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In this study, forced vibration analysis of an energy pile with non-uniformity
in vertically inhomogeneous soil is presented considering the non-uniform
distributed temperature. In establishing the numerical model, it is assumed that
the cross-sectional area of the pile remains constant throughout its length, while
Young’s modulus and mass density vary along the x direction. The nonlinear
soil–pile interaction is modeled with the p–y curve method. Because of the
heterogeneity of the soil, the parameter in the p–y curve method changes along
the depth direction. The energy pile experiences a complex mechanical load
in the working process. In this study, a periodic lateral force and a constant
vertical force are applied on the top of the energy pile. The governing equations
and the boundary conditions are obtained based on the Hamilton principle. The
vibration frequency responses are obtained numerically by using the differential
quadrature method. The non-uniformity effects of the pile’s temperature and
material inhomogeneity effect are analyzed in detail. Our results demonstrate
that the non-uniformity for both the pile and temperature could have significant
effects on the vibration frequency response.

KEYWORDS

energy pile, inhomogeneous soil, non-uniform distributed temperature, lateral
vibration, dynamic response

1 Introduction

The behavior of pile or beam structures supported by an elastic foundation is a subject
of engineering with practical and theoretical interests (Bai et al., 2021a; Bai et al., 2019;
Bai et al., 2021b; Mohamad et al., 2014). The Winkler model is commonly used to model
the pile–soil interaction (Wu et al., 2018a). Due to its simplicity, closed-form solutions
could be derived for various problems by adopting the Winkler model.The static (Rui
and Soga, 2019; Huang et al., 2019; Bourne-Webb et al., 2019), dynamic (Bai et al.,
2019; Bourne-Webb et al., 2015; Sung et al., 2018; Bourne-Webb and Bodas-Freitas, 2020;
Zhang et al., 2019; Du et al., 2018; Semmah et al., 2019; Bagheri et al., 2018; Safarpour et al.,
2019; Feng et al., 2017; Wu et al., 2018b; Prendergast and Gavin, 2016), buckling
(Bai et al., 2021a; Bourne-Webb et al., 2015), and post-buckling (Filipich and Rosales,
2002) problems have been extensively analyzed by researchers using the Winkler model.
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The piles embedded in soils often experience thermal loads,
which induce a pattern of the deformation field that differs from
that induced bymechanical loads (Shen and Li, 2004; Anoyatis et al.,
2019; Auersch, 2019). Thermal buckling (Karatzia and Mylonakis,
2017; Wang et al., 2020; Le et al., 2020), thermal stress analysis
(Khalil et al., 2020), thermo-elastic wave propagation analysis
(Tu et al., 2020), dynamic thermal analysis (Le et al., 2020;
Fattah et al., 2020), and thermal transfer analysis (Moghaddasi et al.,
2020) of beams, plates, or piles have been performed by researchers.
However, the temperature-dependent properties of the soil’s
reaction to the pile are rarely noticed by researchers. In this study,
the soil’s reaction to the pile is modeled by using the Winkler
model, and the temperature-dependent property is considered
by introducing a temperature-dependent coefficient into the
Winkler model.

Functionally graded materials (FGMs) are newly engineered
materials, with smoothly and continuously varying properties in
the preferred direction (Jiang et al., 2018; Bahrami and Nikraz,
2017; Zhi et al., 2025). FGMs can provide improved mechanical and
thermal properties, and they are of interest in many technological
fields (Mouadh et al., 2025; Jincheng et al., 2025; Chenglong et al.,
2025; Lu et al., 2025; Ya et al., 2025). Structures designed by
FGMs are superior to those designed by homogeneous materials
composed of similar constituents (Ya et al., 2025). Abundant studies
of functionally graded (FG) structures supported by the elastic
foundation have been performed by researchers (Huaibo et al.,
2025; Huaibo et al., 2023; Aylin et al., 2023a; Aylin et al., 2023b;
Long et al., 2024; Lei et al., 2025). The axially functionally graded
(AFG) beams or piles, with varying properties along the length of the
beam or pile, can meet specific requirements under inhomogeneous
conditions, such as a graded temperature field, suffering a non-
uniformly distributed load, etc. AFG piles differ from traditional
isotropic FG structures in that their material properties vary
continuously along the length of the structures.This variation allows
AFG piles to meet specific requirements under inhomogeneous
conditions, such as graded temperature fields and non-uniformly
distributed loads. The potential applications of AFG structures are
also under investigation. While many studies focus on material
properties of FG structures in the thickness direction, research
on AFG beams (piles) is limited (Zhang et al., 2019; Yang et al.,
2023; Xuanming et al., 2022; Zhechen et al., 2025; Wei et al., 2025;
Mohammed et al., 2019).

This study presents forced-vibration analyses of AFG
piles resting on temperature-dependent soil. The temperature
dependency of the soil’s reaction to the pile is modeled by
a new temperature-dependent Winkler configuration. Recent
advancements in numerical methods for the pile–soil interaction,
particularly the differential quadrature method (DQM), have
enabled the development of efficient solutions for system
inhomogeneity (Bai et al., 2021a; Bai et al., 2019; Bai et al., 2021b).
However, its application to thermo-mechanically coupled energy
piles remains limited. This study extends the application of DQM
to address temperature-dependent Winkler foundations and non-
uniformpile properties, filling a critical gap in dynamic analysis.The
framework of this study is as follows: in Section 2, the mathematical
formula is deduced. The temperature dependency of the soil–pile
interaction is introduced. The variation of the material properties
of the AFG pile is modeled based on power–law relationships. The

governing equation of vibration of the pile is deduced by Hamilton’s
principle. In Section 3, the numerical solution of the governing
equations is obtained with the differential quadrature method. In
Section 4, the forced vibrational responses are displayed for several
cases, and the effects of the non-linearity of the material properties
and the temperature distribution are discussed. In Section 5, some
conclusions are drawn.

2 Mathematical modeling

As shown in Figure 1, the sketch of a non-uniform energy pile
embedded in vertically inhomogeneous soil with a non-uniform
distributed temperature is presented. The length of the pile is
denoted as L, and the cross-sectional area is denoted asA.The origin
of the Cartesian coordinate system is set on the bottom of the pile.
The x and z directions are along the depth and horizontal directions,
respectively. Young’s modulus and the mass density of the pile are
denoted as E(x) and ρ(x), respectively. It should be mentioned that
the cross-sectional area is constant, while Young’s modulus and the
mass density vary along the x direction. A vertical compressive load
P and a horizontal periodic force F(t) are applied on the top of
the pile. The bottom of the pile is assumed to be fixed. The pile is
modeled by Euler’s beam theory, and the displacement of the neutral
layer in z direction is denoted as w(x). The soil–pile interaction is
modeled and referred to the p–y theory.The reaction of theWinkler
foundation is calculated as follows:

p(x) = kw(x). (1)

Here, k is the Winkler foundation stiffness coefficient. The
linear model for the temperature-dependence coefficient k is
based on the theory of thermal elasticity, assuming a linear
change in the soil response with temperature. This assumption
is reasonable within a low range of temperature changes and has
been validated by multiple studies. In this study, the reaction
of the Winkler foundation is assumed to be temperature-
dependent, and the temperature dependency of k is assumed
as follows:

k = k0[1+ k1(T− 300)], (2)

where k is the modulus of the subgrade reaction considering
the temperature effect, k0 is the Winkler foundation stiffness
when the temperature T = 300 K, and k1 measures the
temperature dependence. The reference temperature T0 = T1
= 300 K corresponds to the annual average shallow geothermal
temperature in temperate zones, which is consistent with ASHRAE
guidelines for geothermal structures and field data (Zhang et al.,
2019). With positive k0, the Winkler foundation stiffness
k increases with an increase in the temperature, and
vice versa.

According to Euler’s beam theory, the displacements of the pile
are expressed as follows:

u(x,z) = −z∂w
∂x
. (3)

w(x,z) = w(x). (4)
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FIGURE 1
Model of the non-uniform energy pile under forced vibration load condition.

The strain of the pile can be expressed as follows:

εxx = −z
∂2w
∂x2
. (5)

Including the temperature effect, the stress of the pile can be
written as follows:

σxx = E(x)[εxx − α(x)△T(x)]. (6)

Here,E(x) is Young’smodulus, and α(x) is the thermal expansion
coefficient. The strain energy density can be expressed as follows:

Ue =
1
2
σxxεxx =

1
2
E(x)[−z∂

2w
∂x2
− α(x)△T(x)](−z∂

2w
∂x2
). (7)

The total strain energy is obtained by integrating the strain
energy density in the domain of the pile, which is calculated
as follows:

U =
L

∫
0

∫
A
UedAdx =

1
2

L

∫
0

∫
A
E(x)[−z ∂

2w
∂x2
− α(x)△T(x)](−z ∂

2w
∂x2
)dAdx.

(8)

The variation of the total strain energy is calculated
as follows:

δU =
L

∫
0

∫
A
E (x)[−z2 ⁢∂

2w
∂x2
⁢δ∂

2w
∂x2
+ 1
2
⁢zα (x)△T (x)δ∂

2w
∂x2
] ⁢dA

⁢dx =
L

∫
0

E (x)I ∂
2w
∂x2
⁢δ∂

2w
∂x2
⁢dx, (9)

where I is calculated as I = ∫Az
2dA.

During vibration, the kinetic energy of the pile can be
calculated as follows:

V = 1
2

L

∫
0

∫
A
ρ(x)[(−z∂

2w
∂x2
)
2
+ ẇ2]dAdx. (10)

The variation of the kinetic energy is calculated as follows:

δV =
L

∫
0

∫
A
ρ(x)[ẇδẇ+ z2 ∂ẇ

∂x
δ ∂ẇ
∂x
]dAdx =

L

∫
0

ρ(x)[Aẇδẇ+ I ∂ẇ
∂x

δ ∂ẇ
∂x
]dx.

(11)

The variation of the work done by the applied force P and F (t)
with the damping effect included is written as follows:

δW =
L

∫
0

[P∂w
∂x

δ∂w
∂x
− [p(x) + cẇ]δw+ F (t)(L− x)δ∂

2w
∂x2
]. (12)
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TheHamilton’s principle is applied as follows:

δ
t2

∫
t1

(V−U+W)dt =
t2

∫
t1

(δV− δU+ δW)dt = 0. (13)

On performing the substitution and calculation, one obtains

t2

∫
t1

L

∫
0

[[[[[[[[[[[[[

[

 ρ(x)Aẇδẇ

+Iρ(x)∂ẇ
∂x

δ∂ẇ
∂x

+[−E(x)I ∂
2w
∂x2
+ F(t)(L− x)]δ∂

2w
∂x2

+P∂w
∂x

δ∂w
∂x

−[p(x) + cẇ]δw

]]]]]]]]]]]]]

]

dxdt = 0. (14)

Performing the calculation, one obtains

t2

∫
t1

L

∫
0

{{{
{{{
{

−ρ(x)Aẅ+ ∂
∂x
[ρ(x)I ∂ẅ

∂x
]

− ∂
2

∂x2
[E(x)I d

2w
dx2
]− P∂

2w
∂x2
− (p+ cẇ)

}}}
}}}
}

δwdxdt = 0, (15)

and

{−ρ(x)I ∂ẅ
∂x
+ ∂
∂x
[E(x)I ∂

2w
∂x2
]+ P∂w

∂x
+ F(t)}(δw)x=Lx=0 = 0. (16)

{F(t)(L− x) −E(x)I d
2w
dx2
}δ(dw

dx
)
x=H

x=0
= 0. (17)

For Equation 10, because δw is arbitrary, it holds that

−ρ(x)Aẅ+ ∂
∂x
[ρ(x)I ∂ẅ

∂x
] − ∂2

∂x2
[E(x)I ∂

2w
∂x2
]− P∂

2w
∂x2
− [p(x) + cẇ] = 0,

(18)

which is the governing equation of vibration. Equation 11 and
Equation 12 represent the corresponding boundary conditions.

The material property function of the pile is modeled using the
power-law relation, which is given by

E(x) = ( x
L
)
p
(E1 −E0) +E0,0 ≤ x ≤ L, (19)

ρ(x) = ( x
L
)
p
(ρ1 − ρ0) + ρ0,0 ≤ x ≤ L, (20)

where E0 and E1 are Young’smodulus at x = 0 and x = L, respectively.
ρ0 and ρ1 are the mass density at x = 0 and x = L, respectively.
p is the power-law index, which measures the changes in the
material property.

Let us consider that the temperature distribution satisfies the
following formula:

T(x) = ( x
L
)
s
(T1 −T0) +T0,0 ≤ X ≤ L, (21)

where T0 and T1 denote the temperature of the bottom and the
top of the pile, respectively. The power–law index s measures
the temperature changes along the depth direction. As the depth
changes, the temperature varies. The action of the soil on the pile
is dependent on the temperature; thus, the modulus of subgrade
reaction k in Equation 1 is variable for different depths.

3 Solution with differential quadrature
methods

The governing Equation 8 is a nonlinear differential equation
with variable coefficients, and it is difficult to obtain an analytical
solution. Thus, numerical solutions will be achieved in the present
study. The differential quadrature method effectively obtains the
numerical solution of differential equations. Boundary conditions
rigorously enforce fixed-base (x = 0) and force-balanced top (x = L)
constraints. The non-uniform grid setting are employed to resolve
boundary layers near x = 0, which is critical for high-stress gradients.
The discrete points are established by xi(i = 1,2, ...,N) and 0 = x1 <
x2 <⋯ < xN−1 < xN = L. A non-uniform grid is divided as

xi =
L
2
[1− cos

(N− i)π
N− 1
], (i = 1,2, ...,N). (22)

The Lagrangian interpolator function is written as follows:

χj(xi) =
N

∏
 k = 1

 k ≠ j

xi − xk
xj − xk
, j = 1,2, ...,N. (23)

Thus, the displacement at xi is given by

w(xi) =
N

∑
j=1

χj(xi)w(xj). (24)

The deviations of w(x) are written as

dkw(xi)

dxk
=

N

∑
j=1

dkχj(xi)

dxk
w(xj) =

N

∑
j=1

Ψ(k)ij w(xj), (25)

where Ψ(k)ij =
dkχj(xi)

dxk
, and it holds that

{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{
{

Ψ(1)ij =

∏N

k = 1

k ≠ i, j

(xi − xk)

∏N

 k = 1

 k ≠ j

(xj − xk)
, (i, j = 1,2, ...,N; i ≠ j)

Ψ(1)ii =
N

∏
 k = 1

 k ≠ i

1
xi − xk

, (26)

and

Ψ(k)ij =
N

∑
k=1

Ψ(1)ik Ψ
(k−1)
kj =

N

∑
k=1

Ψ(2)ik Ψ
(k−2)
kj =… =

N

∑
k=1

Ψ(k−1)ik Ψ(1)kj , (i, j = 1,2, ...,N).

(27)

On substituting Equation 19 and Equation 20 into Equation 13,
and re-writing it in the matrix form, one obtains the following:

[Lij]{wj} + [Sij]{
∂2wj

∂t2
}+ [Gij]{

∂wj

∂t
} = 0, (28)
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FIGURE 2
Convergence analysis.

where

Lij = −
∂2E(xi)
∂x2

I
N

∑
j=1

Ψ(2)ij w(xj) − 2
∂E(xi)
∂x

I
N

∑
j=1

Ψ(3)ij w(xj)

−E(xi)I
N

∑
j=1

Ψ(4)ij w(xj) − P
N

∑
j=1

Ψ(2)ij w(xj) − k(L− xi)
N

∑
j=1

χj(xi)

Sij = −ρ(xi)A
N

∑
j=1

χj(xi) +
∂ρ(xi)
∂x

I
N

∑
j=1

Ψ(1)ij + ρ(xi)I
N

∑
j=1

Ψ(2)ij

Gij = −c
N

∑
j=1

χj(xi)
∂w(xj)
∂t
.

At boundary x = 0 and x = L, i.e., i = 1 and i = N, the boundary
equation must hold. By substituting Equation 19 and Equation 20
into Equation 11 and Equation 12, one obtains

{{{{{
{{{{{
{

[BNj]{wj} + [HNj]{
∂2wj

∂t2
}+ F(t) = 0

N

∑
j=1

Ψ(2)Njw(xj) = 0

 for i = N, (29)

and

{{{{{
{{{{{
{

N

∑
j=1

χj(x1)w(xj) = 0

N

∑
j=1

Ψ(1)1j w(xj) = 0
 for i = 1, (30)

where

BNj =
∂E(xN)
∂x

I
N

∑
j=1

Ψ(2)Nj +E(xN)I
N

∑
j=1

Ψ(3)Nj + P
N

∑
j=1

Ψ(1)Nj . (31)

HNj = −ρ(xN)I
N

∑
j=1

Ψ(1)Nj
∂2w(xj)

∂t2
. (32)

In the present case, at the boundary, Equation 23 does not
hold. Therefore, by replacing the first, second, (N-1)th, and (N)th
low in Equation 23 by Equation 24 and Equation 25, a governing
equation with boundary equation is obtained in the following
form:

[Lij]{wj} + [Sij]{
∂2wj

∂t2
}+ [Gij]{

∂wj

∂t
} = {Fi}. (33)

In Equation 28,

{{{{{{{{{{
{{{{{{{{{{
{

Lij = χj(x1), Sij = 0,Gij = 0 when i = 1

Lij = Ψ
(1)
1j ,Sij = 0,Gij = 0 when i = 2

Lij = Lij,SNj = SNj,Gij = 0 when i = 3,4, ...,N− 2

Lij = Ψ
(2)
Nj , Sij = 0,Gij = 0 when i = N− 1

Lij = BNj,SNj =HNj,Gij = 0 when i = N

, (34)

and {Fi} = {0,0, ...,0,F0}
T. Solve the matrix Equation 28, and the

solution can be obtained.
Assuming harmonic excitation, i.e., F(t) = F0 exp(jωt), where ω

is the excitation frequency.The response of the pile can be expressed
as w(xj) =W(xj)ej(ωt−ϕ), and substituting it into Equation 28,
one obtains

{Wj} = {[Lij] −ω2[Sij] + jω[Gij]}
−1{Fi}exp (jϕ). (35)

The maximum deflection occurs at x = L, which can be
expressed as

WM = {[Lij −ω2Sij + jωGij]
−1}

NN
F0. (36)

4 Results and discussions

To verify the convergence of the grid division, the computational
results for different numbers of nodes (N) are compared, and the
convergence of the differential quadrature method is verified. The
Newmark-β method is adopted for guaranteeing unconditional
stability. The geometric dimensions are set as L = 1 m, b = 0.1 L, I =
b4/12, and the vertical forceP =0.Thematerial properties areE0 =E1
= 100 MPa, ρ0 = ρ1 = 9,870 kg/m3, k0 = k1 = 0, and T0 = T1 = 300 K.

In such cases, the first-order resonance frequency is 1.8751042

L2 √
E0I
ρ0A

.

The first-order mode shapes for different node numbers (N)
are shown in Figure 2. It is shown that when the node number
is less than 10, the errors are relatively high, leading to
unreliable results. When the node number is no less than 10,
it leads to a congruent result. The node number is selected
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FIGURE 3
Dimensionless amplitude–excitation frequency curves for different compressive loads P.

TABLE 1 Data of dimensionless frequencies ω( 1.875104
2

L2
√ E0I

ρ0A
)
−1

and resonance peak valuesWM(
F0L

3

3E0I
)
−1

for the first-order and second-order modes with a

different compressive load.

Compressive load P (kN) Dimensionless resonance
frequency

Dimensionless resonance peak
value

Mode 1 Mode 2 Mode 1 Mode 2

0 1.00 6.22 17.10 2.70

1 0.94 6.21 18.31 2.71

2 0.87 6.21 19.80 2.72

3 0.80 6.20 21.71 2.73

4 0.71 6.20 24.25 2.74

5 0.62 6.19 27.90 2.75

as N = 30 in the following discussions to obtain reliable
results.

In order to discuss the forced vibrational behavior, in the
following contexts, the geometric dimensions are selected as =
1m, b = h = 0.1L, and I = bh3/12. The dimensionless excitation

frequency is defined as ω = ω( 1.875104
2

L2 √
E0I
ρ0A
)
−1
. The dimensionless

amplitude is defined asW =WM(
F0L

3

3E0I
)
−1
.

Figure 3 shows the dimensionless amplitude–excitation
frequency curves for different compressive loads P in a uniform
temperature field (T0 = T1 = 300 K, E0 = E1 = 100 MPa, ρ0 =
ρ1 = 9,870 kg/m3, p = 0, and k = 0). An excitation frequency
of 0 indicates static lateral force, and the amplitude reduces to

a static deflection. It is observed that a larger compressive load
causes a larger static deflection. It is also seen that resonance
occurs when the frequency equals some specific value, and such
a frequency is the so-called resonance frequency. When the
compressive load P = 0, the dimensionless resonance frequency
for the first-order mode equals 1. As the compressive load
increases, the resonance frequency for the first-order mode
decreases, whereas the resonance peak increases slightly. On
the other hand, the second-order mode’s resonance frequency
and resonance peak are less affected by the compressive load P.
It is worth noting that axial compression primarily affects the
first buckling mode of the pile, with minimal impact on higher
modes. This is because the axial compressive force mainly acts
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FIGURE 4
Dimensionless amplitude–excitation frequency curves for different temperatures.

TABLE 2 Data of dimensionless frequencies ω( 1.875104
2

L2
√ E0I

ρ0A
)
−1

and resonance peak valuesWM(
F0L

3

3E0I
)
−1

for the first-order and second-order modes with

different k0.

Compressive load P (kN) Dimensionless resonance
frequency

Dimensionless resonance peak
value

Mode 1 Mode 2 Mode 1 Mode 2

0 1.00 6.19 17.03 2.77

1 1.46 6.54 9.67 2.75

2 1.72 6.85 6.88 2.70

3 1.90 7.13 5.32 2.59

4 2.03 7.39 4.33 2.47

5 2.13 7.62 3.63 2.34

at the top of the pile, resulting in less bending deformation
at the fixed bottom end. Some dimensionless frequency and
resonance peak values for the first-order and second-order modes
are listed in Table 1.

Figure 4 presents the dimensionless amplitude–excitation
frequency curves for different Winkler foundation constants k0
in a uniform temperature field (T0 = T1 = 300 K, E0 = E1 =
100 MPa, ρ0 = ρ1 = 9,870 kg/m3, and p = 0.5). When the excitation
frequency is 0 (i.e., the case of a static deflection problem), if k0
is 0, the dimensionless amplitude is 1. As k0 increases, there is
a reduction in static deflection. Furthermore, a higher Winkler

foundation constant results in higher resonance frequencies for
different modes. The resonance peak for the first-order mode
decreases with a higher Winkler foundation constant, while the
resonance peak for the second-order mode is rarely affected by
the Winkler foundation constant. The relevant data are listed in
Table 2.

Figures 5a, b show two typical distributions of the AFG pile. For
distribution 1 (shown in Figure 5a), Young’s modulus is higher at
the clamped end (x = 0) and decreases when x/L increases from
0 to 1. For distribution 2 (shown in Figure 5b), Young’s modulus
is smaller at the clamped end (x = 0) and increases when x/L
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FIGURE 5
Two typical distributions of pile materials. (a) Distribution 1 and (b) distribution 2.

FIGURE 6
Dimensionless amplitude–excitation frequency curves for different pile material distribution. (a) Distribution 1 and (b) distribution 2.

increases from 0 to 1. If the power index p = 1, Young’s modulus
varies in linearity from one end to the other. If the power index
p is less than 1, the variation in Young’s modulus is more acute
near the clamped end. On the contrary, if p is more significant
than 1, the variation in Young’s modulus is more acute near
the free end.

Figures 6a, b illustrate the dimensionless amplitude–excitation
frequency curves with different p for distribution 1 and distribution
2, respectively (T1 = T2 = 300 K, k0 = 5 kN/m). The stiffness
for distribution 1 focuses on the clamped end, while the stiffness
for distribution 2 focuses on the free end. It is seen in the
figure that for distribution 1, the static deflection is more
considerable for a low value of p, while the static deflection
for distribution 2 is more considerable for higher-power indices

of p. Furthermore, the resonance frequency for distribution 1
increases with p, while the resonance frequency for distribution
2 decreases with an increase in p. Furthermore, the resonance
peak for distribution 1 decreases slightly as p increases, while the
resonance frequency for distribution 2 increases slightly with an
increase in p.

Figures 7a, b illustrate the dimensionless amplitude–excitation
frequency curves with different E1 for p = 0.5 and p = 1.5,
respectively (T0 = T1 = 300 K, E0 = E1 = 100 MPa, and ρ0 =
9,870 kg/m3, k1 = 0). As shown in both the figures, Young’s modulus
at the clamped end is set as E0 = 100 MPa. It is found that for p
= 0.5 (Figure 7a), the resonance frequency increases as c increases,
while for p = 1.5 (Figure 7b), the resonance frequency decreases as
E1 increases.
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FIGURE 7
Dimensionless amplitude–excitation frequency curves for different parameters p. (a) k1 = 0.01, (b) k1 = −0.01.

FIGURE 8
Dimensionless amplitude–excitation frequency curves for different k1.

Figure 8 shows the dimensionless amplitude–excitation
frequency curves with different k1 (T0 = 300 K, T1 = 330 K, s =
1, k0 = 1 kN/m, P = 20 kN, E0 = 100 MPa, E1 = 80 MPa, and p =
1). When the excitation frequency is 0 (i.e., the case of the static
deflection problem), as k1 increases, the static deflection decreases.
Furthermore, a higher value of k1 results in higher resonance
frequencies for different modes. The temperature gradient affects
the soil stiffness through the thermal expansion coefficient. A
positive temperature gradient (k1 > 0) increases the soil stiffness
as thermal expansion increases the spacing between the soil

particles. Conversely, a negative temperature gradient (k1 < 0)
decreases the soil stiffness as thermal contraction increases the
spacing between soil particles. The resonance peak for the first-
order mode decreases with an increase in the Winkler foundation
constant, while the resonance peak for the second-order mode
is rarely affected by k1. The relevant data are listed in Table 3.
Note that k1 introduced in Equation 1 is the parameter that
measures temperature dependence. A positive k1 increases the
Winkler foundation stiffness as the temperature increases, and
vice versa. Therefore, a positive k1 increases the stiffness of the
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TABLE 3 Data of dimensionless frequencies ω( 1.875104
2

L2
√ E0I

ρ0A
)
−1

and

resonance peak valuesWM(
F0L

3

3E0I
)
−1

for the first-order and second-order
modes with different k1.

k (kN) Dimensionless
resonance
frequency

Dimensionless
resonance peak

value

Mode 1 Mode 2 Mode 1 Mode 2

0.03 2.02 7.23 5.64 2.66

0.02 1.94 7.14 6.16 2.69

0.01 1.85 7.05 6.81 2.71

0.00 1.75 6.96 7.60 2.72

−0.01 1.64 6.86 8.60 2.73

−0.02 1.50 6.76 9.93 2.73

−0.03 1.33 6.66 11.83 2.73

pile, resulting in a higher resonance frequency, while a negative k1
decreases the stiffness of the pile, resulting in a lower resonance
frequency.

Figure 9 illustrates the dimensionless amplitude–excitation
frequency curves with a fixed temperature at the clamped end (T0
= 300 K) for k1 = 0.01 and k1 = −0.01, respectively (E0 = 100 MPa,
E1 = 80 MPa, s = 1, P = 20 kN, and p = 1). The results illustrate the
dimensionless amplitude–excitation frequency curves with a fixed
temperature at the free end (T1 = 300 K) for k1 = 0.01 and k1 =
−0.01 (E0 = 100 MPa, E1 = 80 MPa, s = 1, P = 20 kN, and p = 1). It is
seen that for a positive k1, the resonance frequency increases as T1
increases. For a negative k1, the resonance frequency decreases as T1
increases. Furthermore, this study explores the interaction between
temperature gradients and material gradients. The results indicate

that the interplay between thermal softening at the high-temperature
end and the grading of E(x) significantly influences the vibration
response of the pile.

5 Conclusion

In this study, forced vibration analysis of an energy pile resting
on temperature-dependent soil is presented with consideration
of a non-uniform distributed temperature. A temperature-
dependent Winkler model is proposed to model the temperature
dependency of the soil’s reaction to the pile. The governing
equations are achieved by Hamilton’s principle. Numerical
solutions are obtained with the differential quadrature method.
Effects of the temperature-dependent Winkler model and the
non-linearity of material properties of the pile are discussed.
The investigation demonstrates that the temperature-dependent
Winkler foundation significantly enhances the suppression of high-
frequency vibrations in the pile. Specifically, under a positive
temperature gradient, the first resonance frequency increases
by approximately 15%, while the second resonance frequency
remains largely unaffected. Results show that the temperature
dependency of the Winkler foundation, the inhomogeneity effects
of the pile, and the non-uniformity of the temperature field could
significantly influence the excitation frequency and vibration
amplitude of the pile.

The proposed model aids in optimizing energy pile
designs for regions prone to seismic activity, where
temperature fluctuations may alter soil–structure interaction.
For instance, negative k values (indicating reduced soil
stiffness at high temperatures) could amplify resonance
risks in geothermal piles under dynamic loads (Bourne-
Webb et al., 2019; Bourne-Webb and Bodas-Freitas, 2020).
For a specific seismic design, temperature rise may reduce
soil stiffness, lowering the system’s natural frequencies

FIGURE 9
Dimensionless amplitude–excitation frequency curves for different temperatures. (a) k1 = 0.01, (b) k1 = −0.01.
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and potentially resonating with the earthquake spectra. Designers
should incorporate site-specific thermal profiles into dynamic
analysis. Future field validations in real energy foundations are
recommended. In addition, relevant potential research studies
include experimental validation of the temperature-dependent
Winkler model using scaled pile–soil tests, coupled thermo-hydro-
mechanical analysis incorporating pore–water effects, and prototype
monitoring of energy piles in district heating systems to refine design
guidelines.
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