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Introduction: Electromagnetic wave absorption materials reduce incoming
wave energy, with machine learning focusing on data-driven design methods.
Traditional multi-objective regression methods often fail to provide accurate
component predictions, limiting their performance.

Method: We propose a multi-objective predictive model for absorbent
compositions. Using single-variable predictions as cumulative features in
a regression chain improves feature representation. Performance metrics
identify the optimal predictor variables for material composition, aiding in
the classification of carbon nanotubes based on required performance and
predicted values.

Result and discussion: Experimental results indicate that the model achieves
better R2 and mean squared error for carbon nanotubes, carbon black,
and carbon fiber than other methods, with optimal Accuracy and Matthews
Correlation Coefficient in classifying carbon nanotubes, validating the method
for material composition design.

KEYWORDS

electromagnetic wave absorption material, carbon nanotube, multi-object regression,
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1 Introduction

Electromagnetic wave absorption (EWA) materials have become widely used in various
applications Zeng et al. (2020); Lv et al. (2022); Lv et al. (2024). EWA materials capture
electromagneticwaves, converting them into heat energy and reducing the negative effects of
electromagnetic radiation Zeng et al. (2020). The absorbing material is made by combining
a substrate with an absorbing agent, and a fixed thickness of a single layer of absorbing
material will only provide effective absorption in certain frequency bands Li et al. (2023).
Due to the low density and tunable conductivity of EWA materials, how to effectively
predict the properties and compositions using data-driven methods is a key research focus
in materials science and artificial intelligence Pollice et al. (2021).

Machine learning has progressed in material design. Wang et al. (2019) developed a
machine learning system for discovering new copper alloys, utilizing error feedback to
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enable bidirectional design of properties and components
to meet specific tensile strength and electrical conductivity
requirements. Tayyebi et al. (2024) suggested using interpretable
techniques for thin film preparation and SHAP analysis to identify
units that influence water permeability positively and negatively.
Machine learning has made strides in crystal graph networks and
lens images, but it mainly depends on rich features. Predicting the
property-composition of carbon-related EWA materials requires
finite characteristic dimensions for designing associated variables.
The traditional multi-objective regression method for predicting
material composition and properties encounters the following
challenges.

Feature Limitation. The prediction of EWA materials is
constrained by limited features, typically thickness, mass fraction,
and operating frequency. It is crucial to utilize data analysis ormodel
prediction to expand the range of potential features to improve
model predictions.

Chain Sequence. The order of the prediction chain impacts
results. Two main methods for constructing prediction chains
are the dependent correlation coefficient Melki et al. (2017) and
exhaustive link averaging Masmoudi et al. (2020). Applying the
prediction performance to obtain effective values during linking can
improve composition design accuracy.

To solve the above two problems, a performance-based multi-
object method (GBDT Performanced-guided Cumulative Chain,
GPCC) was proposed to achieve numerical and categorical
component prediction of EWA materials. To enhance the data
features, we introduce the predicted value of a single feature
within a multi-object framework, thereby reducing the impact
of accumulated prediction errors. For the prediction chain of
composition, we evaluated each variable in the training set and
averaged the topN variables to predict thickness, mass fraction, and
working frequency. GPCC also utilizes these predicted variables to
classify carbon nanotubematerials.The contributions are as follows.

• A predictive accumulation strategy optimizes input features
in a multi-objective framework. Due to limitations on
available features in the data, results from a single
model are used to improve the framework and reduce
cumulative errors.

• The regression chain construction method for the numerical
component of absorbent material has been implemented.
The proposed method uses measured data to create
a multi-objective regression framework, and identify
optimal prediction indicators with the training data
performance.

• A classification prediction method for carbon nanotube
materials has been developed, using numerical
predictions as input to validate the regression chain’s
effectiveness.

This paper validates the proposed method through
experiments on carbon EWA materials. The structure
includes: Section 2 on intelligence material design and multi-
objective prediction methods. Section 3 on the proposed
method. Section 4 on the dataset and experimental setting.
Section 5 on experimental results. Section 6 summarizes the
conclusion.

2 Related Work

2.1 Intelligent material design

Intelligent material design technology has significantly
improved the efficiency of new material research and development,
from the microscopic to the production level. Noh et al. (2020)
proposed reverse design to accelerate traditional material design
by leveraging hidden knowledge in material data to predict
properties, and developed an image-based generator framework
named iMatGen Zeng et al. (2020). Han et al. (2023) created a
generative model using a crystal diffusion variational auto-encoder
to customize crystal structures based on desired compositions. The
model employs a deep neural network to extract global features
from the crystal’s physical properties and optimizes structures
using density functional theory. Hu et al. (2022) added a formation
energy predictor to improve the model’s potential space, ensuring
that the generated structures are morphologically reasonable and
energetically stable. These approaches highlight the potential of
machine learning in designing and reverse engineering stable
crystalline materials. The above methods highlight the potential
of machine learning in designing stable new crystalline materials,
especially for prediction and design.

Data-driven technology in absorber design improves
performance prediction and the discovery of efficient absorbers.
Nadell et al. (2019) used deep learning to predict transmittance
spectra for all-dielectric surfaces based on ADM parameters.
Hou et al. (2020) developed a deep neural network for on-demand
meta-material design, calculating split ring resonator parameters
from reflectivity. On et al. (2024) created an electromagnetic
absorber using deep learning, integrating a variational auto-encoder
with CMA-ES optimization for efficient meta-structure design in a
specific frequency band.

2.2 Multi-objective regression

Multi-objective regression is a key area of machine learning that
predicts multiple output variables from given input variables. The
challenges of multi-objective regression can be addressed through
algorithm-level and ensemble-level methods.

At the algorithmic level, single-objective regressionmethods are
optimized for multi-objective scenarios. M-SVR Tuia et al. (2011)
and MLS-SVR Xu et al. (2013) enhance support vector machine
(SVM) techniques to optimize multiple outputs while considering
their interrelationships and nonlinear correlations. Tran et al.
(2024) found that SVM methods like ELS-SVR are ineffective
for target component issues and suggested using artificial neural
networks. They proposed a multi-output regression technique
with gradient boosting and deep neural networks, training each
layer on the residuals of the previous iteration’s squared loss
function. Zheng et al. (2023) introduced amulti-objective prediction
method using an adaptive dynamic genetic algorithm and adaptive
moment estimation (ADGA-AM-ANN), which adds noise to the
output and globally optimizes ANN.

At the ensemble level, regression chains sequentially
concatenatemultiple regression problems to predict target variables.
Spyromitros-Xioufis et al. (2016) introduced the ensemble

Frontiers in Materials 02 frontiersin.org

https://doi.org/10.3389/fmats.2025.1610601
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


He et al. 10.3389/fmats.2025.1610601

FIGURE 1
Prepare coaxial ring material using paraffin as the matrix material and carbon tube powder. Using mass fraction, thickness and operating frequency, the
real part, imaginary part and tangent values of dielectric constant and permeability are obtained.

regression chain method, which incorporates previous target
predictions as additional inputs. The maximum correlation chain
model (SVRCC) Melki et al. (2017) builds on this concept,
leveraging target correlations to enhance prediction performance
and reduce computational complexity. Geiß et al. (2022) developed
a regression chain ensemblemethod using repeated permutations to
address insufficient multi-task objectives. This approach enhances
the model’s ability to learn inter-task dependencies by propagating
each target variable’s predicted values to subsequent models,
thereby improving the accuracy of multi-variable predictions. The
regression chain enhances prediction accuracy through multi-task
concatenation and task relevance, and is widely used in energy
materials estimation Yu et al. (2023), production process design
Turetskyy et al. (2021), and material surface design Akhtar et al.
(2024) in intelligent material design.

3 Methodology

3.1 Problem definition

We selected EWA materials from 1 GHz to 18 GHz working
frequency and acquired the performance. By varying the
components in carbon materials, we tested their dielectric
constant and permeability. The sample preparation process
is shown in Figure 1.

Permittivity and permeability as input X to predict the values
and categories of carbon materials. The properties of absorbing
agents like carbon nanotubes, carbon black, and carbon fiber vary
with different thicknesses and mass fractions at specific operating
frequencies. We denote the predicted numerical variables as y1, y2,
and y3. Carbon nanotubes are categorized into two types, which
differ in outer diameter, pile density, and other characteristics. This
is treated as a binary classification problem with variable value y4.

3.2 Base learner

There is a complex nonlinear relationship between properties
and composition. Figure 2 shows the dielectric constant and
permeability changes of TNIM8 carbon nanotubes at mass fractions
of 1% and 7.7% across different operating frequencies. Gradient

Boosting Decision Trees (GBDT) effectively capture this complexity
by integrating multiple decision tree models, and managing feature
interactions to improve material composition predictions. The
performance in Figure 2 shows significant fluctuations in several
local frequency ranges, and GBDT is robust against noise and
outliers from experimental data. Thus, we apply GBDT as the base
learner to enhance prediction performance based on local features
and fitting errors.

GBDT employs classification and regression trees as weak
learners, where errors from each learner optimize subsequent
predictions of EWA materials. Taking the composition of the
EWA material as an example, the data composition is as follows:
{(xi,yi)}

n, i = 1,2,…,n, where n represents the number of samples,
xi represents the material performance of the i-th sample, while yi
denotes the material component to be predicted. The loss function
is denoted as L(y,Fm(x)), which can be defined as the mean
squared error in regression and exponential loss in classification.
Additionally, Fm(x) represents the m-th weak classifier. During
the initialization phase, c can be set as the mean of the material
indicators from the training set, and is expressed as Equation 1:

F0 (x) = arg min
γ

n

∑
i=1

L(yi,c) , (1)

where γminimize the loss function and can be the mean or majority
vote in the first iteration. In theM iteration stage, form = 1,2,…,M,
the input optimization of the tree is performed. For the i-th sample,
the negative gradient of them-th tree is expressed as Equation 2:

γm,i = −[
∂L(yi,F(xi))

∂F(xi)
]
F(x)=Fm−1(x)

. (2)

The current decision tree hm(x) utilizes to train the weak
classifier, thereby obtaining the corresponding leaf stage area Rm,j,
where j = 1,2,…, Jm, Jm represents the number of child nodes of
the m-th regression leaf. For each leaf node, its fitted value is
calculated as Equation 3:

cm,j = arg min
c
∑

xi∈Rm,j

L(yi,Fm−1 (xi) + c) . (3)

Obtain the expression for the strong learner FM(x):

FM (x) = F0 (x) +
M

∑
m=1

J

∑
j=1

cm,jI(x ∈ Rm,j) . (4)
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FIGURE 2
The variation trend of dielectric constant and permeability under different mass fraction, (a,c) describe the curves of magnetic permeanbility versus
frequency, (b,d) describe the curves of dielectric constant versus frequency.

Among them, I represents the indicator function, which
indicates whether the sample x is at the leaf node j. The attenuation
coefficient can be added to the last term of Equation 4 to gradually
increase the influence of subsequent tree models.

3.3 Multi-target regression and value
stacking

The cumulative strategy is a relearning procedure that increases
data dimensions linearly with each iteration in the regression
chain. According to Geiß et al. (2022), both non-cumulative and
cumulative enhancements of the feature vector yield competitive
predictions. Our accumulation strategy employs single variable
prediction as the data dimension, with the q-th dimension’s
prediction depending on the arrangement of the (q− 1) dimensions
and the prediction result of the single variable ŷ. While assuming
ŷq−1 that represents the prediction from the (q− 1)-th dimension
regression chain, and ŷsq−1 denotes the prediction result of this
variable that solely depends on x, then the q-th dimension predictor

variable is:

ŷq = fq (x0,…,xd, ŷ
s
0, ŷ

s
1, ŷ1,…, ŷ

s
q−1, ŷq−1) , (5)

where fq identifies the GBDT in the q dimension and d is the
dimension of x. Due to limitations in absorbent data acquisition,
we use a separate model to predict results in the cumulative
regression chain. This method is also widely utilized in the field
of computer vision, particularly in image pyramids, which employ
feature maps of varying scales. These maps are integrated into
the model system to enhance data dimensionality, allowing the
model to focus on different perspectives. The cumulative design
identifies the relationship between yq and yq−1 and analyzes the
predicted value based on the independent variable x. As learning
progresses, the target variable’s estimation is added to subsequent
models as features, enhancing the training dataset in the regression
chain order.

Various strategies exist for constructing regression chains.
Geiß et al. (2022) expanded single-variable regression to multiple
variables, creating chains that were alternately combined to find the
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Input: Training dataset X ⊆ Rn,d and Y ⊆ Rn,q, optimal

performance retain N, testing dataset X′ ⊆ Rm,d.

  Output: Predict target value Ŷ ⊆ Rm,q.

  Initialize

  Predicted matrix M(m,q∗N)

  Train q regression models with X and Y

independently, get the prediction result ŷs ∈ Rn
∗q.

  Training

  Establish traversal order ls

  for l in ls do

    Train the multi-regression model with

ŷs and Equation 5.

    Get the training performance.

    for i in q do

      if ŷq exceed performance in top N then

        Save performance in top N.

        Replace the prediction of X′ in M.

      end if

    end for

  end for

  Predicting

  Get the prediction Ŷ by average M with N.

Algorithm 1. EWA Material Multi-object Regression.

optimal link. Wahid et al. (2023) utilized three different regression
links for combined predictions, while Melki et al. (2017) based link
ordering on the correlation coefficient between variables. However,
correlation links may not align with regression performance,
and accumulating errors can reduce the accuracy of subsequent
predictors. For example, our tests showed that the predicted result
for ŷ1 − ŷ2 − ŷ3 was lower than that for ŷ1 − ŷ3 − ŷ2. To achieve the
optimal regression link, we predict variables based on performance.
For instance, after constructing a link with Equation 5, we calculate
and store the coefficient of determination (R2) for certain sequence
in the training set. If R2 exceeds a preset top N, we record
the predicted results from the test set, averaging these for the
composition prediction. The same approach applies when using an
indicator like mean squared error (MSE) to predict the smallest top
N values. The pseudocode is shown in Algorithm 1.

3.4 EWA material classification

In material composition design, we analyze the training set’s
performance and composition to derive numerical compositions
and material types. We use observed material properties with
y1, y2, and y3 as input to predict carbon nanotube types
with a classifier. X is constructed from the required material
properties and numerical composition, enabling the trained model
to predict y4. This method optimizes the use of existing numerical
components and meets practical needs for numerical components
and types based on material properties. The pseudocode is
shown in Algorithm 2.

The overall process flow is illustrated in Figure 3.

Input: Training dataset X(n,d), Y(n,q) and y4. Testing

dataset X′(m,d) and multi-regression prediction Ŷ(m,q).

  Output: Predict target value ŷ4.

  Xtrain = X⋃Y.

  Train the classifier F with Xtrain.

  ŷ4 = F(X
′⋃ Ŷ).

Algorithm 2. EWA material Classification.

4 Experimental design

We analyzed two research questions through experiment.
Research question (RQ) 1: The effect of variable accumulation

and result screening methods in Section 3.3 on material design.
RQ 2: The impact of GPCC on the prediction of material

classification.
The experimental setup for the two problems is explained in

Section 4, with analysis in Section 5.

4.1 Dataset description

Data for EWAmaterial batches were collected: carbon nanotube
TNIM8 and M8130317 were 22022, carbon black was 20020, and
carbon fiber was 25025. Split the training set and the test set in a 4:1.
The detail of the material dataset with components and properties
is shown in Table 1.

Variations in feature dimensions and numerical ranges can
affect their influence duringmodel training, impacting performance
and accuracy. Thus, data normalization for the experimental data,
as shown in Equation 6.

Xnorm =
X−Xmin

Xmax −Xmin
(6)

In addition, the regression values y1,y2,y3 can also
be normalized from Equation 6 to accurately evaluate the
changes in MSE corresponding to different dimensions of the
dependent variable.

4.2 Comparison method and evaluation
performance

The experiment aims to analyze the impact of chain
sorting and compare it with other five GBDT-based or multi-
regression methods.

• GPCC: Our proposed method, the parameters for the base
leaner keep the same with GBDT.

• GBDT: Applying 300 trees with a maximum depth of 3. A
minimum of 5 samples is required for splitting, with a learning
rate of 0.05 and squared error as the loss function.

• GBDTchain: Utilizing a GBDT to assess the prediction results of
the multi-objective regression chain and verify chain sequence.
Maintaining the same parameter settings as GBDT.
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FIGURE 3
Material component prediction based on multi-target sequence and value stacking.

TABLE 1 Datail of Dataset.

Material type
and model

Number of
samples

Mass fraction
interval

Sample
thickness

interval (mm)

Properties x Components y

Carbon Nanotube
(TNIM8)

22022 1%-7.7% 2.37-2.65
Dielectric constant’s

real ε′ and imaginary ε′′

part,
and tangent tanδe.

Magnetic permeability’s
real μ′ and imaginary μ″

part,
and tangent tanδm.

Thickness y1 Mass
fraction y2 Working

frequency y3

Carbon Nanotube
(M8130317)

22022 1%-22% 2.4-2.72

Carbon Black (RC-69) 20020 1%-10.5% 2.41-2.93

Carbon Fiber (ECC-N) 25025 1%-12.5% 2.41-2.93

• GBNN Emami and Martínez-Muñoz (2023): Gradient boosted
neural network is an additive model that approximates the
objective function by sequential training and combining
multiple sub-models into a multi-objective regression model.
Using 300 neural networks, updating one at each step. It has a
learning rate of 0.05 and employs the L-BFGS optimizer with a
logistic activation function.

• GBDTMO Zhang and Jung (2020): GBDT for multiple
outputs regression. Construct predictions for all variables or
selected subsets at each leaf node by summing the target
gains of all output variables. Sharing parameter settings
with GBDT.

• SVRCC Melki et al. (2017): Finding the direction of maximum
correlation among the targets and uses that order as the
only chain.

We use R2 and MSE as evaluation metrics for the RQ1. The
calculation equations are shown in Equations 7, 8:

R2 = 1−
SSres
SStol
, (7)

MSE = 1
n

n

∑
i=1
(yi − ŷi)

2. (8)

SSres is the sum of squares of the residuals, which is the sum
of the squares of the differences between the predicted values and
the actual values. The total sum of squares SStol is the sum of
the squares of the differences between the actual values and the
mean of those values. A higher R2 value, closer to 1, indicates
a stronger explanatory power of the model. MSE is the average
of the squares of the differences between predicted values and
actual values.
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TABLE 2 R2 in compared methods.

Material Methods Thickness Mass fraction Frequency

Carbon Nanotube

GPCC 0.6161 0.7159 0.8674

GBDT 0.4411 0.5893 0.8082

GBDTchain 0.4411 0.0987 0.7053

GBNN 0.0219 0.3644 0.5183

GBDTMO 0.3260 0.5356 0.7707

SVRCC 0.1582 0.2731 0.5388

Carbon Black

GPCC 0.9784 0.9886 0.9629

GBDT 0.9402 0.9599 0.9125

GBDTchain 0.9403 0.8223 0.8647

GBNN 0.5792 0.7274 0.2919

GBDTMO 0.9066 0.9085 0.8838

SVRCC 0.6803 0.7351 0.5581

Carbon Fiber

GPCC 0.8366 0.8644 0.9354

GBDT 0.7847 0.7129 0.8757

GBDTchain 0.7848 0.1200 0.8473

GBNN 0.1190 0.3154 0.4659

GBDTMO 0.5369 0.6266 0.8136

SVRCC −0.0454 0.4848 0.3340

The bold values indicate theoptimal values.

For RQ 2, we used GBDT as a classifier and used Accuracy
(ACC) andMatthews Correlation Coefficient (MCC) to evaluate the
test set. The calculation equations are shown in Equations 9, 10:

ACC = TP+TN
TP+TN+ FP+ FN

, (9)

MCC = TP∗TN+ FP∗ FN

√(TP+ FP) ∗ (TP+ FN) ∗ (TN+ FP) ∗ (TN+ FN)
, (10)

where TP indicates true positives, FN denotes false negatives,
FP represents false positives, and TN signifies true negatives.
ACC measures the proportion of correct predictions, while the
MCC evaluates misclassifications, reducing the impact of sample
imbalance on performance metrics.

5 Results and discussion

5.1 Performance of multi-regression

We use R2 and MSE corresponding to three types of EWA
materials, as shown in Table 1, 2.

The proposed GPCC demonstrates a significant improvement
over alternative methodologies, achieving an average increase in
R2 of 0.1 and a reduction in MSE of 0.008 when compared to
GBDT. The consistent predictive performance of GPCC suggests
that our optimal link search methodology effectively identifies the
most accurate predicted values. Furthermore, we observed that the
link mining sequence that yields the highest R2 and the lowest MSE
remains consistent, indicating the reusability of the optimal link
and predicted location. In contrast, GBDTchain exhibits comparable
thickness and operating frequency to GBDT but experiences an
average decrease in R2 of 0.4. This observation implies that,
despite the correlation among variables, errors tend to accumulate
following the construction of links, thereby diminishing predictive
performance. Although certain studies, such as those by Melki et al
(2017), have introduced correlation coefficients, these do not
directly correlate with performance outcomes, as evidenced by
the results of SVRCC. Additionally, GBNN exhibits instability in
predictions, particularly with significant errors in the operating
frequency of carbon black. When predicting the properties of EWA
materials, models that utilize extensive feature sets, such as neural
networks, perform less effectively than GPCC, further highlighting
the latter’s efficacy.
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TABLE 3 MSE in compared methods.

Material Methods Thickness Mass fraction Frequency

Carbon Nanotube

GPCC 0.0246 0.0256 0.011

GBDT 0.0357 0.0370 0.0159

GBDTchain 0.0357 0.0812 0.0244

GBNN 0.0625 0.0572 0.0399

GBDTMO 0.0431 0.0418 0.0190

SVRCC 0.0538 0.0655 0.0382

Carbon Black

GPCC 0.0015 0.0010 0.0031

GBDT 0.0040 0.0037 0.0072

GBDTchain 0.0040 0.0163 0.0112

GBNN 0.0285 0.0250 0.0584

GBDTMO 0.0063 0.0084 0.0096

SVRCC 0.0217 0.0243 0.0364

Carbon Fiber

GPCC 0.0159 0.0121 0.0054

GBDT 0.0221 0.0263 0.0102

GBDTchain 0.0221 0.0806 0.0126

GBNN 0.0855 0.0612 0.0449

GBDTMO 0.0449 0.0334 0.0157

SVRCC 0.1014 0.0460 0.0560

The bold values indicate theoptimal values.

We examine the predictive capabilities of variousmethodologies
for assessing the absorption characteristics of materials, specifically
focusing on carbon black, carbon nanotubes, and carbon fibers.The
performance of carbon black stabilizes at a mass fraction of 18%,
exhibiting negligible variations beyond this threshold. The GPCC
demonstrates the most effective regression performance for carbon
nanotubes, yielding R2 and MSE of 65.26% and 0.0223, respectively.
Conversely, the GBDTchain reveals a decline in predictive accuracy
for both carbon nanotubes and carbon fibers, suggesting a lack
of stability in its predictions. Notably, carbon nanotubes and
fibers outperform carbon black in predicting operational frequency,
although carbon black is associated with a higher MSE.Therefore, a
thorough analysis during the design of compositions necessitates an
evaluation of the predicted properties of various components across
different material types.

5.2 Performance of classification

Numerical predictions from five comparison algorithms were
used to predict carbon nanotube types by combining material
performance data. ACC and MCC evaluated their performance,

TABLE 4 ACC and MCC in compared methods, the best results
are in bold.

Methods ACC MCC

GBDT 0.9552 0.9109

GBDTchain 0.9609 0.9230

GBNN 0.9558 0.9119

GBDTMO 0.9449 0.8907

SVRCC 0.9341 0.8685

GPCC 0.9987 0.9975

The bold values indicate theoptimal values.

with M8130317 as the positive class and TNIM8 as the negative.
Performance is shown in Table 4.

Table 4 shows the ACC and MCC results from the five-fold
cross-validation to improve the stability of the prediction. In the
parameter search, we use actual properties and components as
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FIGURE 4
Feature importance in classification using GBDT.

FIGURE 5
Effect of model complexity on R2. (a–c) compare the prediction results of carbon nanotube,carbon black and carbon fiber for three
component indexes.

the training set and those predicted in Section 5.2 as the test set.
We apply five-fold cross-validation to find optimal parameters and
evaluate them with the test set. The parameter search candidates
are: number of trees 10, 20, 30, learning rate 0.01, 0.1, 0.2, and
maximum depth 3, 5, 7. Unlike other methods, GPCC does not
have more misjudgments for positive classes. SVRCC is ineffective
for regression but achieves about 0.93 accuracy in classification,
emphasizing its performance importance. GPCC improved ACC
and MCC by 6.46% and 12.9%, respectively, compared to SVRCC,
while maintaining high accuracy. By combining regression and
classification for EWA materials, GPCC proved its superiority and
practicality in the test set against various related algorithms.

In Figure 4, we list the importance of each feature when GBDT
is used as a classifier. It can be seen that the features related
to magnetic permeability are of relatively high importance for
the classification of carbon nanotubes. The predicted values of
ŷ3 and ŷ2 by the regression method corresponding to the GPCC
that we proposed also play a significant role in the classification,
which is greater than the importance of the corresponding

dielectric constant. This indicates that the prediction results of the
regression chain we proposed contribute well to the classification
performance.

5.3 Ablation experiment

To verify the influence of cumulative strategy on the prediction
ability, we used GPCCnonC, which represents the method without
using single prediction as a feature, and used the regression index
of 5.1 for comparison. The prediction ability of GPCC in materials
was compared, as shown in Figures 5, 6.

The mean R2 of GPCCnonC was 5.38% lower than GPCC, which
optimizes GPCCnonC’s MSE by 38%. GPCCnonC outperforms other
methods, only lagging behind GPCC in carbon nanotubes and
carbon black, underscoring the effectiveness of indicators for link
selection. Carbonfiber also shows strong results inmass fraction and
operating frequency, and the performance can be improved from
GPCCnonC using cumulative features.
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FIGURE 6
Effect of stacking prediction on MSE. (a–c) compare the prediction results of carbon nanotube,carbon black and carbon fiber for three
component indexes.

FIGURE 7
Effect of model complexity on R2. (a–c) compare the prediction results of carbon nanotube,carbon black and carbon fiber for three
component indexes.

FIGURE 8
Effect of model complexity on MSE. (a–c) compare the prediction results of carbon nanotube,carbon black and carbon fiber for three
component indexes.

To verify the influence of model parameters on the fitting effect,
we used GPCC1, GPCC2 and GPCC3 to represent the increase of the
number of individual trees by 300–500, respectively, and the results
were shown in Figures 7, 8. Overall, the complexity of the model is
increased, and the performance is improved in each component. The
degree of enhancement is inconsistent in different materials. MSE

decreases significantly incarbonblackatoperating frequency,butMSE
optimization is low in carbon nanotubes and fibers. In the process of
model construction, there is no overfitting phenomenon, indicating
the robustness of ourGBDTas a base learner. In practical applications,
it is necessary to balance model complexity and evaluation metrics to
complete the prediction within the inference time.
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6 Conclusion

We present a method for predicting the composition
and category of absorbing materials using the GBDT
model. A multi-objective regression framework enhances
the accuracy of predictions regarding the composition and
operational frequency of materials, such as carbon nanotubes.
The amalgamation of regression outcomes with material
properties enables a comprehensive analysis and prediction of
material types.

To assess the efficacy of the proposed methodology, we
performed experimental training on various datasets of absorbent
materials. The regression model demonstrated a high level
of precision in its predictions when compared to established
algorithms. The GPCC model effectively captures intricate
relationships among target variables and substantiates the feature-
enhanced cumulative strategy for multi-objective regression. The
prediction of material categories, derived from regression data,
yielded elevated ACC and MCC scores, thereby improving material
classification by eliminating irrelevant features. Future researchmay
leverage semi-supervised data to advance the design of material
compositions and facilitate the mixed predictions of multiple
materials.

Data availability statement

The raw data supporting the conclusions of this article
will be made available by the authors, without undue
reservation.

Author contributions

SH: Methodology, Software, Writing – original draft. JC:
Software, Validation, Writing – original draft. KH: Methodology,
Validation, Writing – original draft. JM: Data curation,
Resources, Writing – review and editing. KL: Data curation,
Resources, Writing – review and editing. TL: Writing – review
and editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. Kai Huang reports
financial support was provided by Natural Science Foundation
(2024J08197) of Fujian Province of China and the Startup Fund
(ZQ2024001) of Jimei University. Kexun Li reports financial support
from theNational Key Laboratory on Electromagnetic Environment
Effects (6142205230404) of China.

Acknowledgments

The authors would like to express our sincere gratitude and
appreciation for the contributions throughout the course of this
research paper.

Conflict of interest

Authors KL and TL were employed by China Electronics
Technology Group Corporation 33th Research Institute.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Akhtar, S., Ali, R., and Ameen, S. M. (2024). “Predicting the surface elastic
parameters of soft solids using multi-output decision tree regressor,” in AIP
conference proceedings, 3168. Melville, NY: AIP Publishing, 020024. doi:10.1063/
5.0219700AIP Conf. Proc.

Emami, S., and Martínez-Muñoz, G. (2023). Sequential training of neural networks
with gradient boosting. IEEEAccess 11, 42738–42750. doi:10.1109/access.2023.3271515

Geiß, C., Brzoska, E., Pelizari, P. A., Lautenbach, S., and Taubenböck, H. (2022).
Multi-target regressor chainswith repetitive permutation scheme for characterization of
built environments with remote sensing. Int. J. Appl. Earth Observation Geoinformation
106, 102657. doi:10.1016/j.jag.2021.102657

Han, S., Lee, J., Han, S., Moosavi, S. M., Kim, J., and Park, C. (2023). Design of new
inorganic crystals with the desired composition using deep learning. J. Chem. Inf.Model.
63, 5755–5763. doi:10.1021/acs.jcim.3c00935

Hou, Z., Tang, T., Shen, J., Li, C., and Li, F. (2020). Prediction network ofmetamaterial
with split ring resonator based on deep learning. Nanoscale Res. Lett. 15, 83–88.
doi:10.1186/s11671-020-03319-8

Hu, P., Ge, B., Liu, Y., andHuang,W. (2022). “Energy-constrained crystals wasserstein
gan for the inverse design of crystal structures,” in Proceedings of the 8th international
conference on computing and artificial intelligence, 24–31.

Li, H., Cao, Z., Xia, Y., Yao, G.,Miao, L., and Jiang, J. (2023). Dispersionmanipulation
method for ultrahigh frequency band reconfigurable absorbers. IEEE Trans. Antennas
Propag. 72, 1983–1988. doi:10.1109/tap.2023.3330635

Lv, H., Cui, J., Li, B., Yuan, M., Liu, J., and Che, R. (2024). Insights into civilian
electromagnetic absorption materials: challenges and innovative solutions. Adv. Funct.
Mater. 35, 2315722. doi:10.1002/adfm.202315722

Lv, H., Yang, Z., Pan, H., and Wu, R. (2022). Electromagnetic absorption
materials: current progress and new frontiers. Prog. Mater. Sci. 127, 100946.
doi:10.1016/j.pmatsci.2022.100946

Masmoudi, S., Elghazel, H., Taieb, D., Yazar, O., and Kallel, A. (2020). A
machine-learning framework for predicting multiple air pollutants’ concentrations
via multi-target regression and feature selection. Sci. Total Environ. 715, 136991.
doi:10.1016/j.scitotenv.2020.136991

Frontiers in Materials 11 frontiersin.org

https://doi.org/10.3389/fmats.2025.1610601
https://doi.org/10.1063/5.0219700
https://doi.org/10.1063/5.0219700
https://doi.org/10.1109/access.2023.3271515
https://doi.org/10.1016/j.jag.2021.102657
https://doi.org/10.1021/acs.jcim.3c00935
https://doi.org/10.1186/s11671-020-03319-8
https://doi.org/10.1109/tap.2023.3330635
https://doi.org/10.1002/adfm.202315722
https://doi.org/10.1016/j.pmatsci.2022.100946
https://doi.org/10.1016/j.scitotenv.2020.136991
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


He et al. 10.3389/fmats.2025.1610601

Melki, G., Cano, A., Kecman, V., and Ventura, S. (2017). Multi-target
support vector regression via correlation regressor chains. Inf. Sci. 415, 53–69.
doi:10.1016/j.ins.2017.06.017

Nadell, C. C., Huang, B., Malof, J. M., and Padilla, W. J. (2019). Deep learning
for accelerated all-dielectric metasurface design. Opt. express 27, 27523–27535.
doi:10.1364/oe.27.027523

Noh, J., Gu, G. H., Kim, S., and Jung, Y. (2020). Machine-enabled inverse design
of inorganic solid materials: promises and challenges. Chem. Sci. 11, 4871–4881.
doi:10.1039/d0sc00594k

On, H.-I., Jeong, L., Seo, T.-M., Jo, Y., Choi, W., Kang, D.-J., et al. (2024). Novel
method of performance-optimized metastructure design for electromagnetic wave
absorption in specific band using deep learning. Eng. Appl. Artif. Intell. 137, 109274.
doi:10.1016/j.engappai.2024.109274

Pollice, R., dos Passos Gomes, G., Aldeghi, M., Hickman, R. J., Krenn, M., Lavigne,
C., et al. (2021). Data-driven strategies for acceleratedmaterials design.Accounts Chem.
Res. 54, 849–860. doi:10.1021/acs.accounts.0c00785

Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., and Vlahavas, I. (2016). Multi-
target regression via input space expansion: treating targets as inputs.Mach. Learn. 104,
55–98. doi:10.1007/s10994-016-5546-z

Tayyebi, A., Alshami, A. S., Tayyebi, E., Buelke, C., Talukder, M. J., Ismail, N.,
et al. (2024). Machine learning–driven surface grafting of thin-film composite reverse
osmosis (tfc-ro) membrane.Desalination 579, 117502. doi:10.1016/j.desal.2024.117502

Tran, N. K., Kühle, L. C., and Klau, G. W. (2024). A critical review of
multi-output support vector regression. Pattern Recognit. Lett. 178, 69–75.
doi:10.1016/j.patrec.2023.12.007

Tuia, D., Verrelst, J., Alonso, L., Pérez-Cruz, F., and Camps-Valls, G.
(2011). Multioutput support vector regression for remote sensing biophysical

parameter estimation. IEEE Geoscience Remote Sens. Lett. 8, 804–808.
doi:10.1109/lgrs.2011.2109934

Turetskyy, A., Wessel, J., Herrmann, C., and Thiede, S. (2021). Battery production
design using multi-output machine learning models. Energy Storage Mater. 38, 93–112.
doi:10.1016/j.ensm.2021.03.002

Wahid, M. F., Tafreshi, R., Khan, Z., and Retnanto, A. (2023). Multiphase flow rate
prediction using chained multi-output regression models. Geoenergy Sci. Eng. 231,
212403. doi:10.1016/j.geoen.2023.212403

Wang, C., Fu, H., Jiang, L., Xue, D., and Xie, J. (2019). A property-oriented design
strategy for high performance copper alloys via machine learning. npj Comput. Mater.
5, 87. doi:10.1038/s41524-019-0227-7

Xu, S., An, X., Qiao, X., Zhu, L., and Li, L. (2013). Multi-output least-
squares support vector regression machines. Pattern Recognit. Lett. 34, 1078–1084.
doi:10.1016/j.patrec.2013.01.015

Yu, H., Yang, K., Zhang, L., Wang, W., Ouyang, M., Ma, B., et al. (2023).
Multi-output ensemble deep learning: a framework for simultaneous prediction
of multiple electrode material properties. Chem. Eng. J. 475, 146280. doi:10.1016/
j.cej.2023.146280

Zeng, X., Cheng, X., Yu, R., and Stucky, G. D. (2020). Electromagnetic microwave
absorption theory and recent achievements in microwave absorbers. Carbon 168,
606–623. doi:10.1016/j.carbon.2020.07.028

Zhang, Z., and Jung, C. (2020). Gbdt-mo: gradient-boosted decision trees
for multiple outputs. IEEE Trans. neural Netw. Learn. Syst. 32, 3156–3167.
doi:10.1109/tnnls.2020.3009776

Zheng, J., Liu, C., Huang, S., and He, Y. (2023). A novel adaptive dynamic
ga combined with am to optimize ann for multi-output prediction: small samples
enhanced in industrial processing. Inf. Sci. 644, 119285. doi:10.1016/j.ins.2023.119285

Frontiers in Materials 12 frontiersin.org

https://doi.org/10.3389/fmats.2025.1610601
https://doi.org/10.1016/j.ins.2017.06.017
https://doi.org/10.1364/oe.27.027523
https://doi.org/10.1039/d0sc00594k
https://doi.org/10.1016/j.engappai.2024.109274
https://doi.org/10.1021/acs.accounts.0c00785
https://doi.org/10.1007/s10994-016-5546-z
https://doi.org/10.1016/j.desal.2024.117502
https://doi.org/10.1016/j.patrec.2023.12.007
https://doi.org/10.1109/lgrs.2011.2109934
https://doi.org/10.1016/j.ensm.2021.03.002
https://doi.org/10.1016/j.geoen.2023.212403
https://doi.org/10.1038/s41524-019-0227-7
https://doi.org/10.1016/j.patrec.2013.01.015
https://doi.org/10.1016/j.cej.2023.146280
https://doi.org/10.1016/j.cej.2023.146280
https://doi.org/10.1016/j.carbon.2020.07.028
https://doi.org/10.1109/tnnls.2020.3009776
https://doi.org/10.1016/j.ins.2023.119285
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org

	1 Introduction
	2 Related Work
	2.1 Intelligent material design
	2.2 Multi-objective regression

	3 Methodology
	3.1 Problem definition
	3.2 Base learner
	3.3 Multi-target regression and value stacking
	3.4 EWA material classification

	4 Experimental design
	4.1 Dataset description
	4.2 Comparison method and evaluation performance

	5 Results and discussion
	5.1 Performance of multi-regression
	5.2 Performance of classification
	5.3 Ablation experiment

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

