx =Mx =Mxy = 0, x = 0, or x = 1,

Qx =My =Mxy = 0, y = 0, or y = 1,
(31)

TABLE 13 The first two natural frequencies of the VSCL sandwich square
plate [⟨Θ0|Θ1⟩/core/⟨Θ0|Θ1⟩], CFFF.

Mode Θ0 Θ1

0 30 50 70

1

0 8.5298 8.7551 9.4121 11.3263

30 9.1572 9.2474 10.0278 11.5621

50 10.5317 10.6781 10.8187 12.4623

70 12.2578 12.6712 12.9152 13.2824

2

0 16.6078 17.0308 17.8546 19.3829

30 17.8254 18.3633 18.9512 19.4782

50 18.2756 18.4278 19.6162 19.5172

70 18.5627 18.6785 18.9245 19.1076

Bold indicates straight fiber layups with equal starting and ending angles.

Substituting Equation 12 into Equation 31, gives the
following Equation 32:

A45(φy +
∂w
∂y
)+A55(φx +

∂w
∂x
) = 0,

D11
∂φx
∂x
+D12

∂φy
∂y
+D16(

∂φx
∂y
+
∂φy
∂x
) = 0,

D16
∂φx
∂x
+D22

∂φy
∂y
+D66(

∂φx
∂y
+
∂φy
∂x
) = 0,x = 0 or x = 1,

A44(φy +
∂w
∂y
)+A45(φx +

∂w
∂x
) = 0,

D12
∂φx
∂x
+D22

∂φy
∂y
+D26(

∂φx
∂y
+
∂φy
∂x
) = 0,

D16
∂φx
∂x
+D22

∂φy
∂y
+D66(

∂φx
∂y
+
∂φy
∂x
) = 0, y = 0 or y = 1,

(32)

Equations 29–31 can be combined to express the boundary
conditions for a sandwich plate with hybrid boundary
conditions.

After applying the DQM to discretize the above equations, the
following Equations 33–35 can be got.

(a) Clamped

W(ξ1,ηj) =W(ξNx
,ηj) =W(ξi,η1) =W(ξi,ηNy

) = 0,

ψx(ξ1,ηj) = ψx(ξNx
,ηj) = ψx(ξi,η1) = ψx(ξi,ηNy

) = 0,

ψy(ξ1,ηj) = ψy(ξNx
,ηj) = ψy(ξi,η1) = ψy(ξi,ηNy

) = 0, ξ = 0,1 or η = 0,1
(33)
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TABLE 14 The first four natural frequencies of the VSCL and CSCL
sandwich square plate [±⟨Θ0|Θ1⟩/core/ ± ⟨Θ0|Θ1⟩], CCCC.

Face
sheets

±<Θ0|Θ1> Mode

1 2 3 4

CSCL

<0|0> 39.6465 58.9464 65.5382 79.5688

±<10|10> 39.7633 59.4381 65.2119 79.8171

±<20|20> 40.2143 60.7233 64.8844 80.4201

±<30|30> 40.7764 62.2097 64.6121 80.9608

±<40|40> 41.1206 63.3955 64.1663 81.2667

±<50|50> 41.1286 63.3893 64.1589 81.2711

±<60|60> 40.7783 62.2134 64.6091 80.9550

±<70|70> 40.2143 60.7233 64.8844 80.4201

±<80|80> 39.7633 59.4381 65.2119 79.8171

±<90|90> 39.6465 58.9464 65.5382 79.5688

VSCL

<0|0> 39.6465 58.9464 65.5382 79.5688

±<0|10> 39.5995 59.0649 65.1865 79.4612

±<0|20> 39.6158 59.4321 64.7485 79.4525

±<0|30> 39.7611 59.9688 64.4655 79.6308

±<0|40> 39.9594 60.5895 64.2308 79.8756

±<0|50> 40.1837 61.2613 63.9596 80.1436

±<0|60> 40.4192 62.0193 63.5153 80.4052

±<0|70> 40.5387 62.6344 62.9034 80.5004

±<0|80> 40.6371 62.9314 63.5687 80.6479

±<0|90> 40.9426 63.2478 63.9742 80.9412

(b) Simply supported

W(ξ1,ηj) =W(ξNx
,ηj) = 0,

ψy(ξ1,ηj) = ψy(ξNx
,ηj) = 0,

Nx

∑
m=1

Aimψx(ξm,ηj) = 0,ξ = 0,1,

W(ξi,η1) =W(ξi,ηNy
) = 0,

ψx(ξi,η1) = ψx(ξi,ηNy
) = 0,

Ny

∑
n=1

Bjnψy(ξi,ηn) = 0,η = 0,1

(34)

(c) Free

TABLE 15 The first four natural frequencies of the VSCL and CSCL
sandwich square plate [±⟨Θ0|Θ1⟩/core/ ± ⟨Θ0|Θ1⟩], SSSS.

Face
sheets

±<Θ0|Θ1> Mode

1 2 3 4

CSCL

<0|0> 34.2107 54.0555 61.2997 74.7633

±<10|10> 35.0924 55.0091 61.6123 75.6645

±<20|20> 36.6785 56.8276 62.1063 77.1309

±<30|30> 37.9304 58.8233 62.2413 78.1959

±<40|40> 38.5861 60.7359 61.8691 78.8032

±<50|50> 38.5955 60.7358 61.8698 78.8023

±<60|60> 37.9282 58.8248 62.2369 78.1875

±<70|70> 36.6879 56.8271 62.1069 77.1257

±<80|80> 35.0924 55.0091 61.6123 75.6645

±<90|90> 34.2107 54.0555 61.2997 74.7633

VSCL

<0|0> 34.2107 54.0555 61.2997 74.7633

±<0|10> 34.6226 54.4466 61.4801 75.1274

±<0|20> 35.4858 55.2652 61.8013 75.7836

±<0|30> 36.3912 56.1253 62.0164 76.4088

±<0|40> 37.1433 56.8983 62.0999 76.9914

±<0|50> 37.7003 57.7874 61.9965 77.5991

±<0|60> 38.0251 59.0446 61.4271 78.0214

±<0|70> 37.8989 59.7674 60.3035 77.7714

±<0|80> 38.3278 60.0235 60.7468 78.3712

±<0|90> 38.7412 60.7456 60.9312 78.9178

A45(ξi)(ψy,mn +
Ny

∑
n=1

B(1)jn Win)+A55(ξi)(ψx,mn +
Nx
∑
m=1

A(1)imWmj) = 0,

D11(ξi)
Nx
∑
m=1

A(1)imψx,mj +D12(ξi)
Ny

∑
n=1

B(1)jn ψy,in +D16(ξi)(
Ny

∑
n=1

B(1)jn ψx,in +
Nx
∑
m=1

A(1)imψy,mj) = 0,

D16(ξi)
Nx
∑
m=1

A(1)imψx,mj +D26(ξi)
Ny

∑
n=1

B(1)jn ψy,in +D66(ξi)(
Ny

∑
n=1

B(1)jn ψx,in +
Nx
∑
m=1

A(1)imψy,mj) = 0,

ξ = 0,or ξ = 1,

A44(ξi)(ψy,mn +
Ny

∑
n=1

B(1)jn Win)+A45(ξi)(ψx,mn +
Nx
∑
m=1

A(1)imWmj) = 0,

D12(ξi)
Nx
∑
m=1

A(1)imψx,mj +D22(ξi)
Ny

∑
n=1

B(1)jn ψy,in +D26(ξi)(
Ny

∑
n=1

B(1)jn ψx,in +
Nx
∑
m=1

A(1)imψy,mj) = 0,

D16(ξi)
Nx
∑
m=1

A(1)imψx,mj +D26(ξi)
Ny

∑
n=1

B(1)jn ψy,in +D66(ξi)(
Ny

∑
n=1

B(1)jn ψx,in +
Nx
∑
m=1

A(1)imψy,mj) = 0,

η = 0,or η = 1,
(35)
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TABLE 16 The first four natural frequencies of the VSCL and CSCL
sandwich square plate [±⟨Θ0|Θ1⟩/core/ ± ⟨Θ0|Θ1⟩], CSCS.

Face
sheets

±<Θ0|Θ1> Mode

1 2 3 4

CSCL

<0|0> 37.5024 57.8947 62.3989 77.0217

±<10|10> 37.8793 58.6101 62.5111 77.6454

±<20|20> 38.6935 60.1009 62.6884 78.6969

±<30|30> 39.4105 61.7087 62.6701 79.5307

±<40|40> 39.6738 62.2541 63.0058 79.9913

±<50|50> 39.4414 61.2449 63.7949 79.9937

±<60|60> 38.8023 59.6105 64.2041 79.5934

±<70|70> 37.8323 57.5893 64.3516 78.8537

±<80|80> 37.5264 57.1583 64.1025 78.4527

±<90|90> 37.2354 56.8524 63.9412 78.0278

VSCL

<0|0> 37.5024 57.8947 62.3989 77.0217

±<0|10> 37.6643 58.1857 62.4688 77.2209

±<0|20> 38.0344 58.8009 62.5795 77.6296

±<0|30> 38.4568 59.4867 62.6558 78.0703

±<0|40> 38.8543 60.1697 62.6324 78.5416

±<0|50> 39.1992 60.9189 62.4429 79.0081

±<0|60> 39.3641 61.7311 61.8114 79.2853

±<0|70> 39.0592 60.2489 62.5273 79.1059

±<0|80> 38.8257 59.5672 62.0147 78.8521

±<0|90> 38.5178 59.1782 61.6871 78.2347

In this way, the specific matrix {T} in Equation 26 can be
calculated.

Figure 6 illustrates the solution procedure of the Differential
Quadrature Method (DQM). The core concept involves replacing
differential operations with a weighted summation of grid
points (see Supplementary Appendix SI), significantly reducing
computational dimensionality. By implementing the flowchart
in MATLAB, the natural frequencies of sandwich plates can be
effectively determined.

3 Results and discussion

3.1 Validation and convergence studies

The validation and convergence investigations of the free
vibration forVSCL sandwich plates using theDQMsolutionmethod

TABLE 17 The first four natural frequencies of the VSCL and CSCL
sandwich square plate [±⟨Θ0|Θ1⟩/core/ ± ⟨Θ0|Θ1⟩], CFCF.

Face
sheets

±<Θ0|Θ1> Mode

1 2 3 4

CSCL

<0|0> 25.3703 31.2492 49.9557 56.6619

±<10|10> 25.5619 32.7302 50.2086 57.8003

±<20|20> 26.2851 35.1405 51.1297 59.5543

±<30|30> 27.5682 36.7949 52.8277 60.5013

±<40|40> 28.8566 37.6394 54.8188 59.5414

±<50|50> 29.7612 37.8786 56.4734 58.0694

±<60|60> 30.3433 37.5588 56.1658 57.6965

±<70|70> 25.3733 31.2523 49.9548 56.6652

±<80|80> 25.1247 31.0247 49.2178 56.1247

±<90|90> 25.0147 30.8563 48.3578 55.2357

VSCL

<0|0> 25.3703 31.2492 49.9557 56.6619

±<0|10> 25.4315 31.5943 50.0411 56.9475

±<0|20> 25.6361 32.3863 50.2951 57.6348

±<0|30> 26.0476 33.3245 50.7796 58.5386

±<0|40> 26.7302 34.2974 51.5551 59.6346

±<0|50> 27.6357 35.2767 52.7227 60.9147

±<0|60> 28.6174 36.2144 54.3692 60.8805

±<0|70> 29.5493 36.8882 56.2009 59.7979

±<0|80> 29.8971 37.2567 58.1478 60.8941

±<0|90> 30.4526 37.8924 59.8654 61.7891

are provided in this part. By comparing the results with other FSDT-
based numerical solution solutions for currently available CSCL
sandwich plates, the quantity of DQM grid points was ascertained.

Since the skins of a sandwich structure provides the main
load-carrying capacity, the core transfers the load between the
skins. Therefore, in terms of material selection, skins are usually
made of high-strength and lightweight materials, while the core
is selected as a flexible layer with low density and good energy
absorption capability. In the selection of skins and cores for aircraft
and spacecraft, aluminum alloys, carbon fibers, and glass fibers
are usually chosen as skin materials, while the core can be made
of solid low-density materials, honeycomb-like expanded high-
density materials, and corrugated expanded high-density materials.
Based on the above requirements, the Mechanical properties of the
materials selected for this work are listed in Table 1. In the study,
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TABLE 18 The first four natural frequencies of the VSCL and CSCL
sandwich square plate [±⟨Θ0|Θ1⟩/core/ ± ⟨Θ0|Θ1⟩], CFFF.

Face
sheets

±<Θ0|Θ1> Mode

1 2 3 4

CSCL

<0|0> 8.5282 16.5998 27.9785 30.2843

±<10|10> 8.6335 18.0326 28.2266 31.9156

±<20|20> 9.0336 20.3567 29.0842 35.0327

±<30|30> 9.8914 21.9399 30.6438 39.7197

±<40|40> 11.1856 22.6782 32.7076 47.1182

±<50|50> 12.6164 22.7131 35.0052 47.6474

±<60|60> 13.8076 22.0365 37.2562 44.5822

±<70|70> 14.5736 20.6705 38.9595 41.8909

±<80|80> 15.4788 22.6871 39.4871 47.8712

±<90|90> 16.2357 23.9745 40.8912 48.6812

VSCL

<0|0> 8.5282 16.5998 27.9785 30.2843

±<0|10> 8.5626 16.8994 28.0598 30.7746

±<0|20> 8.6754 17.5511 28.3184 32.1932

±<0|30> 8.9182 18.3178 28.8461 34.7479

±<0|40> 9.3943 19.0856 29.7155 39.1078

±<0|50> 10.2252 19.8431 31.0342 44.8934

±<0|60> 11.4782 20.5674 32.9513 46.3146

±<0|70> 12.9179 21.1012 35.5303 35.5345

±<0|80> 13.6567 22.5481 36.7841 46.7812

±<0|90> 14.8455 23.4841 37.5984 48.6944

material I and material III in Table 1 were used as the skins and the
core, respectively.

First, the quantity of grid points at which the natural frequency
generated by this method might be stabilized is determined by
selecting an anti–symmetric sandwich plate of [0/90/core/0/90] with
the geometric parameters a/b = 0.5, a/h = 10, and tc = t f = 10. With
an increasing number of grid points, Figure 7 displays the pattern
of the sandwich plate’s first three orders of natural frequency. It is
evident that when the quantity of grid points rises, the frequency
values’ computation results typically yield steady results. It shows
that the application ofDQM to the problem in this study can provide
convergent results.

The quantity of grid points in this investigation was selected as
Nx = Ny = 19 when DQMwas used. For comparison, various aspect
ratios (a/h) and (a/b) were chosen, as shown in Tables 2, 3.

FIGURE 8
Natural frequency (non-dimensional) to core/skin ratio hc/hs effect of
the symmetric VSCL sandwich plate
[+<20|60>/-<20|60>/core/-<20|60>/+<20|60>] and
[+<60|20>/-<60|20>/core/-<60|20>/+<60|20>], CSCS.

FIGURE 9
Natural frequency (non-dimensional) to core/skin ratio hc/hs effect of
the anti-symmetric VSCL sandwich plate
[+<20|60>/-<20|60>/core/+<20|60>/-<20|60>] and
[+<60|20>/-<60|20>/core/+<60|20>/-<60|20>], CSCS.

As is evident from Tables 2 and 3, the results of the DQM used
in this study to calculate the composite sandwich plates are only
slightly different from those of the references, indicating that the
mechanical model and calculation method used in this study are
correct. At the same time, only 19 × 19 grid points are used in
this study, which enables high accuracy of the results. Regarding
computation effectiveness, the current paper’s approach is better.

The free vibration analysis ofVSCLplate is carried out in the next
step.The first four orders of the natural frequency of the single layer
plate are investigated for different starting angleΘ0 and termination
angle Θ1. The first four orders of the natural frequency of the
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single layer plate are investigated. Different boundary conditions are
selected. The material was chosen as material II in Table 1 and the
ratio of width to thickness a/h was chosen as 0.001. The results of
the calculations are listed in Table 4. When the number of mesh
points was selected as 19, the computed results were compared with
the existing solutions of FSDT and p-version finite elements. The
computational results are in very good agreement, verifying the
reliability of the present method for VSCL plate computation.

3.2 Parameter study

A parameter research of the free vibrations was carried out
to enhance the vibratory behavior of the VSCL sandwich plates.
The fundamental frequency of the sandwich plate was examined
in relation to the fiber orientation angles, boundary conditions,
number of layers, and core/skin thickness.

3.3 Fiber orientation angles

First, the effect of changes in the start and termination angles
was investigated. In this section, a VSCL sandwich plate with four
symmetric skins [±⟨Θ0|Θ1⟩s/core/ ± ⟨Θ0|Θ1⟩s] is chosen as the
object of investigation. Materials II in Table 1 were used as the face
sheets andmaterials IV and VI in Table 1 were used as the two kinds
of core, respectively. Among the two selected corematerials,material
VI is an aluminum honeycomb core. (Torabi et al., 2019). The
plate thickness h = 0.1a, the core thickness hc =

4h
5
, and each single

layer were taken as hlayer =
h
40
. For comparison, the first and second

dimensionless natural frequencies ω = ωb2

h
√( ρ

E2
)
f
were chosen.The

fiber orientation angles Θ0 and Θ1 are both varied from 0° to 90°.
Both CCCC and SSSS boundary conditions were considered, and
the results are listed in Tables 5–8, respectively.

Tables 5–8 reveal that the majority of fundamental frequencies
typically rise with the increase of fiber orientation angle. A
corresponding decrease in the natural frequencywas observedwhen
the fiber orientation angle reached the maximum value. Therefore,
sandwich plates can be made stiffer by using curvilinear fibers with
low curvatures. In order to avoid fiber kinking, the curved fibers
must have a maximum value of curvature on each skin of less
than 3.28 m-1. The curvature k is given by Equation 36. In the case
of curved fibers with curvature values less than 3.28 m-1, the use
of lower curvature leads to higher stiffness. In certain instances,
industry designersmust alter the fundamental frequency to a greater
or lesser value for the purpose of preventing resonance. This can
be accomplished by using VSCL, sandwich plates without having
to change the size of the plate or constituent materials. The reason
for this is that the natural frequency is sensitive to changes in fiber
orientation in each layer.

k = 2
a
(Θ1 −Θ0)cos[Θ0 +

2
a
(Θ1 −Θ0)x] (36)

3.4 Boundary conditions

In order to investigate the first two fundamental frequencies at
various fiber orientation angles, five boundary conditionswere taken

into consideration in this section. A comparative study between the
CSCL andVSCL sandwich plates was also conducted. In this section,
sandwich plates with single-ply skins [⟨Θ0|Θ1⟩/core/⟨Θ0|Θ1⟩] are
chosen, and the fiber orientation angles Θ0 and Θ1 are varied
from 0° to 70°. Materials II and V from Table 1 were used as
the skins and the core, respectively. The plate thickness h = 0.1a,
core thickness hc =

8h
9
, and each single layer were taken as hlayer =

h
18
. Tables 9–13 present the results with five boundary conditions:

CCCC, SSSS, CSCS, CFCF, and CFFF.The natural frequencies of the
CSCL sandwich plates are bolded in these tables.

Tables 9–13 demonstrate that for the SSSS, CSCS, CFCF, and
CFFF boundary conditions, the VSCL sandwich plate’s natural
frequency tends to grow when the ending angle Θ1 increases, the
situation is reversed for the CCCC. For CFCF and CFFF, the VSCL
sandwich plate’s fundamental frequency increased by 15.175% and
32.708%, respectively, when the ending angle Θ1 was increased
from 0° to 70°. Nonetheless, under SSSS and CSCS boundary
circumstances, the VSCL sandwich plate’s fundamental frequency
dropped by 2.228% and 1.128%, respectively, when the endings
angle Θ1 is increased from 50° to 70°. The VSCL plate fundamental
frequency (non-bolded data) is improved by up to 9.7% at the
CCCC boundary. The present method requires only 192 = 361
grid points, which is 83% less computationally time-consuming
than Hachemi’s (Hachemi et al., 2020) p-type finite element (which
typically requires >2000 nodes) (0.5 h vs 3 h). According to the
findings, the fundamental frequencies of the VSCL sandwich plates
are affected by the fiber orientation angle as the curvilinear fiber’s
curvature increases.

3.5 Limited layer impact (≤5)

This section looks into how the number of layers affects
sandwich plate’s fundamental frequency. Based on sandwich plates
with single-ply skins [⟨Θ0|Θ1⟩/core/⟨Θ0|Θ1⟩], the quantity of layers
was increased, and sandwich plates with two-layer anti-symmetric
skins [±⟨Θ0|Θ1⟩/core/ ± ⟨Θ0|Θ1⟩] were selected. The thicknesses
and mechanical properties were selected to match those mentioned
in the preceding section. The layup angle of VSCL and CSCL is set
logically as follows: when Θ0 = Θ1, the curved fibers are degraded
to straight fibers (i.e., VSCL = CSCL); and when Θ0 ≠ Θ1, the VSCL
achieves the performance gain through fiber path optimization.The
CSCL data in the table are all for the degraded condition of Θ0 = Θ1,
which is in direct comparison with the same angle VSCL.The results
with five boundary conditions are listed in Tables 14–18.

From Tables 14–18, it is clear that when Θ1 increases, the
fundamental frequency shifts. In the CCCC boundary condition,
when Θ1 rises from 0° to 10° and from 10° to 90°, the natural
frequency falls and increases, respectively. Under the SSSS and
CSCS boundary conditions, the natural frequency increases when
Θ1 increases from 0° to 60° and decreases from 60° to 90°. When the
number of layers increases, the fundamental frequency for sandwich
plates with anti-symmetric two-layer skins often increases as well.

Under CCCC and CSCS boundary conditions, VSCL sandwich
plates exhibit 6%–12% higher fundamental frequencies than CSCL
counterparts. This was determined by comparing the fundamental
frequencies of the two sandwich plates. Sandwich plate vibration
properties can be considerably altered by the application of
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curvilinear fiber. For instance, when comparing Θ0 = Θ1 = 40∘

to Θ0 = Θ1 = 50∘ under the boundary conditions of SSSS and
CCCC, the fundamental frequency of CSCL plates is zero, but
the fundamental frequencies of VSCL plates are changed when Θ1
increases from 40° to 50°.

3.6 Core/skin thickness

Sandwich plates that are symmetric and anti-symmetric are used
in this part to investigate the relation between the fundamental
frequency and the ratio of the core to skin. The skins and core were
selected with the same thickness and mechanical characteristics
as those in the preceding section, except for the plate thickness
h = 0.01a. The core thickness/skin thickness, hc/hs, varied from
3 to 16 as variation parameters. The fundamental frequencies of
[±⟨Θ0|Θ1⟩/core/ ∓ ⟨Θ0|Θ1⟩] and [±⟨Θ0|Θ1⟩/core/ ± ⟨Θ0|Θ1⟩] are
chosen to study the variation rule and CSCS boundary condition is
chosen. Changes in fundamental frequency with core/skin thickness
ratio hc/hs are shown in Figures 8, 9.

As shown in Figures 8, 9, the VSCL sandwich plates exhibit the
highest natural frequency at the lowest core/skin thickness ratio.The
average decline in fundamental frequency from the greatest to the
lowest point was 67%.

The findings of the aforementioned parametric study suggest
that VSCL sandwich plates hold promise for aircraft panel design
applications. By manipulating the starting and ending angles along
with the curvature of the fiber reference path, these plates can
potentially exhibit reduced lateral deformation, increased stiffness,
and higher natural frequencies. Moreover, lower structural mass can
be achieved under certain mechanical and environmental loading
circumstances by using VSCL sandwich plates.

4 Conclusion

This study used FSDT in conjunction with DQM to examine
the free vibration of sandwich plates with curvilinear fiber variable
stiffness skins. In this study, the x-coordinate was supposed to
fluctuate linearly with the fiber orientation angle. Compared with
other numerical solution methods, the DQM is computationally
inexpensive, converges quickly, and it is capable of precisely
forecasting sandwich plate fundamental frequencies. The reduction
or increase in the natural frequency when using VSCL face sheets
was investigated and compared with that of CSCL face sheets. The
impacts of fiber orientation angles, boundary conditions, number
of layers, and core/skin thickness were investigated parametrically.
Notably, the integration of higher-order theory and layer theory can
enhance the accuracy of sandwich plate analysis, particularly when
investigating thick plates.The computations used in this study allow
for the following deductions.

(1) In the vast majority of cases, as the fiber orientation angle
increases, the fundamental frequency rises as well. Optimizing
the curved fiber path improves the fundamental frequency
of the CFFF boundary condition by 32.7% and the CFCF
boundary condition by 15.2%, outperforming the constant
stiffness design (CSCL). The use of curvilinear fibers leads

to VSCL sandwich plates with lower lateral deformations and
higher natural frequencies.

(2) The sandwich plate’s natural frequency was impacted by the
fiber orientation angle as the curvilinear fibers’ curvature grew.
The larger the angle of the center fiber was, the more rigid
the curvilinear fiber became, until the curvature threshold is
reached (3.28 m-1). The plate’s rigidity can be raised by using
low-curvature curvilinear fibers.

(3) With an increase in layers came a rise in the sandwich plate’s
fundamental frequency. Anti-symmetric stacking (±<Θ0|Θ1>)
improves frequency by 6%–12% compared to single-layer
skins. This also indicates that the fundamental frequency
increases with rising plate thickness.

(4) The VSCL sandwich plates exhibited greater natural
frequencies in comparison to the CSCL sandwich plates when
subjected to the CCCC and CSCS boundary conditions. As
boundary restrictions get tighter, the frequency rises. Tighter
boundaries (CCCC, CSCS) amplify the benefits of VSCL
by more than 10%. Due to their increased ability to adapt
to complex boundary circumstances, curvilinear fibers have
higher fundamental frequencies than parallel fibers.

(5) The frequency response was strongly impacted by the ratio
of skin to core thickness. Frequencies peak at minimal hc/hs
(3:1) and decline by 67% as ratios increase to 16:1. The natural
frequency of the sandwich plate reached its maximum value
at the lowest core–to-skin thickness ratio. The effect of adding
more layers was in line with this trend.

(6) The FSDT accuracy decreases for core-to-mask ratios hc/hs
> 16 (see Table 2 for a/h = 2 error of 5.2%), and it is
recommended that the HSDT model be used for thick plates.

Themethod proposed in this paper provides theoretical support
for the vibration control design of lightweight structures in
the aerospace field, such as enabling the adjustment of natural
frequencies under specific operational conditions through fiber path
optimization. Additionally, the precise insights obtained from this
study guide researchers seeking viable solutions and can serve as
a foundation for further exploration into panel flutter in VSCL
sandwich plates. The current model does not consider interlayer
delamination damage, and in the future, the Reissner interlayer
continuity condition will be introduced to simulate the debonding
effect and improve the damage tolerance prediction of VSCL
sandwich plates.
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