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Rapid mold optimization based
on ultraviolet curing 3D printing
technology

Hanyu Rao, Xinyu Bai, Wen Yan and Jie Liu*

Materials Science and Engineering, Nanjing University of Technology, Nanjing, China

Injection molding is the most common method for making plastic products.
However, quick molds made with ultraviolet (UV) curing 3D printing frequently
employ photosensitive resins with low mechanical strength, rendering plastic
components prone to warpage deformation. To solve this issue, our research
focuses on the design and development of fast molds using UV-curing 3D
printing technology. A response surface model was used to explore the
effect of different process parameters on component warpage, with the goal
of minimizing deformation. An upgraded particle swarm optimization (PSO)
technique was then created to fine-tune the process parameters and reduce
warpage evenmore. The results revealed that raising injection pressure, reducing
temperature, and prolonging holding time successfully reduced warpage.
During the single-peak Schwefel function test, the modified PSO method
displayed greater optimization capabilities, achieving convergence in around 40
iterations. Using the modified values, the maximum warpage was lowered by
0.55 mm. Experimental results demonstrate the suggested optimizationmodel’s
performance, allowing for increased mold design flexibility and aiding the
industry’s migration to digital and customized production.
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ultraviolet curing 3D printing, rapid mold, particle swarm optimization algorithm,
photosensitive resin, viscosity

Introduction

With the advancement and implementation of ultraviolet curing 3D printing (UVC-
3DP) technology, it has significant advantages in designing injection molds to fulfill the
demands for high precision and intricate detail (Pan et al., 2022). 3D printing technology
can be employed in the production of various types of molds. Its biggest advantage is that
it can realize rapid prototyping, which can significantly improve manufacturing efficiency,
reduce costs, and provide greater flexibility for product design (Park et al., 2022). Significant
progress has been achieved in the application of UVC-3DP molds to injection molding.
These successes include: (1) rapid mold prototyping that accelerates production cycles;
(2) improved mold design optimization enabling more precise and complex geometries;
and (3) reduction of plastic component warpage through enhanced process control.
However, several persistent bottlenecks remain: (1) the limited mechanical strength and
thermal stability of photosensitive resins, which affect the mold’s durability under injection
molding conditions; (2) warpage deformation in molded parts caused by the low thermal
conductivity of UV-curable resins; and (3) challenges in process parameter optimization,
where current approaches may lack accuracy and are prone to converging on local optima.
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Rapid mold is a kind of use of computers, CNC technology and
othermeans, in a shorter period to produce product samples ofmold
manufacturing technology. The emergence of rapid mold makes it
possible to reduce the product development timeline, accelerate the
speed of product replacement and reduce the investment risk of
enterprises (Park et al., 2022). UVC-3DP rapid molds have a shorter
lifetime, and the photosensitive resin used in themhas lower thermal
conductivity and mechanical strength, which will be subjected to
impacts from the melt temperature (MeT), which in turn will cause
warpage deformation in the plastic part Liu et al., 2023) Therefore,
optimizing the specifications of the injection molding (IM) process
is crucial because it lowers the number of process parameters
and enhances the use of UVC-3DP fast molds. However, when
performing parameter optimization, the currently popular single
approach has issues with low accuracy and a propensity to enter the
local optimal solution (LOS). For this reason, the study is based on
response surface methodology (RSM) to model UVC-3DP molds
and build a process parameter optimization model (PPOM) based
on the improved particle swarm optimization (IPSO) algorithm, in
order to improve the accuracy and quality of plastic part produced
by UVC-3DP molds and reduce the waste of raw materials. The
innovation of the study is to model the UVC-3DP mold based on
RSM and output the optimal IM process parameters using the IPSO
algorithm. Other primary goals of this study are to increase the
precision and speed of mold creation and improve the mechanical
strength and thermal stability of UV-curing molds. To address the
persistent issue of warpage deformation in plastic parts molded with
UVC-3DP molds, our research adopts a two-stage problem-solving
strategy. First, we utilize Response Surface Methodology (RSM)
to construct a predictive model that characterizes the relationship
between key injection molding parameters—holding time, holding
pressure, mold temperature, and melt temperature—and the
resulting warpage deformation. This allows us to identify the most
significant contributors to part distortion. Second, we propose an
enhanced optimization methodology by integrating Particle Swarm
Optimization (PSO) with a Genetic Algorithm (GA), forming
an improved PSO (IPSO) algorithm. This hybrid optimization
approach is employed to determine the optimal combination of
process parameters that minimize warpage. Through simulation
and experimental validation, our methodology provides a robust
and data-driven framework for improving part quality, enhancing
mold performance, and advancing the industrial applicability of
UVC-3DP technology in rapid tooling.

UVC-3DP technology is a 3D printing technology for additive
manufacturing based on photosensitive resinmaterials, and the core
principle is to cure the photosensitive resin layer by layer using
high-intensity ultraviolet light or digital light processing technology
(Chen et al., 2025). To create continuous fiber composites, Ding
Y et al. suggested an embedded 3D printing technique that uses a
deposition nozzle to accurately lay down continuous fibers beneath
the resin layer. The results showed that the proposed 3D printing
technique had the advantages of neat fiber alignment and void
density minimization (Ding et al., 2024). Jiang H et al. investigated
the effectiveness of a novel two-stage ultraviolet (UV)-curable
resin material for 3D printing in response to the weak interfacial
bonding and low mechanical strength of printed composites. The
outcomes revealed that thematerial had strongmechanical stiffness,
strength and inter-filament bonding, and could also be repaired,

remodeled and recycled (Jiang et al., 2023). Yang Z et al. proposed
the introduction of vaporized metal combustion for the preparation
of high solid content UV epoxy resin/micro-silica powders in
response to the short service life of injection molds fabricated using
UVC-3DP technology. The findings demonstrated that the heat
distortion temperature of the sample prepared by the proposed
method reached 188°C (Yang et al., 2022). Komissarenko D et al.
explored the possibility of using a UV curing system for the
fabrication of high-strength, high-density zirconia parts using a
low-cost desktop 3D printer. The results showed that the zirconia
translucent ceramics prepared did not show any visible cracks
or pores when the zirconia content of the slurry was 35 vol%
and the density could reach 99.6% (Komissarenko et al., 2023).
Abdullah A. M. et al. addressed the issue of poorly investigated
characteristics of 3D-printed thermoset composites embedded with
continuous fibers by creating an affordable 3D printing technique
utilizing the direct ink writing technique (Abdullah et al., 2023).
Zheng J et al. proposed a bio-based acrylate synthesized from
eugenol and siloxane to address the problem of poor stability of
UV-cured acrylates used in UVC-3DP technology. The outcomes
revealed that the acrylate had low viscosity, good thermal properties
and hydrophobicity after curing UV irradiation, and cytotoxicity
values above 80% (Zheng et al., 2022).

Using an injection mold, molten plastic is injected into a
mold, where it is subsequently cooled and pressured to create the
required shape of the finished product. Berlin W et al. developed
a numerical simulation model for the temperature control of
injection molds. The potential to enhance the efficiency of metal
energy input through infrared radiation was examined in the
study using ray tracing models, which may aid in the thermal
design of injection molds with intricate geometries (Berlin et al.,
2022). Zhang Y et al. suggested a deep learning and computer
vision detection-based process monitoring method for automated
real-time quality monitoring in the injection mold manufacturing
process. The results indicated that the proposed method could
effectively detect the geometrical dimensions of parts as well as
many types of IM defects (Zhang et al., 2022). Steijvers K et al.
addressed the difficulty of applying current fabrication methods to
the large-scale production of locally resonant metamaterials and
proposed a method for the large-scale production of resonators
using injection molds, which could help to account for fabrication-
induced changes in metamaterial geometry and material properties
(Steijvers et al., 2023). Araújo C et al. proposed a processing fault
monitoring method based on pressure distribution analysis to
address the problem of monitoring and diagnosing processing faults
in the IM process of injection molds. This study demonstrated
the feasibility of intra-cavity pressure monitoring in fault diagnosis
and IM process optimization, which could help to identify defects
present at different stages of the injected part (Araújo et al., 2023).
To develop environmentally friendly bamboo fiber reinforced PLA
composites, Rao G et al. proposed the use of injection molds to
process green composites. The study analyzed the mechanical,
thermal and morphological traits of the composites (Rao et al.,
2024). For improving the quality requirements of IM and the
efficiency of the design process, Michaeli W et al. proposed a
three-dimensional finite element model derived from Galerkin’s
formulation to numerically simulate the velocity, pressure and
temperature fields of IM (Michaeli et al., 2022).

Frontiers in Materials 02 frontiersin.org

https://doi.org/10.3389/fmats.2025.1605771
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Rao et al. 10.3389/fmats.2025.1605771

While prior studies have applied Particle Swarm Optimization
(PSO) and Genetic Algorithms (GA) independently to various
process parameter optimization problems, their individual
limitations, such as premature convergence in PSO and slow
convergence in GA, restrict their effectiveness in complex,
multimodal search spaces typical of UVC-3DP mold optimization.
Moreover, existing research on UVC-3DP focuses primarily on
material properties and mold fabrication, with limited attention to
integrated process parameter optimization for warpage reduction.
Our study addresses this gap by developing a hybrid PSO-GA
algorithm that combines the global search capability of PSO with
the population diversity maintenance of GA. This hybrid approach
enhances convergence reliability and solution accuracy, specifically
tailored for optimizing injection molding parameters in UVC-3DP
molds, thereby advancing the state-of-the-art in rapid mold process
optimization.

In summary, although, the research about the quality control
of plastic part of UV curing plastic molds is still not deep enough.
For this reason, the study of optimizing the injection process
parameters of UVC-3DPmolds in the hope of reducing the warpage
deformation of plastic part has important practical application value.

Methodology

This study focuses on optimizing the injection molding (IM)
process parameters to minimize warpage deformation in plastic
parts produced usingUV curing 3D printed (UVC-3DP)molds.The
methodology involves two main components.

Response surface methodology (RSM)
modeling

The heat transfer characteristics of UVC-3DP molds are
modeled using RSM to capture the relationship between process
parameters and warpage deformation.

Four injection molding parameters—holding time (HoT),
holding pressure (HP), mold temperature (MoT), and melt
temperature (MeT)—are selected as design variables.

Central Composite Design (CCD) is employed to systematically
vary these parameters at five levels each, generating experimental
data to fit a second-order polynomial response surface model that
predicts warpage deformation.

Design Expert software is used for experimental design, data
sampling, and model fitting.

Analysis of variance (ANOVA) is conducted to evaluate the
significance of each parameter and the overall model fit.

Process parameter optimization model
(PPOM) using improved particle swarm
optimization (IPSO) hybridized with
genetic algorithm (GA)

Since RSM alone cannot guarantee the global optimal solution,
an optimization model combining IPSO and GA is developed to
search the parameter space more effectively.

The IPSO algorithm incorporates dynamic inertia weights to
balance global search ability and local search accuracy.

GA’s selection, crossover, and mutation operations are
embedded in a serial hybrid strategy to enhance diversity and avoid
premature convergence.

The optimization objective is to minimize the warpage
deformation predicted by the RSMmodel.

Algorithm performance is validated against benchmark
functions and compared with conventional PSO and GA methods
to ensure superior global search capability and convergence speed.
Finally, the optimal injection molding parameters identified by the
PPOM are validated through Moldflow simulation to confirm the
reduction in warpage deformation.

Optimized design of molds based on
UVC-3DP

To investigate the quality control of plastic part for curing 3D
plastic molds, the study will model the UVC-3DP molds based
on RSM. The PPOM based on the IPSO algorithm will be further
constructed to improve the quality of the plastic part.

RSM-based modeling of UVC-3DP molds

The heat transfer (HT) characteristics between molds printed
by UVC-3DP technology and traditional metal molds have large
differences. The HT rate is lower, and the cooling rate is slower,
which will easily lead to warpage deformation of the plastic part.
The warpage deformation is the deviation of the shape of the plastic
part from the shape of the cavity of the rapid molds. This affects the
molding accuracy and appearance quality of the plastic part, which
makes it difficult to perform subsequent processing. Therefore, the
study will analyze the mechanism of warpage deformation of plastic
parts. Inhomogeneity in the heat exchange process is one of the
main causes of plastic part warpage deformation.The heat exchange
process of the injection mold directly changes the temperature
distribution and shrinkage of the plastic part, which consequently
leads to the plastic part warpage deformation. According to the law
of conservation of energy, the study simplifies the heat exchange
process of the UV curing rapid molds into Equation 1.

Q = Qc +Qe (1)

In Equation 1, Q represents the total heat transferred into
the mold. Qc denotes the heat carried away by the cooling
medium. Qe represents heat radiation and convective HT from the
surrounding environment to themold. Among them,Q is calculated
as shown in Equation 2.

Q = [Δm+ c(t0 − t1)]ρV (2)

In Equation 2, Δm denotes the entropy of melting mass, c
denotes the specific heat capacity. t0 and t1 denote the temperature of
the injectedmelt and the temperature of the plastic part after cooling,
respectively. ρ and V denote the density and volume of the plastic
part, respectively. The calculation of Qc is shown in Equation 3.

Qc = Aκ(t2 − t3) (3)
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FIGURE 1
Process diagram for establishing response surface model.

In Equation 3, κ is the convective HT coefficient. A denotes the
convective HT area. t2 and t3 denote the average temperature of
the molding surface and the temperature of the cooling medium,
respectively. The calculation of Qe is shown in Equation 4.

Qe = 20.8[(2.73+ 0.01t4)4 − (2.73+ 0.01t5)
4]A0η (4)

In Equation 4, t4 and t5 denote the temperature of the mold
in contact with the external surface and the ambient temperature,
respectively. A0 denotes the area of the side of the mold, where the
moving mold is close to the fixed mold. η denotes the radiation rate.
Material properties and IM process parameters, etc., Are the main
causes of warpage deformation of plastic parts. The photosensitive
resin material used in UVC-3DP technology has a low thermal
conductivity, which results in the plastic part being susceptible to
warpage deformation. For this reason, the study proposes the use
of RSM to adjust the IM process parameters. Through a series of
deterministic tests, RSM is a mathematical technique that uses a
polynomial function (PF) to estimate an implicit limit state function
(Manojkumar et al., 2022; Arpitha et al., 2024). The flowchart for
establishing the response surface (RS) model is shown in Figure 1.

The higher the order of the PF, the better the model aligns
with the data, but it can also overfit the noise. Therefore, after
comprehensive consideration, the study uses the second order RSM
equation to build the model as expressed in Equation 5.

y = δ+
m

∑
i=1

βixi +
m

∑
i=1

βiix
2
i +

m

∑
i<j

βijxixj + ϑ (5)

In Equation 5, δ denotes the constant term. xi denotes the design
variable. βi denotes the linear effect of xi. βii denotes the second order
effect of xi. ϑ denotes the residual error. Central composite design
(CCD) is a widely used RSM design method that combines factorial
design and RSMs. It estimates the response of a system through a
series of well-designed experiments and identifies the main factors
and their interactions that affect the response (Bayuo et al., 2024).
CCD can efficiently utilize experimental resources and obtain high
accuracy through a smaller number of experiments, so the study
adopts CCD to build the RS model. The design variables’ quantity

is assumed to be m. If the range of variation of the i th variable zi is
[z1i,z2i], the range of variation is converted to the new variable ri in
[-2,2] using coding transformation, as shown in Equation 6.

{{{{{{
{{{{{{
{

ri =
zi − z0
Δi

z0 =
z1i + z2i

2
Δi =

z2i − z1i
2

(6)

In Equation 6, z0 denotes the center point of the interval of
the range of variation of the variable zi. Δi denotes the interval
half-length. In the study, the plastic part warpage deformation is
minimized as the response objective, and the four IM parameters
of holding time (HoT), holding pressure (HP), mold temperature
(MoT), andMeT are selected as the response variables.The selection
of the level values of the response variables is crucial for the
reliability and validity of the experimental results. To ensure the
comprehensiveness and accuracy of the experiment, five level values
are selected for each response variable. Table 1 displays the level
table of the response variables. The selection of level values for
the injection molding parameters in Table 1 was guided by a
combination of industrial standards, preliminary trial experiments,
and material-specific considerations for UV-curable photosensitive
resins. The holding time range (2–6 s) was chosen based on the
fast curing behavior of UV-printed molds and the need to avoid
overpacking. The holding pressure range (40–80 MPa) reflects a
practical window that allows sufficient material compaction without
causing stress concentrations or damaging the low-strength resin
molds. Mold temperature (40°C–60 °C) was selected to remain
below the thermal distortion point of the resin material while still
supporting efficient cooling. Lastly, the melt temperature range
(210°C–250°C) corresponds to typical processing temperatures for
commonly used thermoplastics in UV-curing applications and
ensures proper melt flow while minimizing thermal degradation or
excessive shrinkage. These parameter ranges ensure experimental
safety, compatibility withUVC-3DPmaterials, and capture sufficient
variation for effective response surface modeling.
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TABLE 1 Level table of response variables.

Level Response variable

Hold time/s Hold pressure/MPa Temperature of the mold/°C Temperature of the melt/°C

1 2 40 40 210

2 3 50 45 220

3 4 60 50 230

4 5 70 55 240

5 6 80 60 250

The study used Design Expert software for data sampling to
obtain the response function Y as shown in Equation 7.

Y = −4.058+ 0.009 ⁢B+ 0.061⁢C+ 0.026 ⁢D− 0.794 ⁢E+ 0.0001 ⁢BC

− 4.5× 10−5 ⁢BD− 0.0004 ⁢BE− 0.0002⁢CD+ 0.001 ⁢CE

+ 0.003⁢DE− 0.0003⁢B2 + 2.625× 10−5 ×D2 + 0.032⁢D2

(7)

In Equation 7, B denotes the MoT. C denotes MeT. D denotes
HP. E denotes HP time.

PPOM based on IPSO algorithm

The study employs a RSM to construct a model. However,
the RSM is unable to identify the optimal solution for all
discrete combinations within the specified factor level interval.
This can result in the model converging on a LOS. In light of the
considerations, the study will proceed to construct a PPOM based
on the IPSO algorithm. The particle swarm optimization (PSO)
algorithm is a progressive computation technique that was first
suggested byDr. Eberhart andDr. Kennedy in 1995. It was developed
from the behavioral study of bird flock predation (Alsaidy et al.,
2022). The PSO algorithm can identify the optimal solution within
the search space by emulating the social behavior observed in
biological groups, such as flocks of birds or schools of fish. It
has the advantages of strong global search ability (GSA), a few
parameters, easy to implement, etc., and has been widely used
in parametric optimization tasks. Equation 8 displays the revised
velocity of particle i.

Vij(t+1) = c2r2(gbestij(t) − xij(t)) + c1r1(pbestij(t) − xij(t)) +ωVij(t) (8)

In Equation 8, Vij(t+1) denotes the velocity of particle i in the
j th dimension space at the moment t+ 1. ω denotes the inertia
weight coefficient. xij(t) and Vij(t) denote the position and velocity
of particle i at the moment of t, respectively. c1 denotes the self-
perception weight. c2 denotes the social cognition weight. r1 and r2
denote random vectors of the same size for the particle quantities.
pbestij(t) is particle individual optimal solution and gbesti(t) denotes
particle swarm global optimal solution. In summary, the velocity
update of the particle is mainly affected by the three parameters ω,
c1 and c2. The position update of particle i is shown in Equation 9.

xij(t+1) = xij(t) + vij(t+1) (9)

FIGURE 2
Schematic diagram of particle position migration.

In Equation 9, xij(t+1) is the position of particle i at themoment of
t+ 1. In the PSO algorithm, the positional migration of the particle
is schematically shown in Figure 2.

The inertia weight ω directly affects the GSA and local search
ability (LSA) of the PSO algorithm. To improve the algorithm’s GSA
and enable it to exit the LOS, a larger ω is advantageous. In contrast,
a lower ω can help improve the algorithm’s LSA, but it can also lead
to an early convergence to the LOS from the method. Therefore,
the study employs the use of dynamic inertia weights in lieu of the
original inertia weights, with the objective of reducing the value
of the inertia weights with each iteration. This approach serves to
balance the global search and LSA, thereby preventing the algorithm
from premature convergence or falling into a LOS. The dynamic
inertia weights are shown in Equation 10.

ωn+1 = ωn + τ
fn − fn−1
| fn − fn−1|

(10)

In Equation 10, ωn and ωn+1 denote the current inertia factor
and the inertia factor at the next iteration, respectively. τ denotes
the gain factor. fn and fn−1 denote the optimal adaptation values
when the number of iterations is n and n− 1, respectively. The same
dynamic adjustment strategy is used to adjust the values of c1 and c2
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FIGURE 3
Flow chart of GA.

as shown in Equation 11.

{{{{{
{{{{{
{

c1(t) =
T[c1i + (c1i − c1 f)]

Tm

c2(t) =
T[c2i + (c2i − c2 f)]

Tm

(11)

In Equation 11, c1i denotes the initial value of c1. c1 f denotes
the end value of c1. T is the current iteration. Tm is the maximum
iterations. c2i denotes the initial value of c2. c2 f denotes the end
value of c2. However, PSO algorithm also suffers from the problem
of easy to fall into LOS, for this reason, the study further introduces
genetic algorithm (GA) to optimize it. GA is a proposed evolutionary
algorithm that was created in accordance with the rule of evolution
of natural species. Through mathematical operations, the computer
simulation method transforms the problem-solving process into
a process akin to chromosomal gene crossing and mutation in
biological evolution (Alhijawi and Awajan, 2024). The flowchart of
GA is shown in Figure 3.

In Figure 3, the selection operation of GA refers to selecting
a certain number of individuals from the current population
according to a certain strategy based on the selection probability, so
that these individuals can have more chances to be inherited into
the next-generation. The selection process employs a roulette wheel
selection mechanism to guarantee that those with better fitness
values (FVs) have a larger chance of getting chosen. The probability
P of a candidate being chosen is calculated as shown in Equation 12.

P = p/(
N

∑
i=1

p) (12)

In Equation 12, p denotes the FV of an individual. N denotes
the population size. A roulette wheel is generated based on the

calculated probability, and a random number (RN) of [0,1] is
selected to compare with the probability. The individual is not
chosen if the RN exceeds the likelihood of being chosen, and vice
versa. The act of transferring some of the genes from two parent
people to create new individuals is known as the crossover operation
of GA, and it contributes to the population’s increased fitness and
variety. The mutation operation of GA represents the process of
randomlymodifying the individuals within the population.This can
enhance the variety within the population and prevent the algorithm
fromprematurely narrowing downon the LOS.Thehybrid strategies
of PSO algorithm and GA include parallel hybrid, embedded hybrid
and serial hybrid. Parallel hybridization means that an optimal
individual is selected in each iteration and shared by both, but the
rest of the parts between PSO algorithm and GA do not affect
each other, which is prone to repeated calculations. The embedded
hybrid approach entails integrating the selection, crossover, and
mutation operations of the GA into the PSO algorithm, thereby
enhancing population diversity and augmenting the algorithm’s
global search capability.The process of serial hybridization, whereby
each stage executes the corresponding algorithm independently,
has the potential to enhance the complementarity between the two
algorithms. Therefore, the study adopts the serial hybrid strategy.
In summary, the flow of the proposed PSO-GA in the study
is shown in Figure 4.

Subsequently, a PSO-GA-basedmathematical model for process
parameter optimization is established. Equation 13, which is based
on the RS model developed in the study, displays the algorithm’s
goal function.

min f(X) = Y,X = [B,C,D,E]T (13)
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FIGURE 4
The flowchart of PSO-GA.

In Equation 13, the optimization objective of PSO-GA is to
reduce the response function Y, i.e., the warpage deformation of the
plastic part.

Influence factors of plastic part warpage
and the results of parameter optimization
model

After modeling the UVC-3DP mold, to further reduce the
warpage deformation, the study will analyze the process parameters
affecting the plastic part warpage deformation. Additionally, the
viability and efficacy of the suggested PPOM, which is based on the
IPSO algorithm, in enhancing the warpage deformation of plastic
parts will be examined.

Effect of process parameters on plastic part
warpage

Table 2 displays the findings of the analysis of variance for
the four response variables and the RS model. The study used F-
values and P-values to value the overall level of accuracy of the
RS model that was built. The effect of HoT, HP and MeT on
warpage is more significant (P < 0.05). The F value of the RS
model is 16.829, and the regression effect of the overall model is
extremely significant.

To assess the efficacy of the RS model developed by the study
in terms of fitting, a comparison was conducted between the
predicted and actual values. The results of the comparison are
presented in Figure 5. The discrepancy between the estimated and
observed values is minimal, and the margin of error falls within
an acceptable range. The findings demonstrate that the RS model
developed by the study has a good fitting impact.

To explore the effect of material properties on plastic part
warpage deformation, the study compares the pressure volume

temperature (PVT) characteristic curves of semi-crystalline
materials with amorphous materials. Figure 6 displays the findings.
As illustrated in Figure 6a, the volume-specific volume of the
semi-crystalline material demonstrates a gradual increase with
rising temperature, reaching a maximum at 275°C. A pressure
level of 50 MPa was applied. The volume specific volume of semi-
crystalline material can reach 1.12 when the applied pressure level
is 50 MPa. In Figure 6b, the volume specific volume of amorphous
material also increases gradually with the increase of temperature.
A comparison of Figures 6a,b reveals that the volume-specific
volume of the semi-crystalline material is greater than that of
the amorphous material, and that the volume change is more
pronounced under identical conditions of temperature and applied
pressure. The plastic part is more prone to warpage deformation.
The results show that the material properties affect the plastic part
warpage deformation.

The effects of four IM parameters, HoT, HP, MoT and MeT
on the warpage deformation of plastic parts are shown in Figure 7.
In Figure 7a, the warpage deformation of plastic part shows a
gradual decrease with the increase of HP time. When the HoT
increases from 3s to 5s, the warpage deformation of the plastic
part also decreases from 2.51 mm to 2.46 mm. In Figure 7b, the
warpage deformation of the plastic part shows a gradual decrease
with the increase of the HP. When the HP rises from 45 MPa
to 70 MPa, the warpage deformation of the plastic part also
decreases from 2.53 mm to 2.32 mm. In Figure 7c, the warpage
deformation of the plastic part does not show significant change
with the increase of the MoT. As demonstrated in Figure 7d,
the warpage deformation of the plastic component demonstrates
a gradual increase in conjunction with an escalation in MeT.
The results indicate that HoT and HP are negatively correlated
with the amount of warpage deformation of the plastic part.
The MeT is positively correlated with the amount of warpage
deformation of plastic parts. There is no significant relationship
between MoT and the amount of warpage deformation of
plastic part.
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TABLE 2 Response surface analysis of variance results.

Error source Index

Mean square error Sum of squares F P

Holding time 0.0604 0.0604 27.112 <0.001

Holding pressure 0.3721 0.3721 166.898 <0.001

Mold temperature 0.0002 0.0002 0.072 >0.05

Melt temperature 0.0257 0.0257 11.548 <0.05

Response surface modeling 0.0375 0.5252 16.829 <0.001

FIGURE 5
Comparison results between model projected values and
observed values.

Effectiveness analysis of parameter
optimization model

To ascertain the efficacy of the proposed PSO-GA, the study
establishes a population count of 100, a series of iterations of 100,
inertia weights of [0.4,0.9], a crossover probability of 0.8, a variance
probability of 0.1, c1i of 0.7, c1 f of 0.3, and c2 f of 0.7. The outcomes
are contrasted with those of the conventional PSO algorithm and
GA, utilizing the Schwefel function and the Rastrigin function. The
algorithm is evaluated and benchmarked against the traditional PSO
algorithm (TPSOA) and GA, and the findings are illustrated in
Figure 8. In Figure 8a, in the test of the single-peak Schwefe function,
the proposed PSO-GA has a smaller FV of 0.007 compared to the
TPSOA and GA, and converges faster, converging after about 40
iterations. In Figure 8a, the proposed PSO-GA has a smaller FV of
0.007 and converges at about 60 iterations in the test of complex
multi-peak Rastrigin function. The results demonstrate that the

proposed PSO-GA has better global search performance and faster
convergence speed.

To further verify the performance and superiority of the
suggested PSO-GA for optimization search, the study uses
the Iris dataset for testing, with accuracy and recall as the
evaluation metrics. It is compared with the more advanced
chaos artificial bee colony (CABC) algorithm, chaos moth-
flame optimization (CMFO) algorithm and adaptive glowworm
swarm optimization (AGSO). Figure 9 displays the findings. In
Figure 9a, the recommended PSO-GA has a higher accuracy
of 94.02% in comparison to the three alternative methods. As
illustrated in Figure 9b, the proposed PSO-GA continues to
exhibit the highest recall rate of 92.16%. The findings show
that the anticipated PSO-GA exhibits superior performance in
optimization search.

The optimal IM process parameters of PSO-GA output are HoT
6s, HP 80 MPa, MoT 53.4°C, andMelt Temperature (MeT) 224.6°C.
To investigate the viability of the proposed PPOM found on the
IPSO algorithm, the process parameters are input into Moldflow for
simulation. It is compared with the warpage deformation obtained
from the simulation of the process parameters before parameter
optimization, the process parameters output from the traditional
GA and the process parameters output from the TPSOA. The
results are shown in Figure 10. The PPOM based on the IPSO
algorithm can reduce the warpage deformation of the plastic part
from 2.49 mm to 1.94 mm. The amount of warpage deformation is
lower than that of 2.17 mm in the conventional GA and 2.02 mm
in the conventional PSO algorithm. The results indicate that
the proposed PPOM based on the IPSO algorithm can output
better IM process parameters. This can effectively reduce the
warpage deformation of plastic parts, which has certain feasibility
and effectiveness.

In addition to accuracy and convergence performance,
practical applicability also depends on computational efficiency.
While the proposed PSO-GA hybrid algorithm demonstrates
superior optimization performance compared to conventional
PSO and GA in terms of fitness value and convergence rate,
it incurs a higher computational cost due to the sequential
integration of genetic operations (selection, crossover, mutation)
within each PSO iteration. The added complexity results in
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FIGURE 6
Comparison of PVT characteristic curves of different materials. (a) Semicrystalline materials, (b) Amorphous material.

FIGURE 7
The influence of IM parameters on the warpage deformation of plastic parts. (a) Hold time, (b) Hold pressure, (c) Mold temperature, (d) Solution
temperature.
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FIGURE 8
Test results of three algorithms on Schwefe function and Rastrigin function. (a) Schwefe function, (b) Rastrigin function.

FIGURE 9
Comparison of optimization performance among four models. (a) Accuracy, (b) Recall.

FIGURE 10
Comparison of warpage deformation under different process
parameters.

longer processing times, particularly when handling larger
parameter spaces or finer convergence criteria. However, the
algorithm remains tractable on standard computing hardware
(e.g., Intel Core i7 with 16 GB RAM), with total runtime
remaining within acceptable limits for engineering applications.
Despite the additional overhead, the performance gains in
solution quality and robustness justify the moderate increase
in computational load, making the method suitable for
industrial process optimization tasks where reliability and
precision are critical.

Conclusion

To reduce the warpage deformation of plastic part during the
IM process of UVC-3DP mold, the study modeled the UVC-
3DP mold based on RSM and built a PPOM based on the IPSO
algorithm. The results indicated that HoT, HP and MeT had more
significant effects on the warpage (P < 0.05). When the HoT was
increased from 3s to 5s, the warpage deformation of plastic part

Frontiers in Materials 10 frontiersin.org

https://doi.org/10.3389/fmats.2025.1605771
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Rao et al. 10.3389/fmats.2025.1605771

decreased from 2.51 mm to 2.46 mm. When the HP was increased
from 45 MPa to 70 MPa, the warpage deformation of plastic part
decreased from 2.53 mm to 2.32 mm. When the HP was increased
from45 MPa to 70 MPa, thewarpage deformation of plastic part also
decreased from 2.53 mm to 2.32 mm. The warpage deformation of
the plastic part did not show significant changes with the increase of
MoT. In the test of single-peak Schwefe function, compared with the
TPSOA and GA, the proposed PSO-GA had a smaller FV of 0.007
and a faster convergence rate, which tended to converge after about
40 iterations. In the test of complex multi-peak Rastrigin function,
the proposed PSO-GA had smaller FV and converged at about
60 iterations. Compared with CABC algorithm, CMFO algorithm
and AGSO algorithm, the accuracy and recall of the proposed
PSO-GA were higher, 94.02% and 92.16%, respectively. The PPOM
based on the IPSO algorithm could reduce the warpage deformation
of the plastic part from 2.49 mm to 1.94 mm. The amount of
warpage deformation was lower than that of the conventional GA,
which was 2.17 mm, and that of the conventional PSO algorithm,
which was 2.02 mm. However, the study only analyzed the warpage
deformation of the plastic part, and the actual IM process of
the plastic part may also have defects such as cracking, which
affects its application performance.Therefore, it would be beneficial
for future studies to further investigate the occurrence of quality
issues in the IM process of UV curing molds, with the aim of
promoting the application of rapid molds based on UVC-3DP
technology. It is important to note that the current study’s validation
of the optimized process parameters is based solely on Moldflow
simulations, and no experimental trials were conducted to verify
these results. Future work will focus on experimental validation to
confirm the effectiveness of the proposed PPOMbased on the IPSO-
GA algorithm in reducing warpage deformation and improving the
quality of plastic parts produced with UVC-3DP molds. While this
study focused primarily on minimizing warpage deformation, other
critical defects such as shrinkage, void formation, and cracking
were not modeled due to simulation constraints. These factors
can also significantly impact the performance and longevity of
injection-molded parts. Accordingly, future research will extend
the modeling approach to incorporate these additional quality
indicators. Furthermore, the current optimization framework was
developed and tested on specific mold material and process
setup. To assess its broader applicability, subsequent studies should
apply the framework to a wider range of mold geometries, resin
types, and 3D printing technologies, ensuring the robustness
and generalizability of the proposed methodology across diverse
manufacturing contexts.
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