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Solution mining is widely applied in underground salt rock extraction, but it is
prone to inducing ground subsidence. Under complex geological conditions,
its mechanism is more complicated, posing a significant threat to engineering
safety and the ecological environment. The Guangzhou Longgui Nitrate-
Salt Mine, due to the direct contact between salt-bearing strata and highly
permeable argillaceous conglomerate layers, has seen continuous development
of ground subsidence with an accelerating rate caused by long-term solution
mining. To clarify the subsidence mechanism and predict future trends, the
geological structure, aquifer distribution, and cavity development characteristics
of the mining area were analyzed through on-site investigations and geophysical
methods (Controlled Source Audio-Frequency Magnetotellurics). The causes of
subsidence were systematically explored, and a numerical simulation model was
established based on mining data and monitoring results to invert historical
subsidence patterns and predict future trends. It was found that the core
mechanism of accelerated subsidence is the collapse of upper pillar groups
triggered by pillar dissolution, and this process is further exacerbated by
the hydraulic connection between adjacent cavities and permeable aquifers.
Numerical predictions show that subsidence will continue to intensify. By 2050,
the maximum subsidence in Mining Area | will reach 1,553 mm (with a rate
of 12.05 mm/year), and that in Mining Area Il will reach 2096 mm (with a
rate of 44.78 mm/year). After well sealing, cavity group creep and compaction
of insoluble residues will gradually slow down the subsidence rate.This study
innovatively reveals the coupled mechanism of ground subsidence under
the interaction between complex geological conditions and solution mining,
providing accurate prediction data and technical support for subsidence
prevention and control in Longgui and similar mining areas. It emphasizes the
necessity of strengthening monitoring and implementing targeted emergency
measures to reduce disaster risks.
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1 Introduction

Solution mining of underground salt rock in China has a
long history (Wang, 1997; Zhang, 1994; Lai et al, 2025). By
analyzing major ground subsidence disasters in domestic and
international salt mines over recent decades, studies have revealed
that solution mining-induced subsidence typically exhibits the
following characteristics: prolonged disaster cycles, large-scale
impacts, high destructiveness, sudden onset, susceptibility to
recurrence, and frequent accompanying surface brine seepage before
or after events (Li, 2024; Li et al., 2024; Le and Tian, 2018; Li et al,,
2009; Li et al, 2008; Li et al., 2023; Li et al., 2025). Solution
mining exploits the water-soluble nature of salt deposits, where
freshwater is injected via boreholes or shafts to dissolve target
minerals underground, with the resulting solution extracted to the
surface (Bérest, 2017; Cochran et al., 2005; Zhang et al., 2021;
Zhang et al., 2019; Zhang et al., 2015). However, due to geological
complexity and the uncontrollable nature of dissolution processes,
the evolution of solution cavity morphology remains challenging
to predict, leading to secondary hazards such as surface brine
leakage, differential subsidence, and collapses in some mining areas
(Fu et al., 2023; Buffet, 1998; Liang et al., 2003). With prolonged
mining activities, large-scale subsidence incidents have increased,
and significant progress has been made in understanding the
mechanisms of mining-induced ground subsidence (Wang et al.,
2007; Andreichuk et al., 2000; Zhou et al., 2025; Qiu et al., 2025;
Deng et al., 2024; Li, 2020; Qiu, 2014).

The formation of salt caverns typically progresses through a
continuous sequence of events: initial development of mined-out
areas, redistribution of in-situ stresses, deformation of the cavern
roof, collapse of the roof and overlying strata, and eventual ground
subsidence. Following the creation of mined-out areas, prolonged
dissolution and softening of salt pillars can further destabilize roof
structures and interlayers, leading to their collapse. The collapsed
mudstone, when softened by water infiltration, loses its ability to
support overlying rock masses, potentially triggering successive
collapses. This upward propagation of collapse doming accelerates
subsidence rates. As mining operations continue, underground
dissolution cavities expand progressively, and interconnected cavity
systems across multiple well areas evolve into complex three-
dimensional networks. These structural transformations induce
dual disaster mechanisms. On one hand, mining-induced fracture
areas establish mechanical linkages between surface and subsurface
cavities, causing differential settlement of building foundations,
collapse of municipal infrastructure, and severe risks to urban safety.
On the other hand, high-pressure brine migrates upward through
permeable fracture networks, significantly increasing groundwater
salinity and generating surface salinization patches, which degrade
vegetation and diminish soil productivity, as illustrated in Figure 1.

Extensive research has been conducted by scholars on the
stability and failure mechanisms of cavern roofs, as well as the
mechanisms of surface subsidence disasters induced by mining
activities. Liu et al. (1999) analyzed factors influencing stability
by studying the settlement and deformation patterns of overlying
strata in salt caverns, revealing the response characteristics and
stability failure mechanisms during mining. Jones and Blom
(2014) demonstrated the effective use of radar interferometry for
predicting and monitoring ground collapse events, providing a
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critical tool for geohazard prevention. Li et al. (2017) employed
viscoelastic and Mogi models to investigate surface subsidence
caused by underground salt cavern storage facilities, successfully
applying these models to case studies for subsidence assessment and
prediction. Ren Song etal. (Ren et al., 2007; Zhang et al., 2025)
developed a three-dimensional probabilistic integration prediction
model for layered subsidence transfer under complex mining
conditions, specifically tailored to analyze surface subsidence
induced by solution mining in salt rock. This model enables detailed
evaluation of stratified impacts from different mining activities
on surface deformation. Dong et al. (2024) applied the Pearson
correlation coefficient method to assess the correlation of ground
subsidence factors and validated the reliability of this approach.

This study conducts a mechanistic analysis of solution mining-
induced ground subsidence and investigates control strategies in
the Longgui Nitrate-Salt Mine. During active mining operations,
pronounced ground subsidence with accelerated deformation
rates has been documented, predominantly manifesting as
structural damage to shallow-founded infrastructure, including
ground fissures, road fractures, and wall cracks. Monitoring
data reveal persistently high subsidence rates and cumulative
displacement values within the mining area. By compiling
geological, hydrogeological, and mining datasets, combined with
safety assessment protocols, this work systematically evaluates brine
extraction wellbore integrity, characterizes sealing conditions, and
examines the spatial independence of interconnected salt caverns.
Additionally, hydraulic interactions between cavern systems and
overlying aquifers are delineated to establish a predictive framework
for subsidence dynamics. Previous studies have mostly focused on
ground subsidence mechanisms under single factors or specific
scenarios. This study comprehensively considers the interactions
between various complex geological conditions and mining factors,
and employs advanced simulation and monitoring technologies to
analyze the subsidence mechanism more comprehensively and in-
depth. The findings provide critical insights for subsidence hazard
mitigation at the Longgui Salt Mine and serve as a methodological
reference for geohazard prevention in analogous solution mining
environments.

2 Engineering geology of the mining
area

The Longgui Nitrate-Salt Mine is located in Yongtaizhuang
and Gaogqiaozhuang, Taihe Town, Baiyun District, Guangzhou,
approximately 18 km south of Yuexiu Park, as shown in Figure 2. The
Liuxi River flows northeast to southwest into the Pearl River to the
west of the mining area. The Guangcong Highway and Guanghua
Highway are situated on the east and west sides of the mining
area, 2.1 km and 1.5 km from its center, respectively, with multiple
village roads connecting them. The Guangzhou North Second Ring
Expressway and Beitai Highway cross the central part of the mining
area. The salt-bearing strata generally extend northeastward, with a
length of 5.95 km, a width of 2.25 km, and an area of approximately
9 km?. The total thickness of the mineralized intervals ranges from
50 to 150 m, with the salt layer roof consisting of salt-dissolution
mud conglomerate aquifer areas at varying stratigraphic levels. The
mining area is divided into three mining areas I, II, and III. The
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FIGURE 1

Typical Ground Subsidence Hazards (a) Ground subsidence, (b) Building cracks).
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FIGURE 2
Location map of the longgui nitrate-salt mine area.

x

=
- "

JIH
Miwing AVéa
¢ = .
H:Mining-2 ’\','.1_’;""5.
> l'-)lillidﬁ"":"

SRAren

M Ay '“i%'

e

mine employs solution mining to extract rock salt and associated
glauberite deposits at elevations between 470 m and 575 m below
ground surface. The salt deposits cover an area of about 2.35 km?.
After 20 years of mining, underground cavities with a total volume
of 9.09 million cubic meters (9.09 x 10® m?) have formed in the
mining area (Zhang et al., 2025).

The Longgui Nitrate-Salt Mine exhibits complex geological
conditions, characterized by multiple irregular salt layers. The
deposit is a paleo-inland lacustrine sodium sulfate-type rock salt
formation, primarily composed of mudstone, siltstone, and their
interbeds. The rock salt deposits are concentrated in the southern
depression (Southern Mining Area) and extend to the northern
depression (Northern Mining Area). The thickest central well
in the southern depression reaches 196 m, while the thinnest
between the southern and northern depressions is only 9 m.
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The widely distributed gypsum-glauberite-bearing interval forms a
continuous mineralized body spanning both depressions. Rock salt
and glauberite layers (collectively termed salt layers) are confined
to the central areas of the southern and northern depressions. The
upper section of the deposit hosts the main salt layers, followed by
gypsum-glauberite-bearing intervals and salt groups in the middle,
and lower gypsum-glauberite-bearing intervals. The mine contains
eight salt-bearing layers: five rock salt layers and three glauberite
layers. The third aquifer in the mining area directly contacts the
main mining salt layers, predominantly composed of argillaceous
conglomerate with fragmented roof strata. This configuration
facilitates hydraulic connectivity, where solution mining activities
disrupt natural equilibrium, potentially inducing ground fissures
and subsidence. The mining area lies in the southern Longgui Basin,
controlled by the Guangcong Fault Area of the Pearl River Delta.
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FIGURE 3
Distribution of longgui nitrate-salt mining area and distribution of mining wells and ground subsidence monitoring points. (a) Zoning of the mining area
and distribution of production wells. (b) Distribution of ground subsidence monitoring points in the mining area.

The Liuxi River flows northeast to southwest through the western
part of the mining area into the Pearl River. The terrain is flat, with
well-developed surface water systems, including small reservoirs
and ponds that interact hydraulically with the Quaternary aquifer.
Tributaries and channels of the Liuxi River crisscross the area,
predominantly flowing east to west.

The deposit area lacks significant surface water bodies, and
the rock formations exhibit weak water-bearing properties, with
four aquifers identified vertically from top to bottom. The first
aquifer consists of Quaternary confined pore water with a thickness
of 15-31 m. The second aquifer comprises confined pore-fracture
water in the upper part of Member two of the Xibu Formation,
buried at depths of 1.7-233.64 m and with a thickness of
64-220 m. The third aquifer, located near or directly serving as
the roof of the salt layers, forms a confined fracture brine area
composed of interbedded mud conglomerate, fractured mudstone,
and calcareous mudstone in the upper part of Member three of the
Buxin Formation. The fourth aquifer consists of karst-fracture water
in the Lower Permian Qixia Formation limestone beneath the basin
basement, generally buried below 585 m. Two aquitards separate
the aquifers: Aquitard I lies between the lower part of Member
two of the Xibu Formation and the upper part of Member three
of the Buxin Formation, separating the second and third aquifers,
with a thickness of 208.2-452.26 m. Aquitard II extends from the
roof of the salt layers in Member three of the Buxin Formation
to the base of Member 1, with a thickness of 86.64-291.32 m.
Where the third aquifer is absent, the two aquitards merge into a
single layer. Figure 3 shows the distribution of Longgui Nitrate-Salt
Mine area and distribution of mining wells and ground subsidence
monitoring points.

The deposit primarily contains economically valuable minerals
such as rock salt and glauberite, accompanied by rare elements
including lithium and bromine, with minor glauberite. It comprises
multiple ore layers, where the two main salt groups (I and II) are
exclusively distributed in the Southern Mining Area, while Salt
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Group III is more developed in the Northern Mining Area. From
bottom to top, the salt layers progressively shift southeastward with
gentle dip angles (mostly <5°), though steeper at the flanks (up to 7°).
Salt Groups I and II feature concentrated distribution, shallow burial
depths, large areal extents, and high ore grades. According to the
Geological Exploration Report of the Longgui Salt Mining Area in
Guangzhou Suburbs (12th Petroleum Prospecting and Exploration
Brigade, Ministry of Geology and Mineral Resources, September
1984) and the Verification Report on Niter-Salt Mineral Resources
in the Longgui Mining Area, Guangzhou City, Guangdong Province
(Salt Industry Geological Exploration Brigade, China National Salt
Industry Corporation, April 2008), the Longgui Nitrate-Salt Mine
primarily extracts five salt layers: Salt Layer 1, a sub-parallelogram-
shaped layer trending approximately east-west, covers 1.60 km?
with a thickness ranging from 9.43 to 20.69 m (maximum 25.96 m;
minimum 4.20 m). Salt Layer 2, located 3-4 m below Layer 1,
exhibits a smaller sub-parallelogram area of 1.07 km?* and thickness
of 2.67-3.68 m. Salt Layer 3, the largest layer situated 7-10 m
below Layer 2, forms a northeast-trending rectangular shape with
an eastward protrusion, covering 2.42km? and maintaining a
consistent thickness of 16.98-23.54 m. Salt Layer 4, found 4-6 m
below Layer 3, presents a regular southwest-trending ovoid with an
area of 0.86 km? and thickness varying from 2.43 to 3.76 m (thicker
in the northwest, thinner in the southwest). Salt Layer five covers
0.62 km?* with a thickness of 3.06-3.50 m. Horizontal projections of
Layers 1-5 in the Southern Mining Area reveal significant overlap,
suggesting that complete extraction could create interconnected
solution cavities exceeding 50 m in height.

3 Analysis of subsidence causes in the
mining area

Multiple geophysical methods, including Controlled Source
Audio-Frequency Magnetotellurics (CSAMT), were employed in
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FIGURE 4

Schematic diagram of CSAMT interpretation Principles and core retrieval conditions.

FIGURE 5
Schematic diagram of numerical model boundary for the longgui
nitrate-salt mine.

subsidence-prone areas of the mining area to investigate cavity
development. Based on well-logging data, drilling exposures, and
CSAMT measurements, the resistivity distribution characteristics of
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the survey area were analyzed. Detailed interpretation of multiple
survey lines delineated planar cavity distributions, identifying
dissolution areas and low-resistivity anomalies.

The survey lines were divided into five stratigraphic layers based
on resistivity curves from three-directional resistivity logging. Layer
1, above elevation 0 m with resistivity of 30-80 Q m, corresponds
to. Layer 2, between elevations —50 m and 0 m with resistivity of
20-300 Q m, exhibits near-horizontal bedding and is interpreted as
sandstone based on geophysical features and borehole data. Layer
3, spanning elevations —300 m to —50 m with resistivity of several
Qm to 60 Qm, reflects interbedded sandstone and mudstone.
Layer 4, at elevations —600 m to —160 m with a resistivity of less
than 10 Q m, primarily comprises mudstone hosting nitrate-salt
layers near elevation —500 m. Solution mining-induced hydraulic
fracturing in this layer creates cavities, which collapse and fill
with water-softened mudstone. Residual brine infiltrates upward
through fractured mudstone, reducing resistivity above the cavities.
If the overlying mudstone remains intact, brine-filled cavities form
extensive low-resistivity areas. Layer 5, below elevation —460 m with
a resistivity greater than 10 Q m, consists of mudstone influenced
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TABLE1 Comprehensive soluble rates and mining-induced volumes of well groups.

Well group Depth (m) Thickness (m) Amount of ore Comprehensive Mining volume
produced (10* t) soluble rates (%) (10*m?3)
Well Groups 1 511.33 40 57.0711 43.6 62.33191
Well Groups 2 507.79 30 31.9707 32.0 47.57545
Well Groups 3 510.63 39 46.6489 49.8 44.60595
Well Groups 4 516.60 39 12.9867 40.8 15.15721
Well Groups 5 518.14 38 66.5200 56.2 5636333
Well Groups 6 522.24 38 60.3982 49.7 57.86931
Well Groups 7 526.34 37 60.5880 60.5 47.68831
Well Groups 8 498.03 39 54.6948 50.9 51.16924
Well Groups 10 516.67 40 622572 55.8 53.12954
Well Groups 11 512.45 35 27.6422 47.6 46.36464
Well Groups 12 517.25 30 7.7020 47.6 38.53411
Well Groups 13 505.00 25 20.5930 39.5 50.07041
Well Groups 14 497.02 20 27.9609 313 42.53902
Well Groups 15 517.11 30 37.2077 434 66.3916
Well Groups 16 534.88 60 71.1641 56.1 60.40582
Well Groups 17 572.00 45 64.0385 43.1 70.75296
Well Groups 18 565.89 30 27.4893 38.2 3426739
Well Groups 19 521.76 20 1.7661 45.1 1.86474
Well Groups 20 523.80 30 27.4893 32.8 39.90897
Well Groups 21 539.60 30 8.6239 38.2 10.75031
Well Groups 22 606.00 30 9.6048 38.9 11.75762

TABLE 2 Elastoplastic calculation parameters in the subsidence calculation inversion process.

Rock layers Modulus of Poisson’s ratio = Cohesion (MPa)  Friction angle (°) Tensile strength
elasticity (GPa) (MPa)
The first and second 3.435 0.300 0.0200 15.00 0.020
aquifers

The third aquifer 1.649 0.240 0.0152 22.00 0.181
The first water barrier 5.242 0.243 0.5500 37.06 0.630
The second water barrier 5.750 0.30 3.6200 36.87 0.640
Rock formation 5.560 0.290 1.000 30.00 0.630
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FIGURE 6
Mohr-coulomb yield condition.

by mining activities, with resistivity increasing with depth. Drilling
revealed concealed limestone beneath the mudstone. This layered
interpretation framework guided CSAMT data analysis (Figure 4).

Drilling data indicate a large-scale fracture area at 460 m
depth within the third aquifer, suggesting highly developed macro-
fractures and poor rock mass integrity. As solution cavities expand
toward the roof, this aquifer becomes a primary pathway for brine
migration, likely triggering large-scale collapses.

The salt-bearing stratas roof in the Longgui Nitrate-Salt Mine
directly adjoins the third aquifer, composed of fractured, porous,
and permeable argillaceous conglomerate. This fragile roof facilitates
hydraulic connectivity, disrupting natural equilibrium during
solution mining and inducing ground fissures or subsidence. When
cavity clusters extend near the aquifer, lateral hydraulic interactions
between adjacent cavities may cause horizontal expansion and pillar
dissolution, ultimately leading to cross-well connectivity of upper
pillars and accelerated subsidence.

4 Numerical simulation and inversion
prediction of subsidence

4.1 Modeling basis

This chapter employs numerical simulations to inversely analyze
and predict the impact of salt cavities on ground subsidence in the
Longgui Nitrate-Salt Mine. The model boundaries are defined based
on wellhead coordinates and the Sealing Well Construction Layout
Plan of the Longgui Nitrate-Salt Mine, as shown in Figure 5.

The mining-induced volume for each well group is
calculated as follows:

Based on the comprehensive soluble rate of rock salt near the
well group and the extracted mineral mass, the dissolved mass of

salt rock and glauberite is determined:

Myact + Mg, so,
G

salt =
salt

Thus, the mining-induced volume is:
Msalt
Psalt

V,

mining —
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Where G, is the comprehensive soluble rate near the well
group, and p_, is the salt density, calculated as 2.1 g/cm® from
core samples.

According to the Reserve Verification Report, the average grades
of NaCl and Na,SO, in the salt layers are 60.98% and 14.37%,
respectively. Considering the presence of numerous insoluble
mudstone interlayers within the salt layers, the comprehensive
soluble rates at the locations of each brine extraction well in the
mining area must be determined by integrating the Topographic-
Geological Map of the Longgui Salt Mining Area in Guangzhou,
Guangdong and the Geological Profiles of the Longgui Salt Mining
Area. This allows for the accurate estimation of mining-induced
volumes based on the extracted mineral quantities from each well.
Specifically, the comprehensive soluble rates for Well Groups 1
and 2 are determined using the Line four geological profile of the
Longgui Salt Mining Area, while those for Well Groups 7, 10, and
16 are based on the Line two geological profile. For Well Groups
3, 4, 5, 6, and eight located between Lines two and four of the
Longgui Salt Mining Area, the comprehensive soluble rates are
derived by synthesizing both geological profiles. Well Group 14s
soluble rate is determined using the Line 0 geological profile, and
Well Groups 11, 12, 13, 15, and 17, situated between Lines 0 and
2, are assessed by integrating both profiles. Taking Well Group 1 as
an example, with an initial mining depth of 511.33 m, the Line four
geological profile indicates an average minable thickness of 40 m,
comprising 23.15 m of soluble salts (75.35% solubility) and 16.85 m
of insoluble interlayers (0% solubility). The comprehensive soluble
rate for this well group is calculated as 43.6%. The same methodology
is applied to subsequent well groups, with the comprehensive soluble
rates and corresponding mining-induced volumes summarized
in Table 1.

4.2 Cavity morphology

During the late stage of brine extraction using submersible
pumps, salt cavities dissolve upward into the third aquifer of the roof.
Without upward dissolution control, the cavities expand laterally
into bowl- or cup-shaped geometries, with minimal dissolution
at the base due to near-saturation brine concentration. Empirical
sonar cavity measurement data indicate that when oil cushion-
controlled upward dissolution is applied, cavities exhibit inverted
cone-like shapes with extensive lateral expansion at the top and
slower dissolution at the bottom. Similarly, the roof of the Longgui
Nitrate-Salt Mine restricts upward dissolution, causing cavities
to initiate lateral expansion at the mudstone-salt rock interface,
forming complex three-dimensional geometries. Based on empirical
sonar data, the cavity morphology in this numerical model is defined
as inverted conical.

Table 2 presents the elastoplastic calculation parameters in
the subsidence calculation inversion process. The classical Mohr-
Coulomb strength theory is adopted in this elastoplastic calculation.
This model is a kind of shear stress strength theory, which
comprehensively reflects the strength characteristics of rocks. It is
applicable to the shear failure of both plastic rocks and brittle salt
rocks, and also reflects the characteristic that the tensile strength of
rocks is much less than the compressive strength. Thus, it is widely
used in geotechnical engineering practice.
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FIGURE 7
Schematic diagram of 3D numerical modeling in the longgui nitrate-salt mining area.
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FIGURE 8
Time-dependent subsidence curves of monitoring points in the mining area (2003-2018).

Assuming that the
the yield
condition is:

compressive  stress  is
Mohr-Coulomb

negative,
strength

The yield function for tensile failure is:
function of the

ft=a3_0t

Where ¢ is the tensile strength of the salt rock.

The maximum value of tensile strength should not exceed ¢, .

fi=01—03Ny+ 25\/]7145

so it can be obtained:
1+sin N¢

In the formula: Ny = , ¢ is the cohesion and ¢ is the

1-sin Ny
friction angle.
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Figure 6 is a schematic diagram of the Mohr-Coulomb yield
condition.

The shear failure potential function adopts the non-
associated flow rule:

g =0, - 03N,

Where NV = Hs?nw,
1-sin y
The tensile failure potential function adopts the associated

y is the dilation angle.

flow rule:

g=-0

A three-dimensional finite element model of the salt cavity
cluster in the Longgui Nitrate-Salt Mine was established using
ANSYS software, incorporating the region’s engineering geological
conditions. Tetrahedral elements were employed for the cavities
and surrounding strata using ANSYS’s free meshing method, with
localized mesh refinement near cavities to enhance deformation
analysis accuracy. For non-cavity strata, hexahedral elements were
applied via mapped meshing. The model was then imported into
FLAC3D for computational analysis. The 3D geological model
was simplified based on aquifer and aquitard characteristics, with
strata dip angles set to 0° due to near-horizontal bedding. The
computational domain is a rectangular prism measuring 2,300 m
(length) x 1,400 m (width) x 764 m (height), with the top at
elevation 0 m and the bottom at =764 m.

The model adopts an XY horizontal coordinate system and a
vertical Z-axis. Boundary conditions include vertical (Z-direction)
fixed constraints on the bottom surface and normal-direction fixed
constraints on the lateral surfaces, simulating rigid surrounding
geological bodies that prohibit normal displacement. Figure 7
illustrates the 3D numerical modeling configuration of the Longgui
Nitrate-Salt Mine.
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4.3 Inversion and prediction of subsidence
patterns in the mining area

Monitoring data from the Ground Subsidence Investigation and
Monitoring Report of the Longgui Nitrate-Salt Mine in Baiyun
District, Guangzhou indicate minimal subsidence between 1993 and
2002, with a maximum recorded value of 51 mm. A significant
shift occurred after 2003, when large-scale mining commenced in
Mining Area II. Subsidence in Mining Area I accelerated markedly,
persisting rapidly even after mining ceased in Mining Area I'in 2005.
The abrupt increase in subsidence rates in Mining Area I during 2003
marked a turning point for intensified subsidence across the entire
mining area.

Post-2010, subsidence in Mining Area II began to accelerate
sharply. Between 2010 and 2012, subsidence rates at multiple
monitoring points increased from 1 to 4 mm/y to 97-127.5 mm/y.
By 2014-2015, rates at the central wellhead monitoring points in
Mining Area II surged further to 329.9 mm/y and 320.7 mm/y,
respectively. This drastic subsidence reflects large-scale cavity
deformation. Hydraulic connectivity within the third aquifer caused
brine pressure reduction in Mining Area I cavities due to extensive
mining in Mining Area II, exacerbating subsidence in Mining Area L.
The widespread adoption of submersible pump extraction in Mining
Area II further reduced cavity pressures, accelerating subsidence.
After roof collapses in Well Groups 15, 16, 17, and adjacent wells
in 2011, subsidence in Mining Area II intensified significantly, far
exceeding rates in Mining Area I.

Mining operations ceased entirely in 2016. Post-mining
subsidence monitoring data (Figure 8) show that while subsidence
rates in Mining Area I decreased slightly, the reduction was
marginal. In contrast, Mining Area II experienced a pronounced
slowdown in subsidence rates, attributed primarily to the
discontinuation of submersible pumps, which likely stabilized cavity
pressures.

frontiersin.org


https://doi.org/10.3389/fmats.2025.1630238
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org

Chen et al. 10.3389/fmats.2025.1630238

2003-2006 L X " I: Maximum Subsidence 1056.2 mm 2015 yI

I: Maximum Subsidence 419.7 mm - II: Maximum Subsidence 1297.3 mm

0072010 4] | (5

I: Maximum Subsidence 757.9 mm ) I: Maximum Subsidence 1133.4mm
II: Maximum Subsidence 243.8 mm S II: Maximum Subsidence 1409.

011-2012 yr| § jzzes 2017

I: Maximum Subsidence 851.9 mm 01 ¢ Maximum Subsidence 1214.8 mm
II: Maximum Subsidence S52. -5 600CE-01 :+ Maximum Subsidence 1519.2 mm

i

I: Maximum Subsidence 1060 mm
II: Maximum Subsidence 1045 mm

i

I: NMaximum Subsidence 1295.3mm
II: Maximum Subsidence 1610.8 mm

i

il

1.0568E+00

O Y Y

;

i

FIGURE 10
Vertical displacement nephogram of ground surface from subsidence inversion (2003-2018).

The time-dependent subsidence curves of numerical simulation ~ Mining Area I remained largely unchanged. In Mining Area II,
monitoring points in Mining Areas I are shown in Figure 9, while = however, significant reductions in subsidence rates were observed
the vertical displacement nephograms of the ground surface are  near monitoring points 15-1, 15-2, and 16-2 within the subsidence
presented in Figure 10. After mining cessation, subsidence rates in ~ center. From 2016 to 2017, the subsidence rate at monitoring
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point 1six to two in Mining Area II decreased to 117 mm/y.
Although still rapid, this represents a notable decline compared to
the pre-cessation rate of 329.9 mm/y. Numerical inversion results
further indicate a post-cessation subsidence rate of 113 mm/y at
monitoring point 1six to two in Mining Area II, closely aligning
with field monitoring data. Comparative analysis of inversion
results across well groups demonstrates consistency in subsidence
center locations, maximum subsidence magnitudes, and site-specific
subsidence trends, validating the rationality of the inversion process.

5 Prediction of mining area
subsidence

5.1 Post-sealing phase

By comparing field subsidence monitoring data with numerical
inversion results, post-sealing ground subsidence is primarily
attributed to creep-induced contraction of cavity clusters. When
the creep contraction volume equals the effective cavity volume
(i.e., pure brine-filled space), the solid insoluble residues within
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the salt cavities begin to compact and gradually provide structural
support—a process termed drainage consolidation of insoluble
residues. From this stage onward, subsidence rates associated with
the cavities further decelerate. A schematic of cavity contraction and
residue compaction is illustrated in Figure 11.

The compressive deformation of solid insoluble residues during
drainage consolidation arises from effective stress. As compaction
progresses, the effective density of residues increases, amplifying the
effective stress. The pressure acting on residues at depth z within a
salt cavity can be calculated based on effective density:

p= [ r@p

""is the effective

where p is the effective consolidation pressure, p
density of residues (defined as residue density minus brine density),
and z is the depth.

Laboratory experiments reveal a power-law relationship
between effective density (p') and effective consolidation p ressure

(p):
p'=alp-p)

where a. 8 and y are deposition parameters dependent on the
properties of the insoluble residue layers. The correlation between
p' and p is shown in Figure 12.

As cavity compaction advances and residue effective density
increases, the effective consolidation pressure progressively rises,
enhancing cavity support and significantly reducing cavity shrinkage
rates and associated subsidence velocities.

5.2 Subsidence prediction

The contraction of cavities is characterized by monitoring their
volumetric shrinkage rates. Well Groups 1-22 are classified into
four subsidence mining areas based on subsidence severity. Well
Groups 15, 16, and 17 near the subsidence center of Mining Area
II are designated as the first subsidence mining area, exhibiting
significantly greater and more uniform subsidence compared to
other well groups in Mining Area II. Similarly, Well Groups 1, 3,
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TABLE 3 Subsidence mining area assignment and basic information of well groups.

Subsidence mining area Well group Comprehensive soluble rate (%) ‘ Effective volume (%)
First Subsidence Mining Area 15,16,17 43.20 20.48
Second Subsidence Mining Area 1,3,5 49.86 29.8
Third Subsidence Mining Area 2,4,6,7 45.75 245
Fourth Subsidence Mining Area Remaining Well Groups 4235 19.30
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and five near the subsidence center of Mining Area I form the
second subsidence mining area, with subsidence magnitudes far
exceeding those of Well Groups 2, 4, 6, and 7 in Mining Area I. The
collapse and deformation of cavities in these two mining areas result
in dual subsidence centers. Due to relatively uniform subsidence
in other well groups, the remaining well groups in Mining Area
I and II are categorized as the third and fourth subsidence
mining areas, respectively. The comprehensive soluble rate for each
mining area is calculated as the average of its constituent well
groups (Table 3).

Frontiers in Materials

12

The temporal evolution of average volumetric shrinkage rates
for each mining area is shown in Figure 13. Taking the end of 2018
as the completion milestone for well sealing, all four mining areas
exhibit reduced shrinkage rates post-sealing. Significant volumetric
contraction primarily occurred during active mining. The layered
extraction method in Mining Area II caused stepwise increases
in shrinkage rates for the first and fourth mining areas. By the
end of 2050, the shrinkage rates for the four mining areas are
projected to reach 22.83%, 19.84%, 14.64%, and 12.99%, respectively.
The first and second mining areas display higher shrinkage rates,
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while the third and fourth remain lower. For the first mining
area, cavity shrinkage volume equalled its residual volume (20.48%)
by 2028. Beyond this critical compaction threshold, insoluble
residues begin to structurally support cavities, sharply reducing
the creep rate. The average shrinkage rate of the first mining area
drops from 0.505%/y (2019-2027) to 0.108%/y (2028-2050). Other
mining areas maintain stable shrinkage rates until 2050: 0.262%/y
(second), 0.187%/y (third), and 0.174%/y (fourth). This equilibrium
persists until the second mining area reaches its critical compaction
threshold of 29.8%.

Subsidence trends for monitoring points in Mining Areas I
and II from 2019 to 2050 are illustrated in Figure 14. Post-sealing
subsidence rates in Mining Area I (second and third mining areas)
decrease markedly and stabilize at 7.67 mm/y by 2050. Subsidence
will persist at this rate until creep fully eliminates effective cavity
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volumes. For the first mining area (Well Groups 15, 16, 17), effective
cavity volume reaches zero by 2028, initiating residue compaction
and structural support. Consequently, average subsidence rates at
monitoring points 15-1, 15-2, and 16-2 plunge from 37 mm/y
(2019-2027) to 6.87 mm/y (2028-2050). Meanwhile, cavities in the
fourth mining area continue stable contraction (2.85-7.49 mm/y)
due to non-zero effective volumes.

Vertical ground displacement nephograms for 2019-2050 are
presented in Figure 15. From 2019 to 2025, maximum subsidence
in Mining Areas I and II reaches 1,367.6 mm and 1,879.5 mm,
respectively, representing increases of 72.3 mm and 268.7 mm over
2018 levels, with annual rates of 12.05mm/y and 44.78 mm/y.
Although subsidence rates near Well Groups 15, 16, and 17
(subsidence center of Mining Area II) decline post-sealing, they
remain the highest in the mining area until 2028. By 2050, the
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maximum subsidence is projected to reach 1,553 mm in Mining
Area I and 2,096 mm in Mining Area II, with subsidence centers
remaining unchanged.

6 Conclusion

1. Analysis of subsidence disasters in domestic salt mines
shows most collapses occur at mining depths shallower than
500 m. The Longgui Nitrate-Salt Mine, with mining depths of
470-575 m, is in this high-risk range; its salt-bearing strata roof
adjoins the third aquifer, making it prone to ground fissures
and subsidence under solution mining. Ground subsidence
here mainly stems from hydraulically connected adjacent
cavities, where pillar tops, exposed to low-salinity brine over
time, dissolve progressively, losing support and ultimately
accelerating subsidence.

. Numerical simulations inversed and predicted subsidence
patterns in the mining area. The subsidence centers, maximum
displacements, and site-specific subsidence data for Mining
Areas T and II align well with inversion results. By 2050,
the maximum subsidence is projected to reach 1,553 mm in
Mining Area I and 2,096 mm in Mining Area IL

3. Post-sealing, creep-induced cavity contraction reduces
subsidence rates once the shrinkage volume equals the effective
cavity volume, as compacted insoluble residues begin to
provide structural support. Subsidence rates in both Mining
Areas I and IT decline significantly, dropping from 329.9 mm/y
pre-sealing to 117 mm/y, and further decreasing to 6.87 mm/y
after 2028.

. The subsidence predictions in this study represent a plausible
extrapolation based on current data. Post-sealing scenarios,
including hydraulic disconnection between cavities and
Aquifers I/11, and potential large-scale roof collapses, require
ongoing monitoring and research.
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