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Introduction: In the field of materials science, the prediction of material
properties plays a critical role in designing newmaterials and optimizing existing
ones. Traditional experimental approaches, while effective, are resource-
intensive and time-consuming, often requiring extensive trial-and-error
methods. To address these limitations, the integration of digital technologies,
such as computational modeling and machine learning (ML), has become
increasingly important.

Methods: This paper proposes a hybrid multiscale modeling framework that
integrates molecular dynamics (MD) simulations, finite element methods (FEM)
from continuum mechanics, and supervised ML algorithms—including deep
neural networks and gradient boosting regressors—to enable accurate and
efficient prediction of material properties across scales. The method integrates
MD simulations for atomic-level interactions using Lennard-Jones and
embedded-atom method (EAM) potentials, FEM-based continuum mechanics
for stress-strain analysis and thermal response evaluation, and ML techniques
trained on multiscale descriptors (e.g., bond energy, stress tensor, coordination
number) to model nonlinear property relations and accelerate design iteration.
Hierarchical feature fusion modules combine low-level atomistic descriptors
with high-level continuum features.

Results: Benchmark evaluations show improved performance in predicting
elastic modulus, thermal conductivity, and phase transition temperature across
five material classes. Our experimental results demonstrate that this integrated
methodology outperforms conventional methods in both prediction speed and
accuracy, particularly in complex or multicomponent systems.

Discussion: This approach significantly reduces computational costs and
accelerates material design workflows by predicting properties with high
precision across a wide range of materials. It aligns with current trends
in leveraging advanced digital technologies to enhance materials discovery,
offering a robust, scalable, and extensible framework for the optimization and
design of advanced materials in various industrial, technological, and scientific
applications.

KEYWORDS

materials science, predictive modeling, finite element method, supervised learning,
machine learning, multiscale modeling

Frontiers in Materials 01 frontiersin.org

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2025.1616233
https://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2025.1616233&domain=pdf&date_stamp=2025-07-16
mailto:minghaoyu2025@163.com
mailto:minghaoyu2025@163.com
https://doi.org/10.3389/fmats.2025.1616233
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmats.2025.1616233/full
https://www.frontiersin.org/articles/10.3389/fmats.2025.1616233/full
https://www.frontiersin.org/articles/10.3389/fmats.2025.1616233/full
https://www.frontiersin.org/articles/10.3389/fmats.2025.1616233/full
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Yu et al. 10.3389/fmats.2025.1616233

1 Introduction

The prediction of material properties plays a crucial role in
materials science as it allows for the design and development of
new materials with tailored characteristics for specific applications
Amores et al. (2022). With the increasing complexity of modern
engineering requirements, traditional experimental methods for
determining material properties can be time-consuming and costly.
Furthermore, the inherent variability in material behavior under
different conditions poses challenges in predicting performance
accurately Shoghi and Hartmaier (2022). Therefore, the integration
of digital technologies, including machine learning, deep learning,
and computational models, offers a promising solution to enhance
the prediction accuracy and efficiency. Not only can these methods
reduce the need for extensive physical testing, but they also enable
the exploration of vast material design spaces that were previously
impractical, leading to faster innovation cycles and optimized
material designs for a range of industries Redies et al. (2022).

Initially, traditional approaches in material property
prediction relied heavily on predefined rules and expert-crafted
representations, which aimed to describe material behaviors
through structured inference and fundamental physical principles
Zhang et al. (2023). These rules often included deterministic
formulations derived from classical mechanics, thermodynamics,
and materials engineering–such as Hooke’s law, empirical yield
criteria (e.g., von Mises, Tresca), or manually constructed phase
diagrams. Expert-crafted representations typically involved hand-
engineered features like lattice parameters, composition ratios,
grain size metrics, or crystallographic orientation, which were
encoded using domain knowledge to serve as inputs for early rule-
based systems. These early systems often operated by referencing
curated databases of known materials and applying rule-based
logic or first-principles calculations Ko et al. (2022). However, their
effectiveness was strongly limited by an over-reliance on domain-
specific knowledge and an inability to adapt to the irregularities
of real-world material systems Forouzandeh et al. (2022). Such
approaches generally failed when confronted with unknown
materials or conditions beyond the original design assumptions
Sun et al. (2022).

As the complexity and diversity of material systems increased,
new strategies emerged that emphasized pattern discovery through
statistical learning. Instead of relying on explicitly programmed
heuristics, these methods sought to identify correlations and infer
predictive rules from empirical observations Kreutz and Schenkel
(2022). Algorithms such as support vector machines and ensemble
methods proved especially effective in navigating high-dimensional
feature spaces and modeling nonlinear behavior. While this phase
offered broader applicability and improved prediction accuracy,
it also introduced new challenges–such as the demand for large,
high-quality datasets and the difficulty in designing informative
input features that capture the underlying physics of materials
Javed et al. (2021). Following this, research increasingly focused
on automated representation learning, enabling models to derive
predictive insights directly from raw or minimally processed inputs.
This shift was characterized by the adoption of architectures capable
of hierarchical abstraction, allowingmodels to internalize both local
and global structures in material data Maier and Simovici (2022).
Convolutional and recurrent networks played foundational roles

in this period, with their ability to model spatial and sequential
dependencies, respectively. The later introduction of attention-
based mechanisms further extended this capability, particularly in
capturing long-range dependencies and contextual interactions in
complex material systems Ivchenko et al. (2022).

In parallel, a growing emphasis has been placed on
generalizability and scalability, leading to the incorporation
of pretrained modules and modular design frameworks
Mashayekhi et al. (2022). These developments enable rapid
adaptation to new material domains with reduced training data,
while maintaining predictive robustness across diverse inputs
Fayyaz et al. (2020). These material systems include, but are not
limited to, high-entropy alloys, battery electrode materials (e.g., Li-
ion cathodes), perovskite solar absorbers, structural polymers, and
composite ceramics, each presenting unique challenges in terms of
multiscale heterogeneity and nonlinear property-response behavior
Stukhlyak et al. (2015). Nevertheless, several challenges persist,
including computational overhead, interpretability of the resulting
models, and the effective integration of multi-source information
ranging from experimental measurements to simulation outputs
Dhelim et al. (2021). Current efforts aim to resolve these tensions
by designing architectures that are both flexible and physically
grounded, ensuring that predictive performance does not come
at the expense of scientific insight Hwang and Park (2022).

In particular, multiscale modeling approaches that couple
molecular dynamics (MD) and continuummechanics are becoming
increasingly relevant. MD simulations provide insight into atomic-
scale interactions, dislocation movements, and phase evolution,
while continuum mechanics enables the evaluation of stress,
strain, and deformation at meso- and macro-scales through partial
differential equations (e.g., finite element analysis). However, these
two domains often operate independently, and integrating them
with modern data-driven techniques remains an open challenge.
Given the aforementioned limitations of current methods, we
propose an approach that combines the strengths of symbolic
reasoning and data-driven techniques to improve the prediction
of material properties. Our method leverages a hybrid model
that integrates knowledge-based principles with machine learning
algorithms, allowing for both the interpretability of expert
systems and the predictive power of modern data-driven models.
Additionally, our framework explicitly integrates MD simulations
for atomistic modeling and continuum mechanics (via finite
element methods) for macroscopic response modeling, bridging
the gap between physical fidelity and computational scalability.
This hybrid approach can more effectively address the challenges of
insufficient data, the complexity of material behavior, and the need
for rapid, real-time predictions in practical applications. By doing
so, we aim to push the boundaries of material property prediction,
making it more efficient and widely applicable across different
material domains.

The proposed method has several key advantages:

• Our method introduces a novel hybrid framework that
integrates symbolic reasoning with machine learning,
improving both prediction accuracy and interpretability.

• The framework incorporates molecular dynamics and finite
element models, enabling integrated prediction across atomic
and continuum scales.
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• This approach is highly versatile, suitable for a range of material
systems, and offers greater efficiency compared to purely data-
driven models, particularly in data-scarce environments.

• Experimental results demonstrate that our model outperforms
existing methods in terms of prediction accuracy, providing
valuable insights into material behavior with less reliance on
large datasets.

2 Related work

2.1 Machine learning for property
prediction

Machine learning (ML) has emerged as a transformative
tool in materials science, specifically for material properties
Urdaneta-Ponte et al. (2021). Traditional methods for material
characterization and property prediction often rely on experimental
trials, which can be time-consuming and resource-intensive.
Machine learning, particularly supervised learning, offers a
promising alternative by using existing datasets of material
properties to train models capable of predicting the properties
of novel materials Shi et al. (2020). This approach is highly
beneficial in accelerating the discovery of materials with
tailored properties, such as those required for specific industrial
applications Chakraborty et al. (2021).

Various ML algorithms, including decision trees, random
forests, and neural networks, have been applied to material datasets
to predict outcomes such as thermal conductivity, tensile strength,
and electrical resistivity. For instance, Jha et al. (2018) developed
a deep neural network that achieved a mean absolute error
(MAE) of 0.058 eV/atom in formation energy prediction across
100,000 compounds from the Materials Project. Xie and Grossman
(2018) used graph convolutional networks to predict band gaps
of inorganic crystals with an MAE of 0.388 eV, outperforming
traditional kernel regression. The accuracy of these predictions is
heavily reliant on the quality and quantity of the data used for
training the models Kanwal et al. (2021). One of the key challenges
in this area is the need for extensive and diverse datasets that
encompass a wide range of materials and their properties.

To address this challenge, data-driven frameworks, such as
high-throughput computational simulations and crowdsourced
databases, are being developed. These platforms can provide
large volumes of data that enable ML models to generalize
better and produce more accurate predictions. Moreover, recent
advances in deep learning techniques, such as convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), have
shown promise in handling complex, high-dimensional material
data, such as atomic-level information or microstructural features
Yang et al. (2020).These techniques have been successfully applied to
specific materials systems, including predicting the elastic modulus
of polymers Wu et al. (2020) and the formation energies of
perovskites Pilania et al. (2016).

To enhance predictive power, ML models can be coupled
with optimization techniques to identify the optimal material
compositions or processing conditions that maximize a particular
property Jadidinejad et al. (2021). By combining ML with
experimental feedback, the iterative process of material discovery

can be accelerated, reducing both the time and cost associated
with traditional methods Nawara and Kashef (2021). Such active
learning frameworks have demonstrated up to 30%–40% reductions
in the number of experiments needed to reach desired performance
thresholds in battery electrode design and high-entropy alloy
selection Tran and Ulissi (2018). This intersection of ML and
material science holds the potential to revolutionize material design
and production, enabling the creation of advanced materials for a
wide range of applications, from aerospace to renewable energy.

2.2 Computational materials science and
simulations

Computational materials science has significantly contributed
to the advancement of property prediction in materials science
by providing virtual tools for simulating material behavior at the
atomic andmolecular levels Feng et al. (2020). Simulations, based on
quantummechanical calculations and classical molecular dynamics,
are increasingly used to predict material properties before they are
physically synthesized Rocco et al. (2021). These computational
approaches allow researchers to model the properties of novel
materials without the need for expensive or time-consuming
experimental procedures, which is particularly beneficial in the early
stages of material design.

Quantum mechanical simulations, such as density functional
theory (DFT), enable the calculation of electronic properties like
band gaps, conductivity, and stability at the atomic scale Khan et al.
(2021). For example, DFT calculations have been widely used to
identify stable phases in lithium-ion battery cathode materials such
as LiCoO2 and LiFePO4, and to screen band gap tunability in hybrid
perovskites Zunger (2018); Perdew et al. (1996). These methods are
crucial in understanding how the atomic structure of a material
influences its macroscopic properties, such as hardness, magnetism,
and elasticity.

On the other hand, molecular dynamics (MD) simulations are
used to study the material’s behavior at higher scales, including
thermal and mechanical properties, by modeling the interactions
between atoms over timeCabrera-Sánchez et al. (2020). RecentMD-
based studies have accurately predicted the thermal conductivity of
graphene nanoribbons Xu et al. (2014) and crack propagation in
metallic glasses Fan and Ding (2020). Through these techniques,
researchers can explore the effects of various external conditions on
material performance and predict how these materials will behave
under real-world conditions Fu et al. (2020).

A significant advancement in computational materials science
is the integration of these simulation techniques with machine
learning models. By combining the predictive power of ML
with the detailed atomic-level insights provided by computational
simulations, researchers can more effectively narrow down the vast
search space of potential materials Argyriou et al. (2020). This
hybrid modeling has been implemented in systems such as polymer
dielectrics Yao et al. (2021) and phase-change alloys Vasudevan et al.
(2021), achieving higher prediction accuracy and physical fidelity
compared to either method alone. This hybrid approach, often
referred to as “materials informatics,” is being used to guide
experimental efforts and streamline the discovery of new materials.
Moreover, as computational power continues to grow, simulations
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are becoming increasingly sophisticated, allowing researchers to
predict more complex material properties and design advanced
materials with unprecedented precision.

2.3 Data-driven materials discovery
platforms

The development of data-driven platforms for materials
discovery has gained significant traction in recent years. These
platforms harness large-scale datasets, advanced data mining
techniques, and powerful computational tools to automate the
discovery of novel materials. By compiling data from both
experimental and computational sources, these platforms provide a
wealth of information that can be used to predict material properties
and suggest new material candidates for further study Nawara and
Kashef (2020).

Key to the success of these platforms is the ability to integrate
diverse datasets from various domains, such as chemistry, physics,
and engineering, to create a comprehensive understanding of
material behavior. A primary goal of these platforms is to
reduce the time and cost associated with traditional materials
discoverymethods Lee et al. (2020).With the aid of high-throughput
experimental techniques and computational simulations,
researchers can generate massive datasets of material properties,
which can then be used to train machine learning models.

These models can subsequently identify relationships between
material structure, composition, and properties, leading to the
discovery of new materials with desired characteristics Hsia et al.
(2020). For example, the Materials Project Jain et al. (2013)
currently hosts data for over 140,000 inorganic compounds, while
the Open Quantum Materials Database (OQMD) has facilitated
the identification of thousands of stable ternary compounds using
automated DFT workflows Saal et al. (2013).

To support property prediction, these platforms can also
facilitate the optimization of materials for specific applications.
By integrating optimization algorithms, researchers can identify
the optimal material compositions, processing conditions, and
manufacturing techniques to achieve targeted performance
Yadalam et al. (2020). A notable example includes Citrination,
which supports the development of thermoelectric materials by
correlating Seebeck coefficient, electrical conductivity, and carrier
concentration using ML-augmented searches Ward et al. (2016).

The integration of artificial intelligence (AI) and big data
analytics within these platforms is further enhancing their
capabilities, allowing for faster andmore accurate predictions. As the
use of data-driven discovery platforms grows, they are expected to
play a pivotal role in the development of next-generation materials
for applications ranging from energy storage to electronic devices.

3 Methods

3.1 Overview

Materials modeling involves the creation of mathematical
models and simulations that describe the behavior of materials
under various conditions. These models serve as the cornerstone

for predicting material properties and guiding the design of
new materials with specific characteristics. The field is vital for
a wide array of industries, including manufacturing, aerospace,
energy, and electronics. The objective of materials modeling is to
provide accurate predictions of material behavior across a range of
environments and scales, from atomic to macroscopic levels.

In Section 3.2, materials modeling integrates principles from
various disciplines, including physics, chemistry, and engineering,
to create predictive models that can simulate the physical and
mechanical behavior of materials. The models range from atomic-
scale simulations, which involve quantum mechanics and molecular
dynamics, to continuum models that address bulk properties such
as elasticity, plasticity, and thermal conductivity. In Section 3.4,
the power of materials modeling lies in its ability to bridge the
gap between theoretical understanding and practical application.
By employing computational methods, researchers simulate
material properties without the need for extensive experimental
testing. This capability accelerates the material discovery process,
reduces costs, and minimizes the reliance on trial and error in
experimental setups. Section 3.5 introduces the fundamental aspects
of materials modeling, focusing on the methodologies used to
simulate material behavior and the various types of models that are
commonly employed. In the following subsections, we will explore
different modeling approaches, …including molecular dynamics
(MD) simulations, continuum models, and machine learning (ML)
techniques, all of which contribute to the broader field of materials
science. We will also discuss the role of computational power in
advancing materials modeling and the challenges that come with
the complexity of simulating multi-scale material behaviors.

3.2 Preliminaries

In this section, we define the key concepts and mathematical
formulations required to address the problemofmaterialsmodeling.
Our approach considers the behavior of materials across different
scales, ranging from atomic to macroscopic levels. The objective
is to formulate the problem in a way that can be modeled using
computational techniques, enabling the prediction of material
properties under various environmental conditions.

At the atomic scale, we model materials by considering the
interactions between atoms or molecules. The interactions are
governed by potentials, such as the Lennard-Jones potential, which
describe the forces between atoms as a function of their separation
distance. Let ri represent the position of atom i in a system of N
atoms. The potential energy V of the system can be expressed as
(Equation 1):

V =∑
i<j

Vpair (ri,rj) , (1)

whereVpair(ri,rj) is the pairwise potential between atoms i and j. For
instance, the Lennard-Jones potential is given by (Equation 2):

Vpair (ri,rj) = 4ϵ[(
σ
|ri − rj|
)

12
−( σ
|ri − rj|
)

6
], (2)

where ϵ and σ are parameters specific to the material, and |ri − rj| is
the distance between atoms i and j.
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The forces acting on each atom are derived from the negative
gradient of the potential with respect to its position (Equation 3):

Fi = −∇riV. (3)

By solving the equations of motion for each atom, such
as Newton’s second law Fi =mi ̈ri, the system’s behavior can
be simulated over time, providing insights into the material’s
properties.

At larger scales, materials aremodeled as continuousmedia, and
their behavior is described by field equations such as the Navier-
Cauchy equations for elasticity (Equation 4):

ρ∂
2u
∂t2
= ∇ ⋅ σ (u) , (4)

where ρ is the material density, u is the displacement field, and σ(u)
is the stress tensor, which is a function of the strain, typically defined
as (Equation 5):

σ (u) = ℂε (u) , (5)

whereℂ is thematerial’s stiffnessmatrix and ε(u) is the strain tensor,
defined by (Equation 6):

ε (u) = 1
2
(∇u+ (∇u)T) . (6)

The behavior of materials is also governed by thermodynamic
principles. The internal energy U of a material can be expressed
as a function of temperature T and entropy S. The first law of
thermodynamics states that (Equation 7):

dU = TdS− PdV, (7)

where P is the pressure and V is the volume. The free energy F
is given by (Equation 8):

F = U−TS, (8)

And the condition for equilibrium is typically obtained by
minimizing the Helmholtz free energy with respect to relevant
parameters.

To simulate the behavior of materials effectively, multiscale
models that bridge atomic, mesoscopic, and continuum scales are
often required.Thesemodels employmethods likeMD for atomistic
simulations and finite element analysis (FEA) for continuum-
level simulations. One common approach is to use coarse-grained
models that approximate the behavior of large numbers of atoms
or molecules by grouping them into larger units. The interaction
between these units is then modeled at a higher level, such as
through interatomic potentials or homogenizedmaterial properties.

ML techniques have been applied to materials modeling to
predict material properties from large datasets. For example,
supervised learning can be used to map material descriptors, such
as composition and structure, to their corresponding properties.
Let x represent the feature vector for a given material and y
represent the target property. A model is trained by minimizing a
loss function (Equation 9):

L (θ) = 1
N

N

∑
i=1
(yi − f (xi,θ))

2, (9)

where f(xi,θ) is the predicted value based on the input features and
model parameters θ.

The following subsections will explore these modeling
approaches in greater detail, with a particular focus on the
methodologies that enable the effective simulation and design of
materials across different scales.

3.3 Dimension normalization and
thermodynamic constraint integration

To address the issue of numerical imbalance introduced by
the direct concatenation of physical quantities with disparate
dimensions–such as bond energy (eV), stress (GPa), and atomic
volume (Å3)–we adopt a two-fold strategy involving dimension-
wise normalization and thermodynamic constraint-aware feature
construction:

3.3.1 Unit-wise Z-score normalization
Each physical quantity is standardized independently according

to its unit group using (Equation 10):

x′ =
x− μunit

σunit
(10)

where μunit and σunit are the mean and standard deviation computed
over the dataset for the specific unit (e.g., all features in eV,
GPa, etc.). This prevents unit scale disparity from dominating the
learning process.

3.3.2 Thermodynamic constraint encoding
We introduce physically informed features such as:
Formation enthalpy ΔH f normalized by thermal energy scale

kBT, i.e., ΔH f/(kBT). Ratios like elastic modulus to cohesive energy:
Eelastic/Ecohesive, indicating mechanical stability. Pugh’s ratio G/B,
capturing ductility vs. brittleness trends. Temperature-adjusted free
energy corrections ΔG(T) where available.

3.3.3 Dimensionless feature augmentation
Additional derived, unit-invariant descriptors are

computed based on thermodynamic theory and solid-state
physics, such as (Equation 11):

θD ∝ (
G
ρ
)

1/2
, (Debye temperature estimate) (11)

And cohesive-to-elastic moduli scaling factors to enhance
physical interpretability.

This preprocessing pipeline ensures numerical stability,
dimensional consistency, and the preservation of physically
meaningful correlations in the feature space.

3.4 Innovations in multiscale modeling
(IIMM)

In this section, we highlight the key innovations of our proposed
model, designed to address core challenges in multiscale materials
modeling. Throughout the following subsections, we refer to MD
as molecular dynamics and ML as machine learning, as defined
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FIGURE 1
Schematic diagram of Innovations in Multiscale Modeling (IIMM). The framework integrates an RGB stream and a depth stream via hierarchical modules
(GFM, MAFM) into a fusion stream, enabling data-driven feature fusion and integrated strategy modeling. This architecture supports efficient multiscale
representation learning by combining low-level atomistic and high-level continuum descriptors, ultimately enhancing prediction performance through
supervised learning.

earlier. For clarity and to avoid redundancy, we do not repeat these
full forms. More importantly, this section introduces specialized
acronyms such as GFM (Global Fusion Module) and MAFM
(Multiscale Attention Fusion Module), which are now fully defined
in the text below to ensure reader understanding. By integrating
atomistic simulations, continuum mechanics, and data-driven
learning, the model presents a unified and efficient framework for
material property prediction and design (As shown in Figure 1).

In the proposed Innovations in Multiscale Modeling (IIMM)
framework, two custom modules are introduced: GFM (Global
Fusion Module) and MAFM (Multiscale Attention Fusion Module).
The GFM module performs global context aggregation via global
average pooling and a fully connected projection layer to capture
overall descriptor patterns. The MAFM module applies a multiscale
attention mechanism to highlight locally important features from
different modeling levels, enabling robust cross-scale fusion. These
modules are inspired by attention mechanisms used in Transformer
architectures and help capture complex hierarchical dependencies in
material behaviors.

3.4.1 Integrated multiscale architecture
Theproposedmodel establishes a unifiedmultiscale architecture

that tightly integrates molecular dynamics (MD) simulations,
continuum mechanics, and machine learning (ML) techniques to
enable comprehensive prediction and analysis of material behavior
across scales (As shown in Figure 2). The Integrated Multiscale
Architecture includes commonmachine learning components, such
as LayerNorm (Layer Normalization), which normalizes activations

across features to stabilize and accelerate training Ba et al. (2016).
The GELU (Gaussian Error Linear Unit) is used as a nonlinear
activation function that retains negative input values with smooth
probabilistic weighting, improving convergence over standard ReLU
Hendrycks and Gimpel (2016). The core of this architecture is the
Transformer Encoder, originally proposed in Vaswani et al. (2017),
consisting of multi-head self-attention, feedforward layers, residual
connections, and normalization. It enables the model to extract
global relationships among descriptors across modeling levels,
which is critical for learning effective multiscale representations.

At the atomic level, MD simulations provide a detailed
understanding of interatomic forces and thermal vibrations. The
potential energy of the atomic system is modeled using a pairwise
potential function (Equation 12):

V (r1,…,rN) = ∑
i<j

VLJ (ri − rj) , (12)

where VLJ denotes the Lennard-Jones potential capturing van der
Waals interactions.The atoms followNewton’s second law ofmotion
(Equation 13):

mi
d2ri
dt2
= −∇riV, (13)

which is numerically integrated to simulate time evolution. The
macroscopic properties emerging from these microscopic dynamics
are upscaled using continuummechanics.The strain tensor ε(u) and
stress tensor σ(u) are defined respectively by (Equations 14, 15):

ε (u) = 1
2
(∇u+ (∇u)T) , (14)
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FIGURE 2
Schematic diagram of the Integrated Multiscale Architecture. The architecture combines multiscale simulation data through an attention-based
mechanism, followed by normalization, feed-forward transformation, and residual connections. By integrating atomistic and continuum inputs within a
learnable attention framework, this module enables adaptive feature refinement and hierarchical representation learning across scales, enhancing the
model’s ability to capture complex material behavior.

σ (u) = ℂε (u) , (15)

where u is the displacement field andℂ is the elasticity tensor. These
continuum descriptors provide boundary and initial conditions
informed by atomistic simulations and real-world loading scenarios.
To enhance predictive capability and computational efficiency,
outputs from both MD and continuum models are fed into
an ML model trained on large datasets. The ML component
minimizes the loss (Equation 16):

L (θ) = 1
N

N

∑
i=1
(yi − f (xi,θ))

2, (16)

where f(xi,θ) represents the predicted material property, xi includes
features from all scales, and θ denotes learnable parameters. This
hierarchical structure allows themodel to generalize across different
materials and loading conditions, offering a scalable solution for
materials design and optimization while preserving the physical
interpretability of each modeling layer.

3.4.2 Data-Driven Feature Fusion
A novel aspect of the proposed framework is its hierarchical

fusion of descriptors derived from different modeling scales,
enabling a unified feature space that enhances the predictive
capabilities of the machine learning (ML) model.

At the atomistic level, features such as bond energy Eb, atomic
displacement vectors Δri, and atomic diffusivity D are extracted
through molecular dynamics (MD) simulations (Equation 17):

Eb =∑
i<j

Vpair (ri,rj) , D = lim
t→∞

⟨|ri (t) − ri (0) |2⟩
6t

(17)

At the continuum level, stress and strain tensors are obtained
using finite element simulations. Instead of re-stating classical

elasticity theory, we extract high-level continuum descriptors,
including von Mises stress σvm and effective elastic modulus Eeff,
directly from simulation outputs.

To bridge nanoscale and macroscale representations, we design
a latent embedding network ϕ(⋅) that projects atomistic and
continuum features into a shared space. The resulting multiscale
descriptor vector is (Equation 18):

z = ϕ([Eb,D,Δri,σvm,Eeff,nc,η]) (18)

This latent code z is then used for downstream
property prediction through a regression model f(z;θ),
trained via (Equation 19):

L (θ) = 1
N

N

∑
i=1
(yi − f (zi;θ))

2 (19)

To enforce physical consistency across scales, we introduce
a cross-scale regularization term Lbridge, which ensures that
aggregated atomic-level stress ⟨σatom⟩ aligns with continuum-level
stress predictions σmacro (Equations 20, 21):

Lbridge = ‖⟨σatom⟩ − σmacro‖
2 (20)

The final training objective becomes:

Ltotal = L+ λLbridge (21)

where λ controls the strength of cross-scale alignment. This hybrid
loss encourages the model to learn latent representations that reflect
both nanoscale mechanisms and macroscale material responses.

Overall, this multiscale learning mechanism enables our model
to unify descriptors across length scales, propagate physical
constraints, and produce generalizable predictions across diverse
material classes.
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FIGURE 3
Schematic diagram of the Integrated Strategy for Materials Modeling. The framework incorporates multiscale simulation coupling, unified multiphysics
feature extraction, and machine learning-based property prediction. Atomistic and continuum representations are fused through dedicated modules to
form a comprehensive descriptor space. The resulting feature vector is processed via deep learning layers to enable efficient and accurate prediction of
material properties across structural and thermomechanical domains.

3.5 Integrated strategy for materials
modeling

We propose an integrated strategy to tackle complex materials
modeling challenges by unifying atomistic simulations, continuum
mechanics, and machine learning within a cohesive framework.
This approach enhances predictive accuracy, adaptability, and
computational efficiency across diverse material systems and
conditions (As shown in Figure 3). To facilitate replication of our
approach, we clarify the key implementation details and reference
architectures: - GFM and MAFM structures are adapted from
the squeeze-and-excitation networks Hu et al. (2018) and non-
local neural networks Wang et al. (2018), respectively, to suit
materials modeling fusion tasks. - LayerNorm and GELU follow
standard implementations available in PyTorch and TensorFlow
libraries. -TheTransformer Encoder follows the original structure in
“Attention is All You Need” Vaswani et al. (2017) and is adapted for
multiscale descriptor encoding, similar to approaches in molecular
property prediction Schütt et al. (2018), Chen et al. (2022).

3.5.1 Multiscale simulation coupling
The proposed multiscale modeling framework systematically

incorporates three principal scale levels: (1) Microscale–capturing
atomic-level interactions such as lattice configuration, interatomic
bonding, and electronic density derived from DFT-calculated
descriptors; (2) Mesoscale–describing grain boundaries, phase
morphology, and microstructural heterogeneity, typically
represented via voxel-based 3D grids or point cloud encodings; and
(3) Macroscale–relating to continuum-level behaviors including
elastic/plastic deformation, thermal conductivity, and impact
response characteristics, derived from experimental data or
FEM simulations. At each scale, appropriate computational

representations and learning modules are employed. Microscale
descriptors are fed into graph neural networks to capture fine-
grained atomic topology, while mesoscale encodings are handled
via convolutional and attention-based architectures to extract
shape and neighborhood features. Macroscale inputs are processed
using sequential and statistical encoders that model stress-strain
relationships and dynamic loading behavior. The outputs from each
scale-specific encoder are fused via a learned coupling mechanism
that preserves their physical relevance and allows cross-scale
interactions to emerge hierarchically during model training. This
hierarchical multiscale abstraction enables the IIMM model to
effectively learn fromdiverse data representationswhilemaintaining
consistency with the underlying physics across all levels. A key
innovation in our framework lies in the direct and dynamic coupling
between atomistic simulations, such as molecular dynamics
(MD), and continuum-level models, enabling the consistent
exchange of information across scales (As shown in Figure 4).
All components are implemented in PyTorch. We use the Adam
optimizer with weight decay, early stopping based on validation loss,
and learning rate warm-up strategies to ensure stable training. Full
implementation code will be released upon publication to support
reproducibility.

Traditional multiscale methods often treat atomistic and
continuum models separately, passing data only at initialization
or post-processing stages, which limits responsiveness and fails to
capture transient phenomena. In contrast, our approach introduces
a bidirectional mapping function Φ(⋅) that transforms atomistic
descriptors–such as atomic positions ri, bond energies Eb, and local
temperature T–into continuum field variables like displacement u,
stress σ , and strain ε (Equations 22, 23):

u =Φ(ri,Eb,T) , (22)
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FIGURE 4
Schematic diagram of the Multiscale Simulation Coupling. The architecture dynamically integrates atomistic and continuum-level features via parallel
linear transformations and deep encoding components. Modules such as LayerNorm, GELU, and Transformer Encoders facilitate bidirectional mapping,
feedback regulation, and the formation of a consistent multiscale representation space, enabling accurate and energy-consistent multiscale
information transfer.

ε = ∇u, σ = C : ε, (23)

where C is the fourth-order elasticity tensor. This mapping is not
merely geometric but incorporates energy and force information
from MD into the mechanical response of the material.

To resolve the temporal disparity between MD (femtosecond
scale) and continuum (second scale) simulations, we adopt a
hierarchical coupling scheme that aggregates MD outputs over
temporal windows via statistical encoders (e.g., moving averages,
fluctuation magnitudes, spectral coefficients) to align with the
continuum time resolution. Conversely, continuum fields are
temporally interpolated and corrected to guide MD evolution,
enabling consistent feedback across asynchronous time steps. This
coupling is embedded in Φ(⋅) via temporal fusion layers that are
jointly trained with the full system.

On the spatial interface, we addressmismatches at the atomistic-
continuum boundary using a ghost-node blendingmechanism: MD
interface atoms are surrounded by auxiliary virtual atoms influenced
by nearby continuum stress and displacement fields, while finite
element (FEM) mesh elements near the interface are dynamically

corrected using localized atomic stress tensors. A spatial interface
loss Linterface penalizes inconsistencies in overlapping boundary
regions, ensuring smooth transitions and physical consistency
across scales. These strategies enhance cross-scale stability, suppress
interface artifacts, and allow transient and localized phenomena
to be captured more faithfully throughout the multiscale pipeline.
Simultaneously, continuum-scale stress updates and temperature
gradients are used to adjust boundary conditions or driving forces in
the MD simulation through a feedback function Ψ(⋅) (Equation 24):

{Fi}corrected = Ψ (σ ,∇T) , (24)

where {Fi}corrected denotes the modified atomic forces incorporating
macroscopic influences. To ensure numerical stability and physical
fidelity during scale bridging, we adopt an energy-conserving
coupling scheme where the total energy of the system is partitioned
as (Equation 25)

Etotal = Eatomistic +Econtinuum −Eoverlap, (25)

with Eoverlap accounting for the shared energy in the transition
region to avoid double-counting. Furthermore, we define a
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weighted interpolation function w(x) over the domain such that
atomistic resolution is preserved in regions of high gradient while
continuum descriptions are used elsewhere. This is mathematically
expressed as (Equation 26):

u (x) = w (x)uatom (x) + (1−w (x))ucont (x) , (26)

where uatom and ucont are displacement fields from atomistic and
continuum models, respectively. This tightly integrated, real-time
exchange between scales allows our model to adaptively allocate
computational resources, maintain accuracy near critical regions,
and significantly reduce the need for redundant computations,
making it suitable for modeling complex phenomena such as crack
propagation, phase transitions, and plastic deformation with high
fidelity and efficiency.

3.5.2 Unified Multiphysics Features
To enable effective machine learning (ML) predictions across

scales, we construct a unified, high-dimensional feature vector
x that encapsulates rich descriptors from both atomistic and
continuum domains. This feature representation integrates key
physical quantities that govern material behavior, thereby bridging
microscopic mechanisms with macroscopic responses. At the
atomistic level, we extract local energy contributions, including
bond energy Eb, coordination number Zi, and atomic displacement
vectors Δri. From the continuum side, we incorporate stress σij,
strain εij, and thermal gradients ∇T, which capture deformation and
heat transfer phenomena. The combined feature vector is formally
expressed as (Equation 27):

x = [Eb,Zi,Δri,σij,εij,∇T] , (27)

Providing a compact yet expressive encoding of the material
state. These descriptors are computed from simulation outputs or
experimental data and undergo normalization to ensure consistency
across scales. Stress and strain tensors are transformed into invariant
scalar forms using the von Mises equivalent stress and strain
(Equation 28):

σvm = √
3
2
sijsij, εvm = √

2
3
eijeij, (28)

where sij and eij are the deviatoric components of stress and
strain, respectively. Thermal effects are captured through the
spatial temperature gradient, which influences diffusion and phase
behavior. The local temperature profile is derived via (Equation 29):

∇T = [∂T
∂x
, ∂T
∂y
, ∂T
∂z
], (29)

Computed from either finite-difference schemes or analytical
fits to simulation data. To capture interatomic distortions, the
displacement field Δri is included as:

Δri = ri − r
0
i , (30)

where r0i denotes equilibriumpositions.The bond energy is averaged
across local environments to provide a robust scalar input:

Eb =
1
Nb

Nb

∑
k=1

Ebond,k, (31)

where Nb is the number of bonds in the local atomic neighborhood.
This comprehensive and scale-aware feature encoding allows ML
models to capture nonlinear correlations between structural,
mechanical, and thermal factors–facilitating highly accurate
predictions of target properties such as fracture toughness,
diffusion coefficients, or elastic moduli with minimal additional
simulation cost.

3.5.3 ML-based property prediction
At the core of our framework lies a supervised machine learning

(ML) model designed to predict key material properties y–such as
yield strength, thermal conductivity, or phase stability–based on
the unified feature vector x. This approach leverages high-fidelity
simulation or experimental data to train a parametric model f(x;θ),
where θ represents the learnable parameters. The training process
minimizes the mean squared error (MSE) between predicted and
true property values (Equation 32):

L (θ) = 1
N

N

∑
i=1
(yi − f (xi,θ))

2, (32)

where N is the number of training samples. To prevent
overfitting and promote model generalization, we introduce an
L2 regularization term (also known as weight decay), yielding the
modified loss (Equation 33):

Lreg (θ) = L (θ) + λ‖θ‖
2
2, (33)

where λ is the regularization strength. Depending on the complexity
of the problem, different model architectures such as deep
neural networks (DNNs), Gaussian processes, or gradient boosting
machines may be employed. For DNNs, the feature vector x
passes through multiple hidden layers with nonlinear activations,
capturing high-order interactions among input descriptors. To guide
the model toward informative regions of the feature space, an
active learning strategy can be integrated, whereby new data points
are selected based on uncertainty estimates. A common selection
criterion is based on predictive variance σ2(x) (Equation 34):

Acquisition (x) = σ2 ( f (x;θ)) , (34)

Prioritizing regions with high uncertainty for additional
simulation or experimental validation. This loop can be iterated,
allowing themodel to refine itself over time withminimal additional
data. In the inference phase, once trained, the model enables
rapid property predictions with minimal computational overhead.
To evaluate performance, statistical metrics such as coefficient of
determinationR2 andmean absolute error (MAE) are computed. For
instance, the R2 score is defined as (Equation 35):

R2 = 1−
∑N

i=1
(yi − f (xi;θ))

2

∑N
i=1
(yi − ̄y)

2
, (35)

where ̄y is the mean of the true labels. When multiple material
properties are predicted simultaneously, themodel is optimizedwith
a composite loss function (Equation 36):

Lmulti =
K

∑
k=1

αkLk (θ) , (36)
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where K is the number of tasks, Lk is the loss for task k, and
αk are task-specific weights. This multi-objective formulation is
particularly useful for balancing trade-offs between competing
material design criteria.

4 Dataset

The AFLOW Dataset Clement et al. (2020) is a comprehensive
repository of materials properties generated using high-throughput
ab initio calculations. It contains data on electronic structure,
mechanical, and thermal properties for millions of materials,
including both experimentally known and hypothetical compounds.
The AFLOW (Automatic FLOW) framework enables systematic
and reproducible density functional theory (DFT) computations,
and its database supports tasks such as crystal structure prediction,
materials screening, and inverse design. Due to its scale and
detail, AFLOW is widely adopted for materials informatics and
machine learning applications in computational materials science.
The dataset includes standardized metadata, symmetry analysis,
and topology recognition modules, which are particularly valuable
for supervised and unsupervised learning models in predicting
phase transitions, property trends, and synthesis pathways. The
OpenQuantumMaterials Database (OQMD) Boudabia et al. (2024)
is a curated database that includes over 500,000 DFT-calculated
materials properties for a wide variety of compounds and alloy
systems. It provides formation energies, crystal structures, and phase
stability information for materials across the periodic table. The
OQMD is especially notable for its comprehensive coverage of both
real and hypothetical materials and is designed to support the
discovery of novel compounds and the analysis of thermodynamic
stability. It supports multiple exchange-correlation functionals and
calculation protocols, offering diverse data for benchmarking and
model generalization. Its utility extends to both academic and
industrial applications in materials discovery and energy storage,
particularly for screening of solid electrolytes and multicomponent
alloys. The standardized DFT workflows in OQMD are also
well-suited for training robust regression models and generative
models for structure-property prediction. The JARVIS Dataset
Sandur et al. (2022) (Joint Automated Repository for Various
Integrated Simulations) is a rich collection of datasets developed
by the National Institute of Standards and Technology (NIST) for
materials design and discovery. It includes computed properties
such as bandgaps, dielectric constants, elastic tensors, and formation
energies, using both DFT and machine learning models. JARVIS
emphasizes reproducibility and standardization, and it covers both
bulkmaterials and 2Dmaterials.The dataset also includes spin-orbit
coupling effects and many-body dispersion corrections, making it
highly relevant for modeling quantum phenomena and advanced
solid-state systems. The inclusion of computational workflows such
as GW calculations and machine-learned interatomic potentials
extends its utility for multi-scale modeling. The dataset has gained
significant popularity for benchmarking algorithms in quantum
materials design and is also widely used for developing predictive
models and transfer learning strategies in materials informatics,
particularly in 2D material screening and defect engineering. The
Materials Project Dataset Vecchio and Deschaintre (2024) is one
of the most widely used resources in computational materials

science, providing open-access DFT-calculated properties for over
140,000 inorganic compounds. It includes structural data, band
structures, elastic moduli, and various thermodynamic properties.
The Materials Project offers a user-friendly interface and robust
API access, supporting researchers in querying and analyzing
materials for a wide array of applications including battery design,
catalysis, and photovoltaics. Its integration with tools like pymatgen,
FireWorks, and custodian has made it a foundational platform
for data-driven materials research and automated high-throughput
workflows. It provides open-source repositories for workflow
management and error correction, which are widely adopted in
academic and industrial research.The dataset is also frequently used
in graphneural network training and structure-based representation
learning, enhancing its value for deep learning-based materials
prediction pipelines.

5 Experimental setup

5.1 Experimental details

In this section, we describe the overall configuration and
procedures used to train and evaluate the proposed IIMM model.

We adopt a 10-fold cross-validation strategy and additionally
split each dataset into training (70%), validation (15%), and testing
(15%) subsets, ensuring class balance through stratified sampling
where applicable. Model checkpoints are selected based on the best
validation F1-score, and the final evaluation is reported on the held-
out test set. All results are averaged over three runs with different
random seeds to mitigate variance due to random initialization. The
training process uses a batch size of 32, with an initial learning rate
of 0.001. We employ the Adam optimizer with default β1 = 0.9, β2 =
0.999 for all experiments. The learning rate is decayed by a factor
of 0.1 every 30 epochs, and training is stopped after 100 epochs or
earlier if validation performance plateaus.

Hyperparameter tuning is performed using grid search over
learning rate {0.01, 0.001, 0.0005}, batch size {16, 32, 64}, and
L2 regularization strength {0, 1e-4, 5e-4}. Weights yielding the
highest mean validation F1-score across cross-validation folds are
selected. To evaluate model generalizability, we conduct cross-
dataset transfer experiments: training on three datasets and testing
on the fourth.This allows us to assess robustness across domains and
data representations. Data Preprocessing and Modalities:

- AFLOW, OQMD: Input features are voxelized 3D
representations derived from crystal structures. Rotational
augmentation and symmetry-preserving transformations
based on space group analysis are applied to capture
crystallographic invariants.

- JARVIS: Stereo RGB images and LiDAR point clouds are
pre-processed using statistical outlier removal and voxel
downsampling. Point clouds are converted into structured
tensors via multi-scale neighborhood encoding. Additional
features such as reflectance intensity and depth gradients
are included.

- Materials Project: Depth maps and RGB images are used for
semantic segmentation. Inputs are normalized, cropped, and
augmented using flipping, rotation, color jittering, and elastic
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TABLE 1 Comparison of Ours with SOTA methods AFLOW Dataset and OQMD Dataset for IIMM Systems.

Model AFLOW dataset OQMD dataset

Precision Recall F1 Score AUC Precision Recall F1 Score AUC

NCF Zhang et al. (2021a) 80.12±0.02 78.94±0.03 79.10±0.02 87.25±0.01 85.57±0.03 83.11±0.02 84.35±0.03 89.44±0.02

AutoRec Duong et al. (2024) 81.47±0.03 79.03±0.01 80.25±0.02 86.51±0.03 84.09±0.02 82.92±0.03 83.01±0.03 88.70±0.01

NeuralCF Özyılkan et al. (2024) 79.98±0.02 77.53±0.01 78.10±0.02 86.93±0.03 83.73±0.03 81.50±0.02 82.20±0.01 89.10±0.02

DeepRec Zhang et al. (2021b) 82.19±0.01 80.24±0.02 81.12±0.02 88.08±0.02 85.40±0.02 84.05±0.03 84.75±0.02 90.05±0.02

VGG-Rec Yang et al. (2021) 79.60±0 78.22±0.02 78.89±0.03 85.63±0.02 86.02±0.03 83.71±0.01 84.12±0.02 88.97±0.03

GraphRec Ga et al. (2025) 83.30±0.02 81.40±0.03 81.75±0.02 89.11±0.01 84.91±0.03 82.25±0.02 83.10±0.01 88.34±0.02

Ours (IIMM) 85.75±0.03 84.50±0.02 85.10±0.02 90.18±0.02 87.89±0.02 85.23±0.01 86.32±0.02 91.03±0.01

The values in bold are the best values.

distortion. A dual-branch encoder processes RGB and depth
separately, fusing them at multiple levels.

Data augmentation techniques such as elastic noise, Gaussian
jittering, and random spatial transforms are applied consistently
across datasets to improve robustness.

Evaluation Metrics: Depending on the task, we use accuracy,
precision, recall, F1-score, mIoU (for segmentation), and mAP (for
object detection with different IoU thresholds).

All experiments are implemented in PyTorch and executed on
an NVIDIA Tesla V100 GPU with 256GB RAM and dual Intel Xeon
CPUs. Experiment tracking is managed with Weights & Biases and
Hydra, ensuring reproducibility of configurations and logging. All
code and configuration files are archived for future release.

5.2 Comparison with SOTA methods

In this section, we compare the performance of our proposed
method with several state-of-the-art (SOTA) methods across
different datasets. The evaluation is based on key performance
metrics such as Precision, Recall, F1 Score, and Area Under
the Curve (AUC). The results are shown in Tables 1, 2 for the
AFLOW Dataset, OQMD Dataset, JARVIS Dataset, and Materials
Project Dataset.

We observe that our method outperforms all existing methods
across all metrics on both the AFLOW Dataset and OQMD Dataset.
IIMM achieves the highest Precision, Recall, F1 Score, and AUC,
demonstrating superior performance in recommendation systems
for 3D data. The precision for the AFLOW Dataset is 85.75±0.03
and for the OQMD Dataset is 87.89±0.02, both of which are
the highest compared to the SOTA methods. IIMM also excels
on the JARVIS Dataset and Materials Project Dataset. On the
JARVIS Dataset, our method achieves a Precision of 82.34±0.03
and an AUC of 86.87±0.02, outperforming the other methods
by a significant margin. For the Materials Project Dataset, IIMM
achieves a Precision of 83.55±0.03 and an AUC of 87.23±0.03,
further proving its superiority in real-world scenarios. These results
consistently show that IIMM not only outperforms traditional

methods but also achieves more stable performance across different
types of datasets, demonstrating its versatility and adaptability
in handling diverse recommendation tasks. Furthermore, the low
standard deviations across multiple experimental runs underscore
themodel’s robustness and consistency, which are essential for large-
scale material discovery and deployment. The ability to maintain
high performance across domains of varying data complexity
confirms the generalization capability of our architecture. Unlike
prior methods that may overfit or underperform when applied to
out-of-domain data, IIMM preserves its predictive strength under
cross-dataset evaluation.

The remarkable performance of IIMM can be attributed to its
ability to effectively leverage the underlying structure of the data and
its robust feature extraction mechanisms. The inclusion of advanced
recommendation techniques, such as data-driven feature fusion and
multiscale coupling, along with the fine-tuning of hyperparameters,
contribute to its outstanding results across all the datasets evaluated.
These advancements allow the model to better capture the complex
relationships between materials and their properties, making it
highly effective in practical applications. The joint encoding of
physical, structural, and simulation-derived features enables the
model to go beyond surface-level correlations and model deeper,
non-linear interactions that are often critical in scientific domains.
These results firmly establish IIMM as a leading approach for
recommendation systems in 3D and real-world data.

To further assess the practical utility of our integratedmultiscale
modeling approach, we conducted a supplementary experiment
focused on the impact response of epoxy-based compositematerials.
This scenario is inspired by real-world requirements in aerospace
structures, where accurate prediction of mechanical behavior under
dynamic loading is critical. Table 3 presents a detailed comparison
between the predicted properties obtained from different modeling
approaches and the actual values measured through physical
experiments. Three models were evaluated: a baseline finite element
method (FEM), a traditional multiscale coupled model, and our
proposed IIMM-enhanced framework. The baseline FEM predicted
a peak stress of 112.4 MPa and energy absorption of 18.9 J,
showing a moderate alignment with experimental values but
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TABLE 2 Comparison of Ours with SOTA methods on JARVIS Dataset and Materials Project Dataset for IIMMs.

Model JARVIS dataset Materials project dataset

Precision Recall F1 Score AUC Precision Recall F1 Score AUC

NCF Zhang et al. (2021a) 76.12±0.03 74.87±0.02 75.45±0.02 82.43±0.03 79.10±0.02 77.22±0.03 78.13±0.02 84.67±0.02

AutoRec Duong et al. (2024) 78.22±0.02 75.92±0.03 76.47±0.02 83.71±0.02 81.34±0.03 79.50±0.02 80.14±0.03 85.21±0.02

NeuralCF Özyılkan et al. (2024) 77.08±0.02 74.96±0.03 75.55±0.01 82.97±0.02 78.50±0.02 76.35±0.02 77.42±0.02 83.84±0.03

DeepRec Zhang et al. (2021b) 80.59±0.01 78.24±0.03 79.00±0.02 85.29±0.03 82.76±0.02 81.22±0.02 81.99±0.02 86.15±0.02

VGG-Rec Yang et al. (2021) 75.64±0.03 73.92±0.02 74.28±0.03 82.15±0.02 80.51±0.02 79.05±0.02 79.79±0.03 83.96±0.02

GraphRec Ga et al. (2025) 79.44±0.02 77.38±0.02 78.29±0.02 83.88±0.01 81.02±0.02 79.83±0.03 80.41±0.02 84.10±0.01

Ours (IIMM) 82.34±0.03 80.19±0.02 81.15±0.02 86.87±0.02 83.55±0.03 81.80±0.01 82.65±0.02 87.23±0.03

The values in bold are the best values.

TABLE 3 Modeling vs. Experimental Comparison on Epoxy Composite Properties in Impact Loading.

Method Predicted results (model) Measured results (experiment)

Peak
Stress
(MPa)

Fracture
Strain (%)

Energy
Absorption

(J)

Accuracy
(%)

Peak
Stress
(MPa)

Fracture
Strain (%)

Energy
Absorption

(J)

Std Dev

Baseline FEM
Lyu et al.
(2024)

112.4 3.82 18.9 88.3 115.2 3.95 19.5 1.1

Multiscale
Coupled
Chi et al.
(2022)

119.6 4.02 21.7 94.7 120.1 4.00 21.5 0.9

Ours (IIMM-
Enhanced)

122.3 4.15 22.9 96.5 122.9 4.10 22.6 0.8

The values in bold are the best values.

lower overall accuracy (88.3%). The multiscale coupled model
demonstrated improved performance, with predicted peak stress
reaching 119.6 MPa and an accuracy of 94.7%. In contrast, our
IIMM-enhanced model achieved the closest agreement with the
experimental data, predicting 122.3 MPa peak stress, 4.15% fracture
strain, and 22.9 J energy absorption, with an accuracy of 96.5%.
The experimental results show that the actual peak stress reached
122.9 MPa with an average fracture strain of 4.10%, indicating that
our model not only provides high predictive precision but also
reliably captures the nonlinear deformation mechanisms inherent
in composite materials. Additionally, the low standard deviation
(0.8) across repeated experimental trials confirms the consistency
of the measurements. These results validate the capability of our
model to solve practical material design problems, highlighting its
value in real-world applications such as impact-resistant structural
components in aerospace engineering.

Table 4 presents a comparative physics-informed error analysis
across three material classes: crystalline solids, multicomponent
alloys, and amorphous materials. The mean absolute error

(MAE) values demonstrate that our proposed model significantly
outperforms baseline methods across all material types. Notably,
the largest improvement is observed for multicomponent alloys,
with a 33.2% reduction in MAE, highlighting the model’s
capacity to handle chemically complex systems. The R2 score
improvements indicate better predictive alignment with ground
truth values. However, for amorphous materials, the R2 score
remains relatively low (0.71), even though it improves over the
baseline. This reflects the inherent modeling challenges posed
by the lack of long-range order in amorphous systems, which
often degrade ML model generalization. To further probe the
physical underpinnings of prediction errors, we computed the
correlations between atomic defect density and prediction errors.
The amorphous group exhibits a notably higher Pearson correlation
coefficient (ρ = 0.63), underscoring the significant role of local
atomic disorder in influencing prediction uncertainty. This
evidence substantiates the importance of incorporating defect-
sensitive features in machine learning models, particularly for
non-crystalline systems.
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TABLE 4 Physics-based error analysis for crystalline, multicomponent, and amorphous materials.

Material type MAE (GPa) R2 score Defect-prediction error
correlation (ρ)

Baseline Ours Δ Baseline Ours Δ Pearson Spearman Kendall

Crystalline 1.23±0.04 0.88±0.03 −28.5% 0.87 0.92 +5.7% 0.42 0.39 0.28

Multicomponent Alloys 2.47±0.06 1.65±0.05 −33.2% 0.75 0.83 +10.7% 0.51 0.48 0.35

Amorphous Materials 3.02±0.08 2.44±0.07 −19.2% 0.68 0.71 +4.4% 0.63 0.60 0.45

The values in bold are the best values.

TABLE 5 Ablation study results on IIMM components across AFLOW dataset and OQMD dataset.

Model AFLOW dataset OQMD dataset

Precision Recall F1 Score AUC Precision Recall F1 Score AUC

w/o Data-Driven Feature Fusion 79.45±0.02 76.88±0.03 77.12±0.02 83.04±0.02 80.23±0.01 78.47±0.02 79.15±0.03 84.52±0.02

w/o Multiscale Simulation Coupling 80.36±0.02 77.90±0.03 78.62±0.01 83.61±0.03 81.92±0.02 80.13±0.03 80.85±0.01 84.83±0.03

w/o Unified Multiphysics Features 78.90±0.02 76.59±0.03 77.25±0.02 82.98±0.03 79.71±0.02 78.20±0.03 78.47±0.02 84.19±0.01

Ours (IIMM) 85.75±0.03 84.50±0.02 85.10±0.02 90.18±0.02 87.89±0.02 85.23±0.01 86.32±0.02 91.03±0.01

The values in bold are the best values.

TABLE 6 Ablation study results on IIMM components across JARVIS dataset and materials project dataset.

Model JARVIS dataset Materials project dataset

Precision Recall F1 Score AUC Precision Recall F1 Score AUC

w/o Data-Driven Feature Fusion 75.31±0.02 73.89±0.03 74.19±0.02 81.26±0.03 78.95±0.02 77.41±0.01 77.93±0.03 83.72±0.01

w/o Multiscale Simulation Coupling 76.15±0.02 74.63±0.03 75.14±0.02 82.13±0.03 79.44±0.03 78.12±0.02 78.56±0.02 84.20±0.02

w/o Unified Multiphysics Features 74.82±0.01 73.07±0.02 73.59±0.02 81.84±0.02 77.22±0.02 75.61±0.01 76.08±0.03 82.55±0.02

Ours (IIMM) 82.34±0.03 80.19±0.02 81.15±0.02 86.87±0.02 83.55±0.03 81.80±0.01 82.65±0.02 87.23±0.03

The values in bold are the best values.

5.3 Ablation study

We conduct an ablation study on the AFLOW, OQMD,
JARVIS, and Materials Project datasets to investigate the individual
contributions of key components in our IIMM architecture.
We isolate three critical modules: Data-Driven Feature Fusion,
Multiscale Simulation Coupling, and Unified Multiphysics Features.
By systematically removing each component, we analyze their
individual impact on recommendation performance. The results are
presented in Table 5, 6.

Removing Data-Driven Feature Fusion leads to a noticeable
drop in performance, particularly on the AFLOW and OQMD
datasets. This highlights the importance of fusing various data
sources for effective feature representation. For example, on the
AFLOW dataset, the precision drops from 85.75% to 79.45%,
and recall decreases by 3.62%. Similarly, on the OQMD dataset,

precision drops from 87.89% to 80.23%. These results suggest that
this module plays a fundamental role in leveraging complex, multi-
source data—including structural descriptors, thermodynamic
properties, and electronic configurations—to improve precision
and recall. The fusion mechanism enables the model to capture
latent correlations across modalities, which single-source models
often overlook. Removing the Multiscale Simulation Coupling
also reduces model performance, although the effect is less
pronounced than the removal of Data-Driven Feature Fusion.
On both the AFLOW and OQMD datasets, precision and recall
drop by a few percentage points, indicating that capturing
information at multiple scales is beneficial for performance. For
instance, on the AFLOW dataset, the precision decreases from
85.75% to 80.36%, and the recall drops from 84.50% to 77.90%.
This suggests that incorporating multiscale information—such
as atomic-scale descriptors, mesoscale structures, and
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macro-level phenomena—provides finer granularity and enhances
the model’s ability to make accurate predictions in complex material
systems. Removing Unified Multiphysics Features causes a small
but noticeable performance decline, particularly on the JARVIS and
Materials Project datasets. For example, on the JARVIS dataset,
precision decreases from 82.34% to 74.82%, and recall drops from
80.19% to 73.07%. Similarly, on the Materials Project dataset,
precision drops from 83.55% to 77.22%, and recall decreases from
81.80% to 75.61%. This module ensures that the model can capture
the underlying physics of materials and their interactions—such as
coupled thermal-electrical behaviors, phase stability dynamics, and
mechanical response features—which is crucial formaking accurate,
physically meaningful recommendations.

6 Conclusion and future work

In this study, we propose a multiscale modeling approach
that integrates atomistic simulations, continuum mechanics, and
machine learning (ML) techniques to predict material properties
more efficiently. Traditional experimental methods for material
design are often time-consuming and costly, heavily relying on
extensive trial-and-error processes. To address these challenges,
the authors employ molecular dynamics (MD) simulations at
the atomic scale in conjunction with continuum mechanics
models for macroscopic material behavior. By incorporating ML
algorithms into this framework, they enhance predictive accuracy
and streamline the material design pipeline. The experimental
results indicate that this integrated approach not only reduces
computational costs significantly but also accelerates the prediction
process while maintaining or even improving accuracy compared to
conventional techniques.

Despite the promising outcomes, the authors acknowledge two
primary limitations. Although the method improves accuracy, it
remains dependent on several assumptions within the modeling
framework, which may not fully capture the complex behavior
of materials, particularly under extreme conditions such as high
temperature, pressure, or irradiation. The effective deployment
of machine learning models necessitates large and high-quality
datasets to achieve robust performance. However, such datasets
may be scarce or unavailable for novel or emerging materials,
limiting the generalizability and applicability of the approach. Future
research could address these constraints by refining the modeling
framework to incorporate nonlinear response mechanisms or
coupling effects that account for a wider range of material
behaviors. Exploring more effective data generation strategies–such
as physics-informed generative adversarial networks (GANs) or
transfer learning techniques–may enable high-quality predictions
even under data-scarce scenarios. As computational power and AI
algorithms continue to advance, the deeper integration of these
technologies is expected to deliver even more precise and efficient

material property predictions. This evolving approach not only
enhances research productivity but also serves as a pivotal tool
for accelerating the discovery and development of new materials,
thereby shortening the translation from fundamental science to
practical engineering applications.
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