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High-entropy alloys (HEAs) have attracted significant attention due to their
excellent mechanical properties and broad application prospects. However,
accurately predicting their mechanical behavior remains challenging because of
the vast compositional design space and complexmulti-element interactions. In
this study, we propose a stacking learning-basedmachine learning framework to
improve the accuracy and robustness of HEA mechanical property predictions.
Key physicochemical features were extracted, and a hierarchical clustering
model-driven hybrid feature selection strategy (HC-MDHFS) was employed to
identify the most relevant descriptors. Three machine learning algorithms-
Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Gradient
Boosting (Gradient Boosting)-were integrated into a multi-level stacking
ensemble, with Support Vector Regression serving as the meta-learner. To
improve model interpretability, the SHapley Additive Explanations (SHAP)
method was applied to assess feature importance. The results demonstrate that
the proposed stacking framework outperforms individual models in predicting
yield strength and elongation, showing improved generalization ability and
predictive accuracy.

KEYWORDS
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1 Introduction

High-entropy alloys (HEAs), also referred to asmulti-principal element alloys (MPEAs),
were first introduced by Yeh et al. (2004) and Cantor et al. (2004). Initially, HEAs were
defined as alloys comprising five or more principal elements, with atomic fractions between
5% and 35% (Yeh et al., 2004). This classification was based on the hypothesis that when
multiple elements coexist in near-equiatomic proportions, the configurational entropy
significantly increases, reducing the likelihood of intermetallic compound formation and
promoting the stabilization of a single-phase solid solution. Over time, the definition of
HEAs has expanded, and contemporary research generally considers any alloy composed
of three or more principal elements in near-equiatomic ratios as a high-entropy alloy.
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Benefiting from the combined effects of high-entropy, lattice
distortion, sluggish diffusion, and the cocktail effect, HEAs have
drawn increasing attention due to their unique physicochemical
properties, which differ significantly from those of conventional
alloys (Pickering and Jones, 2016). For instance, CrMnFeCoNi
HEAs exhibit an excellent combination of strength and ductility at
room temperature and maintain outstanding mechanical properties
in low and ultra-low temperature environments (Liu et al., 2022).
Similarly, refractory HEAs such as CrMoNbV demonstrate high
yield strength and exceptional thermal softening resistance at
elevated temperatures (1273 K), outperforming traditional Ni-based
superalloys (Lee et al., 2021). These properties make HEAs highly
suitable for demanding applications in aerospace, nu-clear energy,
and extreme environmental conditions.

Another important aspect of HEAs is their remarkable stability,
which can be attributed to the fact that in a certain macrostate, a
sample can have many variants of states at the atomic level, without
affecting the material’s external characteristics. This contributes to
their exceptional stability, as described in previous studies on HEA
mechanical properties (Maruschak and Maruschak, 2024).

Despite their promising mechanical characteristics, the vast
compositional design space of HEAs and the complex nonlinear
interactions between multiple elements pose significant challenges
to their efficient design and optimization. Traditional experimental
approaches are costly and time-intensive, limiting their ability to
explore the full range of possible HEA compositions. Additionally,
computational modeling methods, including Density Functional
Theory (DFT) (Zhang et al., 2014), Ab Initio Molecular Dynamics
(AIMD) (Gao and Alman, 2013), Molecular Dynamics (MD)
(Wang Q. et al., 2024), and Finite Element Analysis (FEA), have
been employed to predict HEA properties. While these techniques
provide valuable theoretical insights, they are computationally
expensive and often struggle to handle the high-dimensional
compositional space characteristic of HEAs (Guo et al., 2023).

Machine learning (ML) has recently emerged as a powerful data-
driven approach to overcoming these limitations. By leveraging large
datasets of experimental and computational results, ML models
can identify complex relationships between alloy composition,
processing parameters, and mechanical properties. This enables
faster andmore accurate property predictions, accelerating theHEA
design process. InHEA research,ML has been widely used for phase
prediction (Chen et al., 2023; Ye et al., 2023; Zhang W. et al., 2023;
He et al., 2024) andmechanical property estimation (Pan et al., 2025;
Li S. et al., 2023; Yang et al., 2023; Jain et al., 2023).

For instance, Oñate et al. (2023) investigated HEA phase
classification using four different ML models and found that the
Random Forest model performed best, achieving an accuracy of
72.8%. Mandal et al. (2023) employed multiple ML algorithms
incorporating atomic size difference, electronegativity difference,
and three other parameters for phase and crystal structure
classification, with decision tree and support vector machine (SVM)
achieving a phase prediction accuracy of 93.84% and SVM attaining
the highest classification accuracy of 84.32% for crystal structures.
Zhao et al. (2024) utilized interpretable ML models combined with
empirical descriptors to con-struct two-dimensional (2D) phase
diagrams for HEAs. Compared to commonly used descriptors,
their newly proposed descriptors improved prediction accuracy,
reaching approximately 95% for distinguishing between crystalline

and amorphous phases, as well as between BCC and FCC structures.
Gao et al. (2024) applied ML combined with multi-objective
optimizationmethods to design lightweight refractory HEAs within
the Al-Nb-Ti-V-Zr-Cr-Mo-Hf system, achieving alloy densities of
approximately 6.5 g/cm3, a maximum hardness of 593 HV, and
a pitting potential up to 2.5 V. Ding et al. (2024) constructed a
LightGBM-based predictive framework for refractory HEA yield
strength, incorporating various feature selection methods, and
achieved a coefficient of determination (R2) of 0.9605 with a
root mean squared error (RMSE) of 111.99 MPa. Hoyos et al.
(Ibarra Hoyos et al., 2024) developed an ML framework using
Random Forest Regression (RFR) and Genetic Algorithm (GA),
integrating physical properties to predict the yield strength and
plastic strain of body-centered cubic (BCC) and BCC + B2
HEAs. In addition, Yasniy et al. (Yasniy et al., 2024) employed
neural networks and boosted decision trees to model the thermal
conductivity of epoxy-based composites with various fillers. Their
approach achieved high prediction accuracy, with neural networks
yielding errors as low as 0.2%–0.5% and boosted trees slightly
higher (0.9%–1.5%), highlighting the reliability of ML techniques in
simulating thermophysical properties of composite materials.

Predictive models using machine learning can significantly aid
in the efficient design of alloys by exploring vast compositional
spaces. Recent studies by Gupta et al. (Gupta K. et al., 2024;
Gupta KK. et al., 2024) have shown how machine learning,
combined with molecular dynamics, optimizes the composition of
AlCoCrFeNi HEAs for improved properties like stiffness and high-
temperature strength. Additionally, Mohanty et al. (Mohanty et al.,
2023) applied machine learning to niobium alloys for high-
temperature applications. These studies highlight how machine
learning models can be used for alloy design, enabling faster and
more accurate identification of optimal compositions.

In this study, we propose a stacking learning framework that
integrates multiple ML models to enhance prediction accuracy
and robustness for HEA mechanical properties. This approach
combines the strengths of RF, SVM, and GB as base learners,
while employing a meta learner to further optimize prediction
performance. Additionally, SHapley Additive exPlanations (SHAP)
analysis is incorporated to interpret the influence of key features
on model predictions, offering deeper insights into the underlying
factors governing HEA properties (Lundberg and Lee, 2017).
The findings of this study provide a robust framework for data-
driven HEA design, facilitating the accelerated discovery of high-
performance alloys.

2 Methods

This study develops a stacking learning-based machine
learning framework to predict the mechanical properties of
high-entropy alloys (HEAs). The methodological framework is
illustrated in Figure 1. The research workflow includes key stages
such as dataset construction, feature selection, model optimization,
and interpretability analysis to ensure the robustness and accuracy
of predictions.

Stacking learning is an ensemble learningmethod that enhances
predictive performance by integrating multiple base learners and
introducing a meta learner. Unlike Bagging and Boosting, stacking
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FIGURE 1
The overall framework of the proposed approach for high-entropy alloy property pre-diction. The workflow includes dataset preparation (HEA dataset),
feature pooling (physical properties and indirect parameters), feature selection (PCC, clustering, and best features), model selection (Random Forest
and SVM), interpretability analysis (SHAP), and the final stacking model—where Random Forest, Gradient Boosting, and XGBoost serve as base learners,
and an SVR is used as the meta learner.

learning employs a hierarchical structure. In the first layer, multiple
base learners are independently trained and generate predictions
based on input data. The second layer consists of a meta learner
that aggregates the predictions from base learners to generate the
final output. The diversity of base learners enables the system
to capture complex interactions between features, while the meta
learner further refines predictions, improving overall generalization
and robustness.

The dataset used in this study is sourced from publicly
available HEA databases and is supplemented with additional
empirical parameters to enrich the feature space and improve
model generalization. The final feature set includes fundamental
physicochemical properties as well as derived parameters designed
to capture complex relationships within material systems, providing
comprehensive input information for the model.

For model selection, seven machine learning algorithms
were evaluated, and Random Forest (RF), Extreme Gradient
Boosting (XGBoost), and Gradient Boosting (GB) were ultimately
chosen as base learners in the stacking framework. These
models demonstrated superior predictive ability, robustness, and
computational efficiency. Their combination effectively leverages
their respective strengths, improving overall prediction accuracy.

Feature selection plays a crucial role in model performance. To
optimize this process, a hierarchical clustering-model-driven hybrid
feature selection strategy (HC-MDHFS) was proposed. Initially,
hierarchical clustering was used to group highly correlated features,
reducing feature redundancy and mitigating the adverse effects of
multicollinearity. Subsequently, feature importancewas dynamically

assigned based on the performance of base learners across different
feature subsets. This method automated and optimized feature
selection, ensuring adaptability and accuracy for both yield strength
and elongation prediction tasks.

After training the base learners, their predictions were used
as inputs for training the meta learner. The selection of the meta
learner was based on validation set performance, leading to the final
choice of Support Vector Regression (SVR) as the meta learner. The
final stacking model was constructed by integrating the tuned base
learnerswith the optimizedmeta learner.This approach significantly
enhanced the predictive power of the framework, demonstrating
improved stability and accuracy com-pared to individual models.

To gain deeper insight into the decision-making process of the
model, we employed the SHapley Additive exPlanations (SHAP)
method for interpretability analysis. SHAP not only evaluates
feature contributions in the base learners but also provides an
overall assessment of feature importance in the stacked model.
The results reveal the relative contributions of different features
to yield strength and elongation predictions, helping to identify
key factors influencing HEA mechanical properties. Further-more,
SHAP analysis validates whether the learned feature patterns align
with known principles in materials science, providing a data-driven
foundation for optimizing feature engineering.

The proposed stacking learning framework integrates multiple
machine learning models and employs a multi-level strategy
involving feature selection, base model training, and meta learner
optimization.This framework improves the accuracy and robustness
of HEA mechanical property predictions. Overall, this study
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provides an efficient and reliable data-driven solution for materials
property prediction, supporting the design and optimization of
high-entropy alloys.

3 Results and discussions

3.1 Dataset and model selection

The dataset used was obtained from a publicly available HEA
database (Li Z. et al., 2023), comprising 1,713 entries. Among
these, 647 samples include yield strength data, and 486 samples
contain elongation data, which are the primary focus of this study.
To supplement the dataset, we integrated processing information
from related studies (Li et al., 2024), resulting in a comprehensive
dataset that includes compositional, phase, and processing features.
Phase composition and processing methods significantly influence
the mechanical properties of HEAs. For instance, HEAs with a
face-centered cubic (FCC) structure typically exhibit high ductility
but lower strength, whereas body-centered cubic (BCC) structures
offer higher strength but reduced ductility (Nene, 2024). Processing
techniques, such as laser melting deposition, can refine grain
structures, leading to enhanced yield strength and elongation.
Therefore, incorporating phase and processing information into
predictivemodels is crucial for accurately assessingHEAmechanical
performance (Song et al., 2024).

To capture the complex relationships between composition and
mechanical properties, we introduced 17 empirical descriptors to
enrich the feature space. For example, M. Calvo-Dahlborg et al.
investigated the influence ofmean atomic radius onHEAs, revealing
that atomic radius and electron concentration jointly define phase
regions, which can be utilized to predict HEA hardness, density,
and phase composition (Calvo-Dahlborg et al., 2021). Chan-Sheng
Wu et al. found that atomic size differences significantly affect
the microstructure and mechanical properties of single FCC-phase
HEAs, with larger atomic size variations increasing grain growth
activation energy and lattice distortion (Wu et al., 2018). F.X.
Zhang and Hong-Quan Song examined the effects of atomic size
mismatch and chemical complexity on local lattice distortion in
BCC solid solution alloys, concluding that atomic size mismatch
is more influential and tends to overestimate lattice distortion in
alloys containing four or more elements (Zhang and Song, 2022).
X.D. Xu, S. Guo et al. analyzed the impact of mixing enthalpy and
cooling rates on the phase formation of AlxCoCrCuFeNi HEAs,
observing that increasing Almolar ratios shiftmixing enthalpy from
positive to negative, inducing phase transitions from FCC to BCC,
while weak mixing enthalpy stabilizes solid solution phases. Their
study also highlighted the combined effects of cooling rates and
mixing enthalpy on phase formation (Xu et al., 2019). Numerous
other studies have explored the impact of empirical parameters
on HEAs (Zhao et al., 2022; Xjijocmr, 2015; Guo et al., 2011;
Zhang et al., 2008). The calculation formulas for the features are
presented in Supplementary Table S1.

To construct a stacking ensemble model for HEA property
prediction, we systematically evaluated seven machine learning
algorithms based on a balance between model diversity and
predictive performance. The candidate models include:

FIGURE 2
Performance comparison of various regression models (SVR, XGBoost,
random forest, Gradient boosting, decision tree, KNN, and Ridge) for
high-entropy alloy property prediction.

• Ensemble Learning Models: XGBoost (Extreme Gradient
Boosting), Random Forest (RF), and Gradient Boosting (GB).
These models employ parallel and sequential decision tree
mechanisms to capture nonlinear feature interactions, making
them particularly suitable for high-dimensional, small-sample
material datasets (Chen and Guestrin, 2016).

• Kernel-Based Model: Support Vector Regression (SVR),
which utilizes radial basis function kernels to map data
into higher-dimensional feature spaces, effectively handling
complex nonlinear relationships between material properties
and features (Smola and Schölkopf, 2004).

• Baseline Models: Decision Tree, K-Nearest Neighbors (KNN),
and Ridge Regression, representing rule-based partitioning,
local similarity fitting, and linear regularization approaches,
respectively, to benchmark the advantages of ensemble models.

We evaluated the predictive performance of all candidatemodels
using the coefficient of determination (R2) as the primary metric.
As shown in Figure 2, XGBoost demonstrated superior performance
in both tasks (yield strength: R2 = 0.961; elongation: R2 = 0.948),
significantly outperforming other candidates. Random Forest (yield
strength: R2 = 0.918; elongation: R2 = 0.879) and Gradient Boosting
(yield strength: R2 = 0.791; elongation: R2 = 0.691) performed
slightly lower than XGBoost in elongation prediction but exhibited
strong noise suppression andmodel stability. Notably, SVR showed a
distinct advantage in elongation prediction (R2 = 0.717) but suffered
froma significant drawback in yield strength prediction (R2 =0.557),
limiting its overall applicability. The baseline models (Decision
Tree/KNN/Ridge) demonstrated relatively poor performance (R2 <
0.72) due to limited model capacity and susceptibility to overfitting.

Key advantages of the selected ensemble models include:

• Robust Feature Selection: Tree-based models inherently
assess feature importance, enabling adaptive selection of key
physicochemical parameters.
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• Noise Tolerance: Bagging/Boosting strategies reduce
sensitivity to outliers through resampling, effectively
addressing the composition-processing noise prevalent in
HEA datasets (González et al., 2020).

• Multi-Scale Generalization: Ensemble models exhibit superior
capability in de-coupling atomic-scale andmacro-performance
correlations.

Based on predictive accuracy, XGBoost, Random Forest, and
Gradient Boosting were selected as base learners for the stacking
framework.

3.2 Feature selection

In machine learning, feature selection is a critical step for
improving model performance and interpretability. By eliminating
redundant features and mitigating the risk of the curse of
dimensionality, feature selection simplifies model complexity and
enhances generalization ability. Traditional approaches often rely on
manually selecting highly correlated features, such as identifying
feature interdependencies using Pearson correlation coefficient
matrices and retaining key variables based on domain knowledge
(Guyon and AJJomlr, 2003; Gao et al., 2023; Zhang Y-F. et al., 2023).
Existing studies commonly use correlation coefficient thresholds
(e.g., >0.9) to directly remove redundant features (Gao et al., 2023) or
perform subjective selection based on expert judgment (Chen et al.,
2020). However, thesemethods have two key limitations: (1)manual
selection is subject to human bias, potentially leading to the
omission of important features or the retention of redundant ones;
(2) such methods focus only on pairwise correlations, failing to
optimize the feature set holistically.

To address these challenges, this study proposes a Hierarchical
Clustering-Model Driven Hybrid Feature Selection (HC-MDHFS)
strategy, which automatically groups highly correlated features using
hierarchical clustering and dynamically assigns feature importance
weights based on base learner performance, thereby automating
and optimizing feature selection. This strategy consists of the
following key steps:

3.2.1 Feature correlation analysis
In the feature selection process, it is first necessary to evaluate

the correlations between different features. To achieve this, we
calculated the Pearson correlation coefficient matrix for the 17
empirical parameters to measure the linear correlation be-tween
features. The Pearson correlation coefficient is defined as shown in
Equation 1:

r =
∑(xi − x)(yi − y)

√∑(xi − x)
2 ·∑(yi − y)

2
(1)

where r ∈ [−1,1] represents the degree of linear correlation between
two variables. The closer the absolute value of is to 1, the stronger
the correlation. When r > 0, the two variables exhibit a positive
correlation, meaning that an increase in one variable tends to be
accompanied by an increase in the other. Conversely, when r <
0, the two variables are negatively correlated. If r ≈ 0, it indicates
little to no linear relationship between the variables. The calculation

FIGURE 3
Correlation heatmap of the selected features (a, δ, Tm, std of Tm,
entropy, enthalpy, std of enthalpy, ω, X, std of X, VEC, std of VEC, K, std
of K, density, D_r, and r) in the high-entropy alloy dataset. The color
scale ranges from −1 (blue) to +1 (red), representing negative and
positive correlations, respectively.

results are shown in Figure 3. Notably, atomic size difference and
lattice distortion exhibit a strong positive correlation (r = 0.95),
which is highly consistent with the solid solution lattice distortion
theory of HEAs (Wang H. et al., 2024).

Based on the feature correlation analysis, we further
applied the Variance Inflation Factor (VIF) to quantify the
degree of multicollinearity. The VIF is calculated as shown in
Equation 2 (Belsley et al., 2005):

VIFj =
1

1−R2
j

(2)

where R2
j represents xj the coefficient of determination obtained

by regressing feature on all other features. A higher VIF value
indicates a stronger linear correlation between a given feature and
the remaining features, meaning that multicollinearity is more
severe. The average VIF value of the initial feature set was 18.6, far
exceeding the commonly used threshold of 10, indicating a serious
multicollinearity issue in the dataset.Therefore, feature selectionwas
necessary to reduce redundancy and improve model stability and
interpretability.

3.2.2 Hierarchical clustering-based feature
grouping

To effectively group highly correlated features and reduce feature
redundancy, this study employs hierarchical clustering to classify
features into distinct groups. The clustering process consists of the
following steps:
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FIGURE 4
Hierarchical clustering dendrogram of the empirical parameters in the
high-entropy alloy dataset.

1. Distance Calculation: The Euclidean distance metric
was used to quantify the similarity between features.
As shown in Equation 3, the closer two features are in terms of
distance, the more correlated they are:

dxy = 1− |rxy| (3)

2. Clustering Method: Hierarchical clustering was performed
using Ward’s minimum variance method and the
distance between classes was calculated as shown in
Equation 4 (Ward, 1963):

D(A,B) =
|A||B|
|A| + |B|

‖xA − xB‖
2 (4)

where, |A|, |B| is the number of samples within the class, and
xA,xB is the class center. The Ward method is more robust
to noise and generates more compact class clusters than the
single-connection/full-connection method. A dendrogram was
constructed to visualize the hierarchical clustering structure, as
shown in Figure 4.

3. Cluster Grouping and Threshold Selection: A predefined
threshold was applied to determine the optimal number of
feature groups. Features within the same cluster exhibit high
correlation, forming six distinct feature groups.

The clustering results are summarized in Supplementary Table S2,
showing the six feature groups obtained through this process.
Each group contains highly correlated features, validating the
effectiveness of hierarchical clustering in feature selection.

Hierarchical clustering improves feature selection by grouping
correlated variables, minimizing redundancy, and retaining
only the most informative descriptors for model training. This
structured approach enables more effective handling of feature
interdependencies.

3.2.3 Model-driven feature importance allocation
With the base learners determined, we conducted dynamic

feature screening based on the feature importance of these three
models in the Yield Strength and Elongation dataset. First, the
weighted feature importance of each model is calculated to
comprehensively measure the contribution of different features to
the prediction task. The weight of the model is calculated as shown
in Equation 5:

wm =
R2
m

∑3
m=1

R2
m

(m = 1,2,3) (5)

where R2
m is the average coefficient of determination (R2) of the ten-

fold cross-validation of the first model on the dataset, which is used
to measure the predictive power of the model.This weight is used to
weight and sum the feature importance of each model to calculate
the combined importance of each feature, as shown in Equation 6:

w f =∑
m
wmIm, f (6)

Where Im, f is the feature importance score calculated by the model
m for the feature f. Then, the combined importance of each feature
group is calculated as shown in Equation 7:

IGi
=
∑

f∈Gi
W f

∑W f
(7)

Where W f represents the weighted importance of the feature f.
IGi

reflects the relative importance of the feature group Gi in the
overall feature selection. Based on the value IGi

, we dynamically
allocate the number of features to be selected for each feature group.
Assuming that the total number of features to be selected is K,
then the number of features to be selected for a feature group Gi is
calculated as shown in Equation 8:

NGi
= round(IGi

×K) (8)

where round( ) denotes rounding to the nearest integer. If the
result of the calculation exceeds the maximum selectable number of
feature groups, adjustments aremade to ensure that the total number
of features remains K.

3.2.4 Hierarchical clustering-based feature
grouping

In order to further optimize the feature selection, we used
grid search with three-fold cross-validation to evaluate the average
performance of XGBoost, Random Forest, and Gradient Boosting
while iterating over different total feature counts. For each total
number of features K, we allocated the number of features per cluster
proportionally based on the group-wise importance scores.

All possible combinations were then exhaustively searched, and
the one that yielded the highest average R2 was selected as the
optimal feature subset.

Through the hierarchical clustering-model-driven hybrid
feature screening strategy (HC-MDHFS), this study systematically
evaluates the effect of different number of features on the prediction
performance of Yield Strength and Elongation. Figures 5A, B show
the correlation curves between the number of features and the
model performance in the two tasks, respectively, revealing the
optimization boundaries of feature selection.
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FIGURE 5
Correlation curves (R2 and RMSE) between the number of selected features and the model performance for yield strength (YS) (A) and elongation (B),
systematically evaluated under the hierarchical clustering–model-driven hybrid feature screening strategy (HC-MDHFS).

• Yield strength prediction task

When the number of features is gradually increased from 0 to 6,
the model performance significantly improves from 0.578 to 0.673,
and the RMSE decreases from 352.42 MPa to 309.71 MPa.When the
number of features exceeds 6, it starts to decrease (R2 = 0.621 when
K = 17), and the RMSE rises to 333.50 MPa, which indicates that
the introduction of the redundant features leads to overfitting. The
optimal number of features is finally determined to be 6, at which
time themodel reaches a balance between accuracy (R2 = 0.673) and
complexity. The selected six features are: a, γ, ρ, Tm, σK and ΔS.

• Elongation prediction task

The elongation prediction is less sensitive to the number of
features, but there is also a clear optimal point. When the number
of features is 7, the peak value of 0.554 is reached, and the RMSE is
14.34%, which is 37.8% higher than the baseline. When the number
of features is 7, it reaches a peak of 0.554, with an RMSE of 14.34%,
which is 37.34% higher than the baseline (R2 = 0.402 when K = 0),
The fluctuation range is less than 1%, which indicates that the model
is more robust to the extra features, but in order to avoid the waste
of computational resources, it is chosen as the optimal solution.The
selected seven features are: σΔH, X, D_r, ρ, ΔX and Ω.

3.3 Model training and optimization

After selecting XGBoost, Random Forest, and Gradient
Boosting as base learners, we applied several training strategies
to enhance model generalization and prediction accuracy.

First, to stabilize the data distribution, a logarithmic
transformation (log (1 + y)) was applied to the target variables (Yield
Strength and Elongation), reducing the impact of large numerical
spans on model fitting. Additionally, to enhance prediction
performance in high-value regions, a sample weighting strategy
was introduced—samples above the 90th percentile were assigned
a higher weight (weight = 2), while the remaining samples had

a weight of 1. During training, ten-fold cross-validation (ten-
fold CV) was employed for hyperparameter tuning, ensuring
strong generalization ability. The fold-wise performance metrics
are summarized in Supplementary Table S3.

With these optimization strategies, XGBoost, Random Forest,
and Gradient Boosting were trained and optimized for both
yield strength and elongation prediction tasks. The results
were shown in Figures 6A, C. Specifically, for the yield strength
dataset, Gradient Boosting achieved an R2 of 0.824 on the training
set and 0.716 on the test set; Random Forest scored 0.823 and
0.730, respectively; and XGBoost obtained 0.800 and 0.713. In the
elongation dataset, Gradient Boosting performed exceptionally well,
with R2 values of 0.856 (training) and 0.719 (testing); Random
Forest followed with 0.771 and 0.723; while XGBoost scored
0.752 and 0.672.

These results indicate that all three models achieved high
training accuracy, with Gradient Boosting showing particularly
strong performance in the elongation prediction task, suggesting
a well-fitted model. However, there was a slight decrease
in R2 values on the test set, indicating some degree of
overfitting.

Notably, in yield strength prediction, XGBoost and Random
Forest exhibited similar performance on the test set, but in the
elongation task, XGBoost slightly lagged behind the other two
models.This may indicate that XGBoost is less effective in capturing
nonlinear relationships compared to Gradient Boosting, while
RandomForestmaintained stable performance across both datasets.

After training the base learners, we further trained the meta
learner to fully leverage the predictions from the base learners and
enhance the final predictive performance. To ensure the robustness
of meta learner training and effectively prevent data leakage, a
two-level cross-validation strategy was employed to generate meta-
features.

In this strategy, each base learner underwent ten-fold cross-
validation, where the training set was divided into ten subsets. Each
time, nine subsets were used for training the base model, while the
remaining subset was used for prediction. The predictions from all
subsets were then concatenated and used as input meta-features for
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FIGURE 6
Performance evaluation of the ensemble learning framework for yield strength and elongation prediction: (A) Yield strength: Training and test R2 values
for the base learners and the stacked ensemble, (B) Yield strength: R2 comparison among candidate meta learners, (C) Elongation: Training and test R2

values for the base learners and the stacked ensemble, (D) Elongation: R2 comparison among candidate meta learners.

training the meta learner. This process ensured that every sample’s
predicted value was generated from a model that had not seen it
during training, fundamentally eliminating the risk of data leakage.
Additionally, meta-features for the test set were directly generated by
applying the base learners to the full test set, ensuring consistency in
evaluation.

To optimize the performance of the meta learner, six
regression models were evaluated: Ridge Regression, Support
Vector Regression (SVR), ElasticNet, Bayesian Ridge, K-Nearest
Neighbors (KNN), and Lasso Regression. A five-fold cross-
validation procedure was conducted to select the optimal meta
learner, and the performance of different meta learners in
predicting yield strength and elongation was compared. The results,
as shown in Figures 6B, D, indicate that different meta learners
exhibited varying predictive capabilities across the two tasks.

In the yield strength prediction task, SVR (R2 = 0.736) and Lasso
regression (R2 = 0.733) exhibited similar predictive capabilities,
while ElasticNet regression (R2 = 0.732) also showed certain
advantages due to its combination of L1/L2 regularization, which
helps suppress multicollinearity. Although Lasso benefits from L1
regularization, its aggressive feature selection processmay lead to the
loss of some critical information, making SVR the preferred choice.

In the elongation prediction task, SVR achieved the best
performance (R2 = 0.764), as its radial basis function (RBF)
kernel effectively captured nonlinear characteristics and constructed

optimized decision boundaries in high-dimensional space. This
performance was superior to that of linear models such as Ridge
regression (R2 = 0.738), which demonstrated stronger adaptability.

Considering both prediction accuracy and model stability, SVR
was ultimately selected as the optimal meta learner for both yield
strength and elongation prediction tasks.

After determining the optimal meta learner, we constructed a
stacked regression model, incorporating XGBoost, Random Forest,
and Gradient Boosting as base learners.The optimized meta learner
was employed to explore relationships in the feature space and infer
complex nonlinear dependencies.

As shown in Figures 6A, C, although the performance of
individual base learners was not optimal, stacking learning achieved
enhanced generalization. For example, in yield strength prediction,
the ensemble model achieved an R2 of 0.798, outperforming
Gradient Boosting (0.824) and Random Forest (0.823) in training,
but demonstrating superior test performance compared to all base
learners. The test set R2 for base learners was 0.716 (Gradient
Boosting), 0.730 (Random Forest), and 0.713 (XGBoost).

Similarly, in the elongation prediction task, the stacked model
exhibited a training R2 of 0.822 and a test R2 of 0.755, surpassing
the individual base learners, whose test set R2 values were 0.719
(Gradient Boosting), 0.723 (Random Forest), and 0.672 (XGBoost).

To further evaluate prediction performance from the perspective
of relative error, Supplementary Table S4 summarizes the relative
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errors of each model on the test set. Compared to the base learners,
the stacked model reduced the relative error by approximately 3%
in the yield strength prediction task and 4% in the elongation
prediction task, indicating its superior predictive accuracy and
generalization capability.

These results indicate that although the ensemble model’s
training R2 was slightly lower than that of some base learners, its test
set R2 was consistently higher, suggesting improved generalization.
By effectively integrating the advantages of multiple base learners,
the stacked learning approach balanced feature representation
and model interpretability, mitigating overfitting risks while
leveraging diverse learning strategies. This validates the superiority
of stacking learning in high-performance alloy mechanical property
prediction.

3.4 Interpretability analysis

Following the training and evaluation of the stacking model,
this study further employs SHAP to explain the model’s predictions
and quantify the influence of empirical input feature. Derived from
cooperative game theory, SHAP enables precise attribution of each
feature’s impact on individual predictions, offering insight into the
model’s internal logic.

For the yield strength prediction task, Figure 7A illustrates the
average SHAP values of the base learners (XGBoost, RandomForest,
and Gradient Boosting). The results indicate that the standard
deviation of bulk modulus (std of K), entropy, and average melting
temperature (Tm) are the three most influential features in the
prediction. Among them, the standard deviation of bulk modulus
exhibits the highest SHAP importance value, highlighting its
crucial role in the model’s decision-making process. Bulk modulus
reflects a material’s resistance to volumetric deformation, and its
standard deviation measures the compositional variation among
alloying elements. A greater deviation often suggests localized
stress heterogeneity, which can hinder dislocation motion by
increasing the energy barrier, ultimately leading to an increase in
yield strength (Wang T. et al., 2024). This is because dislocations
must bypass regions of varying atomic environments, where lattice
distortions create resistance to their movement. As a result, more
external stress is needed to initiate plastic deformation. Entropy,
the second most important feature, is associated with the degree
of elemental mixing; a higher entropy value typically promotes
the formation of stable solid solution structures, reducing the
risk of phase separation and thereby enhancing yield strength
(Winkens et al., 2023). This stabilization arises from the increased
configurational entropy, which lowers the Gibbs free energy of the
solid solution. As a result, it suppresses the formation of brittle
intermetallic phases and maintains a more uniform microstructure
conducive to strength. Lastly, average melting temperature reflects
atomic bonding strength—higher melting points generally indicate
stronger interatomic interactions, increasing material rigidity and
deformation resistance (Miracle et al., 2017).

Figure 7C presents the SHAP analysis results for the stacking
model, along with a kernel density estimation of feature
contributions. While standard deviation of bulk modulus, entropy,
and average melting temperature remain the dominant factors
influencing yield strength predictions, the stacking model exhibits

a more balanced feature contribution distribution. Notably, a
higher standard deviation of bulk modulus corresponds to a higher
SHAP value, confirming its significant positive impact on yield
strength. Meanwhile, entropy’s SHAP influence is more evenly
distributed, likely due to the stacking model’s ability to smooth
feature contributions across multiple base learners. The SHAP
distribution of average melting temperature appears more compact,
indicating that in the stacking learning process, this feature provides
a stable and effective capture of the nonlinear relationship between
melting temperature and yield strength.

For the elongation prediction task, Figure 7B illustrates the
average SHAP values of the base learners, revealing that the
standard deviation of enthalpy (std of enthalpy), standard deviation
of electronegativity (std of X), and average bulk modulus (K)
contribute the most to the predictions. Among these, the standard
deviation of enthalpy exhibits the highest SHAP importance,
suggesting that fluctuations in enthalpy significantly impact phase
stability and localized stress distribution, which in turn affect
elongation (Jin et al., 2018). Greater enthalpy fluctuations can
destabilize solid solution phases and promote the formation of
second phases or defects, leading to strain localization during
deformation and thus reducing ductility. The standard deviation
of electronegativity reflects differences in bond strength among
alloying elements; such variations influence dislocation motion
and atomic diffusion, thereby increasing resistance to plastic
deformation and ultimately reducing elongation (Bent, 1961).
Large electronegativity differences can induce chemical short-
range ordering and enhance lattice friction, which obstructs
dislocation glide and limits the material’s ability to deform
uniformly. Meanwhile, average bulk modulus represents a material’s
resistance to volumetric deformation—higher values correspond to
stronger interatomic interactions, resulting in increased material
rigidity and reduced dislocation mobility, which can lower
elongation (Temesi et al., 2024). Conversely, materials with lower
bulk modulus tend to exhibit higher plastic deformation capacity,
leading to greater elongation.

Figure 7D presents the SHAP analysis results for the stacking
model, demonstrating some adjustments in feature contribution
patterns compared to the base learners. Specifically, higher standard
deviation of enthalpy values correspond to lower SHAP values,
indicating that an increase in enthalpy fluctuations may lead to
reduced elongation. The SHAP values of standard deviation of
electronegativity aremore concentrated, suggesting that the stacking
model effectively stabilizes the impact of this feature on predictions.
Similarly, the SHAP values of average bulk modulus exhibit a
more compact distribution, implying a more stable representation
of the relationship between bulk modulus and elongation in the
stacking model.

The SHAP analyses of both the base learners and the stacking
model show consistent feature importance rankings, confirming
that the standard deviation of enthalpy, standard deviation of
electronegativity, and average bulk modulus are the most influential
features for elongation prediction. However, the stacking model’s
SHAP results are more balanced, with kernel density estimation
further refining the distribution of feature contributions, enhancing
the model’s stability and generalization ability. This indicates
that stacking learning not only preserves the base learners’
sensitivity to key features but also optimizes feature contribution
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FIGURE 7
SHAP analysis of the base learners and the stacking model for yield strength and elongation: (A) Base learners SHAP values for yield strength, (B) Base
learners SHAP values for elongation, (C) Stacking-model SHAP values (with kernel density) for yield strength, (D) Stacking-model SHAP values (with
kernel density) for elongation.

distribution, leading to a more reliable decision-making process in
the final model.

Based on the SHAP-derived feature importance analysis, we
propose the following composition design strategies to guide the
optimizationofhigh-entropyalloys.First, toachieveabalancebetween
local stress heterogeneity and overall plasticity, it is advisable to select
elemental combinations with moderate variation in bulk modulus,
particularly by combining transition metals with refractory elements.
Second, the phase stability of solid solutions can be enhanced by
coordinating configurational entropy and mixing enthalpy, which
involves increasing the number of principal elements to raise entropy
while avoiding excessive incorporation of elements with highly
negative mixing enthalpy that may promote intermetallic formation.
Third, to suppress chemical ordering and improve ductility, elements
with similar electronegativity, such as Fe, Co., and Ni, should be
prioritized. These data-driven strategies provide actionable guidance
for HEA composition design and can be further validated through
high-throughput computational approaches such as CALPHAD,
combined with experimental evaluation.

4 Conclusion

We introduce a novel Hierarchical Clustering Model-
Driven Hybrid Feature Selection (HC-MDHFS) strategy that
first groups highly correlated descriptors and then allocates

importance weights according to predictive power. This method
mitigates multicollinearity in high-dimensional HEA datasets
while preserving the most relevant parameters for yield strength
and elongation, offering a clear methodological advance over
conventional feature-pruning techniques.

By combining Extreme Gradient Boosting, Random Forest and
Gradient Boosting as base learners within a two level stacking
framework and using Support Vector Regression as themeta learner,
our ensemble achieves superior generalization on unseen data.
Specifically, test set coefficients of determination reach 0.749 for
yield strength and 0.755 for elongation.

To reveal the physical basis of these predictions, we apply Shapley
Additive ExPlanations to each model component. Our findings
show that the standard deviation of bulk modulus, configurational
entropy and average melting temperature most strongly influence
yield strength,whereasvariations inmixingenthalpy, electronegativity
variance and bulk modulus predominantly govern elongation. These
results both confirm established metallurgical principles and uncover
new composition-property relationships that can directly inform
future alloy design efforts.

In summary, this work establishes a rigorously validated
interpretable ensemble modeling pipeline for HEA mechanical-
property prediction. The integration of automatic feature grouping,
robust model stacking and game-theoretic interpretability lays a
strong foundation for data driven alloy design and opens the door
to subsequent inverse design studies and experimental validation.
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