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Influence of soil parameters on
dynamic compaction: numerical
analysis and predictive modeling
using GA-optimized BP neural
networks
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1Shenzhen Municipal Group Co., Shenzhen, China, 2School of Traffic and Transportation Engineering,
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This study analyses the effect of soil parameters (angle of internal friction,
cohesion, modulus of elasticity, Poisson’s ratio, density) on the amount
of ramming settlement of rammed reinforced foundations and proposes a
prediction model for the depth of ramming reinforcement based on GA-BP
neural network. Based on the finite element method, a numerical model of
dynamic consolidation foundation is established, and the model is verified by
field test results. Orthogonal experimental design and single factor analysis
were used to quantify the influence of each parameter on the compaction
volume. In order to improve the prediction accuracy, this paper introduces
genetic algorithm (GA) to optimize the BP neural network model, constructs
a multi-factor dynamic compaction prediction model, and compares it with the
traditional BPmodel. The results show that the compaction rate is most sensitive
to the internal friction Angle and cohesive force. Compared with the traditional
BP model, GA-BP model has better prediction accuracy and generalization
ability, and the fitting accuracy reaches 0.974. GA optimization improves the
convergence speed of the model and the ability to solve the global optimal
solution. The GA-BP model used in this paper provides a high-precision tool for
the prediction of dynamic compaction foundation treatment and has important
engineering application value.

KEYWORDS

dynamic compaction method, compaction capacity, orthogonal test, finite element
calculation, GA-BP neural network

1 Introduction

Ramming method is widely used in foundation treatment in various engineering fields
because of its high efficiency and economic characteristic (Chow et al., 1992; Scott et al.,
2021).The tamping parameters are the key factors that determine the effective reinforcement
effect of foundation treatment by ramming, and most of the existing studies focus on the
influence of tamping parameters on foundation treatment effect, such as tamping energy
level, number of tamping strokes, tamping shape, tamping distance, and other parameter
(Yang et al., 2024; Scott et al., 2021; Jia et al., 2018; Freire de Souza and Pasqual, 2021).
This study aims to investigate the effects of tamping parameters on the reinforcement depth
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achieved by dynamic compaction, and to develop a predictive
model for reinforcement depth using neural network tools, thereby
providing a powerful and convenient tool for related practical
engineering applications. This research base analyses in detail
the influence of relevant parameters on the effect of ramming
reinforcement by numerical simulation and field test, and proposes
a prediction model for the depth of ramming reinforcement based
on GA-BP neural network.

In existing studies, many researchers have analyzed the
compaction mechanisms of dynamic compaction. Miao et al., 2006
based on dynamic-compaction trials con-ducted on an expressway,
reported a marked improvement in the liquefaction resistance of
the treated soil layers; Feng et al. (2015) through deformation
tests on collapsible loess after compaction, demonstrated that
dynamic compaction substantially enhances the bearing capacity
of poor-quality foundations; Hu et al. (2017) using plate-load and
permeability tests on various soil samples, identified the effective
improvement depth of dynamic compaction and its controlling
factors. Several researchers have also examined the mechanics
of the tamping action (Li et al., 2023), concluding that “heavy-
hammer, low-drop” schemes outperform “light-hammer, high-
drop” approaches; Salah et al. (2023) applied the Analytic Hierarchy
Process (AHP) to rank the factors influencing dynamic-compaction
efficacy and recommended that dynamic compaction be confined
to areas at least 30 m from buildings and 15 m from sub-surface
utilities for safety. Wei et al. (2019) conducted an in-depth study
of the com-paction mechanism, dividing the process into an
improvement-development stage and an improvement-attenuation
stage. Because field tests are time-consuming and labor-intensive,
most scholars have routinely relied on simulation software to
model dynamic compaction. Ghorbani et al. (2020) developed a
finite-element model to analyze the dynamic compaction process,
proposed a generalized form of viscous boundaries, and elucidated
the role of soil plasticity parameters in dynamic compaction.
Jim et al. (2023) using a macro–micro coupled approach to analyze
the evolution of dynamic stresses, showed that increasing drop
energy beyond a certain threshold yields diminishing returns
in settlement reduction; Lopez-Querol et al. (2008) investigated
constitutive models for sand in dynamic-compaction consolidation
and assessed their applicability; Sun et al. (2024) built a three-
dimensional fluid–solid coupling model for high-energy dynamic
compaction based on FDM-DEM and proposed that pre-drainage
and preload (i.e., staged dewatering and surcharge) can further
enhance compaction effectiveness.

However, in real-world projects the geological conditions vary
greatly from site to site, so under identical hammer parameters
the effectiveness of dynamic compaction can differ markedly for
foundations composed of crushed-stone fill, sands, low-saturation
silts and clays, collapsible loess, natural fill or miscellaneous fill
(Kufre Etim et al., 2021; Yusoff et al., 2017). Hence, it is of great
practical importance to analyze how different soil parameters
influence compaction performance. Wang et al. (2023) conducted
fieldmonitoring onhigh-embankment red soil subjected to dynamic
compaction at various energy levels and confirmed that the
method not only enhances the reuse potential of the soil but
also increases the bearing capacity of otherwise poor-quality soils.
However, there remains a paucity of mechanistic studies on how
dynamic compaction performance varies with soil parameters

(Hu et al., 2024; Mayne et al., 1984). Therefore, it is essential to
investigate the effects of those parameters on compaction outcomes,
perform sensitivity analyses, and identify the key factors that govern
the success of dynamic compaction.

With the advancement of artificial intelligence, neural
networks—owing to their powerful nonlinear modeling, self-
learning capabilities, and aptitude for high-dimensional data—have
increasingly attracted researchers’ attention (Koohsari et al., 2023;
Zhou et al., 2020). Ziaee et al. (2015) employed an artificial
neural network to predict foundation bearing capacity, per-
forming sensitivity analyses with field-measured data to develop
their prediction model; Teramoto et al. (2024) developed a deep
learning based compaction settlement prediction model, providing
a pertinent reference for subsequent neural-network models of
compaction behavior. The GA-BP method uniquely combines a
genetic algorithm (GA) with a back-propagation neural network
(BP) to optimise the initial weights and network structure,
addressing limitations such as slow BP convergence and local
minima traps (Wang et al., 2016).

Therefore, this paper introduces a Genetic Algorithm (GA)
to optimize the BP neural network and establishes a GA-BP
model to predict the dynamic compaction settlement of foundation
soils under different parameters, including internal friction angle,
cohesion, elastic modulus, Poisson’s ratio, and density. As the first
application of dynamic compaction reinforcement prediction, it
outperforms traditional BP, PSO-BP, and other models by providing
customized global optimization, reducing RMSE by 10%, and
achieving faster convergence (Wu et al., 2020). This model aims to
offer effective references for evaluating the reinforcement effect of
dynamic compaction.

2 Model building and validation

2.1 Numerical model for ground
improvement by dynamic compaction

2.1.1 Basic assumptions
In this study, explicit dynamics is used to implement the complex

dynamics of the rammed reinforcement finite element simulation
process. In this paper, without violating the principle of ramming
reinforcement, the finite element model of ramming reinforcement
is established and the following basic assumptions are made to
simplify the calculations and make the model more consistent with
the actual working conditions (Sun et al., 2023):

(1) Given that the stiffness of the tamping hammer far exceeds
that of the foundation soil, its deformation during dynamic
compaction is negligible, and it can therefore be treated as a
rigid body.

(2) The effect of groundwater on the ramming process is not
considered.

(3) The energy loss due to friction between the rammer and the
soil is not considered.

2.1.2 Parameterisation
2.1.2.1 Loading Regime

Field measurements of contact stress during dynamic
compaction indicate that, upon impact of the tamper on the ground,
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the contact stress rapidly rises to a peak and then de-cays just as
quickly. A triangular load-time history closely approximates this
actual stress variation, reflecting the generation and dissipation
characteristics of the tamping force and thereby rendering the
simulation more realistic. Moreover, the triangular load form is
computationally simple and readily implemented in finite-element
analyses, enhancing computational efficiency while effectively
capturing the propagation of stress waves through the soil induced
by the tamping action.

2.1.2.2 Initial Velocity
Dynamic compaction is modeled herein as an explicit-dynamic

problem, due to its inherently large deformations and high loading
rates. By directly prescribing an initial velocity to the tamper, the
hammer impacts the soil at the specified speed, and the resulting
stresses and deformations are propagated through the soil via an
explicit integration scheme. This approach accurately simulates
the incremental transfer of impact energy in-to the ground and
yields results that closely mirror the actual compaction process. In
the present study, the compaction energy level is 4,000 kN·m, the
tamper density is 7,850 kg/m3, and the prescribed initial velocity
corresponds to an acceleration of 20 m/s2. Throughout the tamping
event, the tamper motion is constrained strictly to the vertical axis,
with no lateral displacement.

The C3D8R cell is selected to meet the demand of displaying
dynamic analysis, and the effective area of ramming reinforcement
is mainly near the ramming hammer, so in order to reduce the
intensity of the model calculation work, the grid is divided in a way
that the middle is dense and the two ends are sparse.

2.1.2.3 Soil constitutive model:
TheDrucker-Prager principalmodel (D-Pmodel) can effectively

capture the shear damage characteristics of the soil body, especially
the yielding behaviour of the soil body in compression and shear.The
D-P model can effectively simulate the yielding, plastic deformation
and local damage of the soil body during ramming, especially the
compression and plastic flow of the soil body under the impact of
the rammer. The D-P model performs well under dynamic loading
(e.g., ramming impact) and its parameters are easily obtainable,
which is suitable for simulating the performance of the soil body in
different stress states and simulating the transient response of the
soil body under the impact action. Therefore, this study adopts the
Drucker–Prager (D–P) constitutive model, whose elastic response
is given by Equation 1, yield function by Equation 2. The soil
parameters are selected from the geological investigation report
of the actual project, and the density of the foundation soil is
1800 kg/m3, the cohesion is 21 kPa, the internal friction angle is 18°,
the shear angle is 0.1°, the modulus of elasticity is 2.8 MPa, and the
Poisson’s ratio is 0.35.

The elastic response is shown in Equation 1.

σij = Dijkl(εkl − ε
p
kl) (1)

where Dijkl is the isotropic stiffness tensor defined by Young’s
modulus E and Poisson’s ratio ν.

The Drucker–Prager yield function is Equation 2.

F(σij) = √J2 + αI1 − k ≤ 0 (2)

FIGURE 1
Finite element model of dynamic consolidation.

I1 and J2 are calculated from Equation 3.

I1 = σkk, J2 =
1
2
SijSij,Sij = σij −

1
3
I1σij (3)

The parameters α and k are related to cohesion c and friction
angle ϕ by Equation 4.

α =
2 sinφ
√3(3− sinφ)

,k =
6ccosφ
√3(3− sinφ)

(4)

2.1.2.4 Damping:
The role and implementation of damping have a significant

impact on the accuracy and stability of a dynamic compaction
simulation. Damping primarily serves to repro-duce the energy-
dissipation behavior of the soil during impact, thereby more
realistically modeling both the propagation and attenuation
of stress waves generated by tamping. In Abaqus, Rayleigh
damping—a combination of mass-proportional and stiffness-
proportional terms—is commonly employed. The damping matrix
C is defined by Equation 5.

C = αM + β (5)

Where,C is the total dampingmatrix; α is themass proportional
damping coefficient, related to low frequency vibration; β is the
stiffness proportional damping coefficient, related to high frequency
vibration;M is the mass matrix; K is the stiffness matrix.

The impact load of the rammer on the soil during the dynamic
compaction is applied as the first tamping by directly giving the
rammer a certain speed and the foundation sur-face for contact
impact load. The schematic diagram of the finite element model
is shown in Figure 1.

2.2 Field trials

Based on the properties of the foundation soil, a typical test
area is selected. The test site has an area of 1,200 m2 (30 m × 40 m),
with a compaction point spacing of 5.0 m. The number of hammer
strikes at each compaction point should be determined according
to the relationship curve between the number of strikes and the
settlement obtained from the field trial compaction. During the test,
2 to 4 passes of point compaction are carried out, with a hammer
energy of 3,000 kN m for each strike. Afterward, a hammer energy
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FIGURE 2
Layout diagram of tamping point. (a) Schematic layout of the first and second ramming points. (b) Schematic layout of full tamping points.

of 1,000 kN m is used for two full compaction passes. The hammer
should have a circular cross-section, and the compaction points
should be arranged in a rectangular pattern. For the first pass, the
spacing between compaction points should be 2.5 times the diameter
of the hammer. For the second pass, the compaction points should
be located between the points of the first pass, as shown in Figure 2a.
During full compaction, the overlap of the hammer imprints should
be 1/4 of the hammer diameter, as shown in Figure 2b.

The field test used a crawler crane with automatic decoupling
device, hammer weight 21 t, rammer diameter 2.4 m, and according
to the weight and ramming energy calculated lifting height, strong
ramming strictly according to the calculated lifting height set
up automatic decoupling device. The construction process is as
follows: levelling the site - measuring the elevation - setting
up points for positioning - the first point tamping - pushing
the tamping pit, levelling the site - the second point tamping -
pushing the tamping pit, levelling the site -Full tamping - repair
the site - delivery surface measurement - testing - provide a test
tamping report (Pan et al., 2024).

The site construction plan is shown in Figure 3.

2.3 Validation of numerical calculation
results

In the tamping reinforcement numerical simulation calculation,
through the initial ground stress equilibrium so that the foundation
soil he reached a stable state, the first tamping directly endowed
rammer with v0 velocity and the foundation surface for contact
impact load, the bottom of the rammer and the foundation in the
normal direction of the hard contact relationship in the tangential
direction to meet the conditions of frictionless, the subsequent
several ramming for the tamping hammer to lift to a specified height
after the free fall generated. The nonlinear geometry (NLGEOM)
option is set to ON, which activates the Updated Lagrangian large-
deformation algorithm, automatically accounting for corrections to

the geometric stiffness matrix and updating the stress tensor at each
increment.

In order to verify the reliability of the numerical model, the
results of the model were compared with the results of the on-
site inspection. The comparison between the rammer consolidation
depth results obtained from the model and the field test results is
shown in Figure 4. From the test results, it can be seen that the
tamping volume gradually increases with the number of tamping
and the single tamping volume is getting smaller and small-er,
and finally the cumulative tamping volume tends to be stable; the
larger the tamping energy is, the higher the cumulative tamping
volume is, which is in line with the previous studies. Comparing
the simulation results with the field settlement monitoring, the
curve fit R2 reaches more than 97%, which meets the requirement
of simulation accuracy. After simulating with literature data, the
stress contour map of dynamic compaction (as shown in Figure 5)
was obtained. Comparing it with the original data (Mei et al.,
2021), the relative error in the stress calculation was found to be
8.25%. It is evident that the trend of the simulated load closely
matches the calculated values, further confirming the feasibility
of the hammer-soil contact setup and load application method
presented in this study.

3 Strong tamping reinforcement
depth law based on orthogonal test

3.1 Orthogonal test programme design

The effectiveness of dynamic compaction is governed by
various geotechnical parameters of the soil, each exerting a
different influence on the magnitude of settlement. An orthogonal
experimental design systematically varies combinations of these
parameters to quantify the contribution of each factor to the
observed settlement. This approach identifies the parameters with
the greatest impact on settlement and evaluates their interactions,
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FIGURE 3
Site construction drawing.

FIGURE 4
Comparison between field compaction and simulation result.

revealing any synergistic or inhibitory effects. Such insight enables
practitioners to prioritize control of the most critical parameters
in field applications. By employing an orthogonal testing matrix
in the analysis of soil properties for dynamic compaction, one can
comprehensively elucidate the influence patterns of all factors on
settlement, thereby providing data-driven, scientific guidance for
both design optimization and construction practice. Consequently,
orthogonal experiments serve as a vital engineering tool in dynamic
compaction research.

In this paper, orthogonal test and numerical simulation are used
to study the sensitivity of soil parameters and analyse the sensitivity
magnitude.

According to theMohr’s and Coulomb’s strength criterion, there
are five main mechanical parameters of soil body: modulus of
elasticity, Poisson’s ratio, cohesion, angle of internal friction, and
density, which are taken as the five factors of orthogonal test, and
each factor is taken as five levels. The specific design is shown in
Table 1 (Khaboushan et al., 2018; Pan et al., 2024). The selection
of the range of parameter values is based on the experience in
engineering practice and the physical properties of the soil.

3.2 Analysis of simulation results

According to the calculation results of ABAQUS, the
reinforcement depth of soil under the action of 4000 kN·m energy
level strong tamping under each condition of orthogonal test was
obtained. The results are shown in Table 2.

In order to determine the influence of each factor on the
dynamic water pressure of the travelling car, according to the above
orthogonal test obtained by the dynamic water pressure calculation
results, the polar deviation and variance analysis.

The intuitive analysis method determines the influence of each
factor on the experimental results by calculating the range of the
average effect values of each factor at different levels. This range
reflects the degree to which the variation in the factor’s levels affects
the indicators. A larger range indicates that the changes in the factor’s
different levels have a more significant impact on the indicators.
Polar deviation analysis can screen out the soil parameters that have
a significant effect on the amount of tamping, and then provide a
scientific basis for the optimisation of design and construction.

The mean and extreme difference of each level of each factor
are shown in Table 3. According to the data in the extreme
difference columnof Table 3, it can be seen that the extreme difference
corresponding to the internal friction angle is the largest, the cohesion
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FIGURE 5
Variation of stress at tamping point.

TABLE 1 The value range and level of each parameter.

Factor Angle of internal
friction (°)

Cohesion (kPa) Modulus of
elasticity (MPa)

Poisson’s ratio Density (kg/m−3)

1 10 10 10 0.2 1,600

2 15 15 15 0.25 1800

3 20 20 20 0.3 2000

4 25 25 25 0.35 2,200

5 30 30 30 0.4 2,400

range of values 10∼30 10∼30 10∼30 0.2∼0.4 1,600∼2,400

is relatively second, the elasticmodulus andPoisson’s ratio correspond
to the smallest, and theorderof theparameter sensitivities is as follows:
the internal friction angle, the cohesion, the elasticmodulus, Poisson’s
ratio, and the density. The internal friction angle exerts the greatest
influence on the efficacy of dynamic compaction, while the elastic
modulus and cohesion have a moderate effect, and Poisson’s ratio
and density contribute relatively little. This hierarchy arises because
the primary objective of dynamic compaction is to enhance the soil’s
shear-resistance strength, thereby increasing the bearing capacity and
overall stability of the foundation. As parameters that quantify a soil’s
resistance to shear failure, the internal friction angle and cohesion
directly govern its ability towithstand externally applied loadswithout
slipping. Higher values of friction angle and cohesion result in a post-
treatment soil mass that is significantly more resistant to shear failure,
thus minimizing deformation and reducing the risk of instability.
Accordingly, the core goal of dynamic compaction is to improve these
two strength parameters to elevate the soil’s overall stability.

By contrast, deformation parameters—such as the elastic
modulus and Poisson’s ratio—primarily influence the soil’s stiffness
and deformation response (for example, by reducing settlement
and increasing deformation rigidity), but do not, by themselves,
substantially increase shear strength. Consequently, modifications to
thesedeformationparametersyieldonlysecondarybenefits in termsof

overall compactionperformance.Density likewisehasacomparatively
minor role, affecting mass and inertial properties more than shear
capacity. In practice, then, optimizing dynamic-compaction design
and execution hinges on maximizing the improvement in internal
friction angle and cohesion, with adjustments to stiffness and density
playing a supporting rather than leading role.

3.3 Strong tamping reinforcement single
factor analysis

According to the results of orthogonal test analysis, the internal
friction angle and cohesion are the two most significant factors. In
the following, the influence of internal friction angle and cohesive
force on the depth of soil reinforcement under ramming is further
investigated.

3.3.1 Analysis of the role of angle of internal
friction on the depth of reinforcement

In the single-factor computational analysis of the reinforcement
depth of the soil under dynamic compaction, the energy level of
dynamic compaction was set to 4,000 kN m, the cohesion to 20 kPa,
the elasticmodulus to 30 MPa, the Poisson’s ratio to 0.35, and the soil
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TABLE 2 Orthogonal test table.

Factor Angle of
internal

friction (°)

Cohesion (kPa) Modulus of
elasticity (MPa)

Poisson’s ratio Density
(kg/m-3)

Reinforcement
depth (m)

1 10 10 10 0.2 1,600 1.87299

2 10 15 15 0.25 1800 1.67762

3 10 20 20 0.3 2000 0.709804

4 10 25 25 0.35 2,200 0.940661

5 10 30 30 0.4 2,400 1.22449

6 15 10 15 0.3 2,200 1.54011

7 15 15 20 0.35 2,400 0.940953

8 15 20 25 0.4 1,600 1.25348

9 15 25 30 0.2 1800 0.976662

10 15 30 10 0.25 2000 0.325901

11 20 10 20 0.4 1800 1.47193

12 20 15 25 0.2 2000 1.67053

13 20 20 30 0.25 2,200 0.818206

14 20 25 10 0.3 2,400 0.215519

15 20 30 15 0.35 1,600 0.412943

16 25 10 25 0.25 2,400 0.976565

17 25 15 30 0.3 1,600 0.36492

18 25 20 10 0.35 1800 0.496628

19 25 25 15 0.4 2000 0.384864

20 25 30 20 0.2 2,200 0.262696

21 30 10 30 0.35 2000 0.385604

22 30 15 10 0.4 2,200 0.496763

23 30 20 15 0.2 2,400 0.211871

24 30 25 20 0.25 1,600 0.397651

25 30 30 25 0.3 1800 0.280921

density to 1800 kg/m3. The simulation calculations were conducted
for the reinforcement depths under dynamic compaction at internal
friction angles of 10°, 15°, 20°, 25°, 30°, 35°, and 40°.The calculation
results are shown in Figure 6; Table 4.

F rom Figure 6, it can be seen that when the soil’s internal friction
angle is relatively large, the reinforced zone typically assumes a more
stable configuration, with stresses distributed more uniformly. Under
these conditions, the soil’s shear strength increases and its resistance to
external loading is enhanced. Although the settlement at the tamping

point is relatively small, the reinforced zone’s area of influence is
substantial,andthebearing-capacitydistributionwithinthereinforced
zone tends toward uniformity, making the formation of localized
“soft spots” or “voids” unlikely. Conversely, when the soil’s internal
friction angle is low, the reinforced zone’s geometry tends to develop
more vertically, concentrating stresses within a smaller area; in this
scenario, the reinforced zonemay become steeper andmore confined,
exhibiting reduced stability and increasing the likelihood of local
sliding or failure. In the D-P model, the yield surface is conical, the

Frontiers in Materials 07 frontiersin.org

https://doi.org/10.3389/fmats.2025.1631816
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Zhang et al. 10.3389/fmats.2025.1631816

TABLE 3 Parameter range analysis.

Factor Parametric

Angle of internal friction/φ Cohesion/c Modulus of elasticity/E Poisson’s ratio/v Density/ρ

K1 6.42556 6.24719 3.40780 4.99474 4.30198

K2 5.03710 5.15078 4.22740 4.19594 4.90376

K3 4.58912 3.48998 3.78303 3.11127 3.47670

K4 2.48567 2.91535 5.12215 3.17678 4.05843

K5 1.77281 2.50695 3.76988 4.83152 3.56939

k1 1.28511 1.24943 0.58156 0.99894 0.86039

k2 1.00742 1.03015 0.84548 0.83918 0.98075

k3 0.91782 0.69799 0.75660 0.62225 0.69534

k4 0.49713 0.58307 1.02443 0.63535 0.81168

k5 0.35456 0.50139 0.75397 0.96630 0.71387

R 0.93055 0.74804 0.44287 0.37669 0.28541

FIGURE 6
Cloud picture of strengthening effect of dynamic compaction under different internal friction angles. (5°, 15°, 20°, 25°, 35°, 40°).
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TABLE 4 Internal friction Angle and tamping capacity.

φ/° 10 15 20 25 30 35 40

H/m 0.784 0.657 0.543 0.474 0.371 0.257 0.175

FIGURE 7
Internal friction angle and tamping capacity.

larger the angle of internal friction, the larger the slope of the cone,
and the increased shear capacity of the soil. Shear expansion may
occur at high internal friction angles and densification is reduced,
but the depth of reinforcement may be deeper due to stress transfer.
According to Figure 7, it can be seen that there is a good correlation
between the angle of internal friction and the amount of tamping
settlement, and the fitting accuracy reaches 0.995.

From the Figure 7, it can be seen that the soil tamping
sedimentation decreases substantially with the increase of φ value in
the case of other soil parameters being the same. For example, when
the φ value of the foundation increases from 10° to 15°, 25°, and 35°,
the soil tamping settlement decreases by 16.2%, 39.5%, and 67.2%,
respectively. This behavior arises because dynamic compaction
densifies the soil through the impact energy of the tamper, thereby
increasing its density and strength. The role of the angle of internal
friction (φ) in the soil is to enhance the shear capacity of the soil
by increasing the friction between the particles. The larger φ is, the
stronger the friction between the particles is, and the easier it is
for the soil to resist the action of the external force, which in turn
affects the depth and scope of the reinforcement. When the angle
of internal friction of the soil body is small, the frictional resistance
between particles is low, and the soil body is more likely to slip and
be displaced under external forces.Thismakes it easier for the soil to
compress during dynamic compaction, resulting in a larger tamping
settlement.

3.3.2 Analysis of the role of cohesion on the
depth of reinforcement

In the analysis of single factor calculation of cohesion on the
depth of soil reinforcement under dynamic compaction, the energy
level of dynamic compaction is set to 4,000 kN·m, the angle of

internal friction is 20°, the modulus of elasticity is 30 MPa, Poisson’s
ratio is 0.35, and the density of the soil is 2000 kg/m−3, and the
simulation calculations of the depth of soil reinforcement under
dynamic compaction under the conditions of cohesion 10 kPa,
15 kPa, 20 kPa, 25 kPa, 30 kPa, 35 kPa and 40 kPa, were made.
35 kPa, 40 kPa case of strong tamping under the action of soil
reinforcement depth simulation calculation, the calculation results
are shown in Figure 8.

The model calculation results in Table 5 are plotted in Figure 9.
It can be seen that in the case of other soil parameters are the
same, there is a good linear correlation between soil cohesion and
tamping volume, the fitting accuracy is high, and the overall trend
of the tamping volume with the increase of soil cohesion and
the continuous attenuation of the tamping volume, for example,
when the soil cohesion of the subgrade soil is gradually increased
from 10 kPa to 15 kPa, 25 kPa, and 35 kPa, the tamping volume
of the soil was attenuated by 8.5%, respectively, 21.2%, and 39.6%
respectively. Fitting accuracy of 0.988. This is due to the fact
that the increase of soil cohesion leads to an increase in the
attraction between soil particles, and the particles are more tightly
bound to each other. This makes the soil less susceptible to
particle displacement and compression when subjected to dynamic
compaction, resulting in a reduction in the amount of dynamic
compaction. Also, high cohesion is usually accompanied by higher
initial densities (Mendez et al., 2011). This means that the energy
applied by dynamic compaction is used more to improve the
intrinsic strength and overall stability of the soil body, rather
than causing particle rearrangement or significant compression,
which improves the overall strength and deformation resistance of
the soil body.

4 GA-BP neural network based
prediction

The use of traditional simulation calculation is too time-
consuming and labour-intensive, in contrast, the emergence of
neural network agentmethod can be a good solution to this problem,
to achieve the depth prediction of strong tamping reinforcement
conveniently and quickly in the actual project. Neural network,
as a powerful data-driven method, is particularly suitable for the
task of predicting the mechanical properties of complex soils and
engineering requirements due to its ability to effectively process
multi-dimensional complex data and capture potential non-linear
patterns, so this paper adopts the GA-BP neural network based
method to predict the compaction settlement of soils with different
parameters under the action of strong tamping method.

4.1 Artificial neural network–based
prediction method for dynamic
compaction improvement depth

BP algorithm is a widely used supervised learning algorithm in
neural networks. BP (Backpropagation) neural network is a type of
multi-layer feed-forward neural network, which is composed of an
input layer, a hidden layer (there can be more than one), and an
output layer.The core of the BPneural network is to adjust theweight
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FIGURE 8
Cloud picture of strengthening effect of dynamic compaction under different cohesive forces. (10kpa, 15kpa, 20kpa, 25kpa, 35kpa, 40kpa).

TABLE 5 Cohesion and tamping capacity.

c/kPa 10 15 20 25 30 35 40

H/m 0.634 0.580 0.518 0.499 0.415 0.377 0.338

and bias of the network through the back-propagation algorithm,
and it can be used between inputs and outputs to establish amapping
relationship. Through training, the network can automatically learn
the features from the data, thus improving the generalisation ability
and prediction accuracy (Ding et al., 2011). The BP neural network
architecture is shown in Figure 10.

Considering the slow training speed of BP neural networks,
especially in deeper networks, the gradient descent method is
slower to converge and may suffer from the problem of gradient
vanishing; it is prone to overfitting, if there is nomeans of preventing
overfitting, such as regularisation or early stopping (Xing and Li,
2020; Liang et al., 2019), the model may remember the noise in the
training set and fail to generalise well to new data; the complexity
of the parameter tuning, the BP neural network needs to adjust

several hyper-parameters (such as the learning rate, number of
neurons in the hidden layer, etc.), and different parameter set-
tings are required under different tasks (Zhang et al., 2018). The
RF Deep Neural Network leverages the principle of ensemble
learning, which mitigates overfitting; however, its relatively high
model complexity renders the interpretation of deeper nonlinear
relationships difficult (Ombres et al., 2024; Pistolesi et al., 2025). In
this paper, several optimisations are done on the basis of traditional
BP neural network to improve its deficiencies. The Leven-berg-
Marquardt algorithm accelerates the training speed and solves
the problem of slow convergence of traditional gradient descent.
The use of a regularisation term prevents model overfitting and
enhances the generalisation ability of the model. The use of early
stopping provides an effectivemechanism to avoidmodel overfitting
during training.

BP neural networks are highly sensitive to their initial weights
and biases; varying these initial values can lead the network to
converge on different local optima. Traditional genetic algorithms
(GA), on the oth er hand, offer strong global search capabilities and
do not require gradient information, making them less prone to
becoming trapped in local minima. However, GA typically exhibit
slow convergence rates, limited precision, and lack the ability to
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FIGURE 9
Cohesion and tamping capacity.

FIGURE 10
BP neural network structure diagram.

perform fine-grained local adjustments, which often results in
relatively high values of mean squared error (MSE), mean absolute
error (MAE), and maximum error. Dynamic compaction data often
containmeasurement errors, environmental disturbances, and other
noise. The population evolution and selection mechanisms of the
GA provide a certain “smoothing” effect, preventing extreme weight
updates caused by isolated noise. BP fine-tuning can still focus
on capturing the overall trend, and their combination exhibits
more robust performance in noisy environments. By employing
a GA to optimize the conventional BP model, one can identify
solutions that closely approximate the global optimum within
fewer iterations, thereby reducing the number of training epochs
required for the BP neural network and enhancing both its
convergence speed and accuracy. The GA-optimized BP network
is better tailored to the training data and demonstrates improved

generalization performance. This improvement arises because,
during the optimization process, the genetic algorithm’s selection,
crossover, and mutation operators enable a more comprehensive
exploration of the solution space, yielding optimized weights
and biases that enhance predictive performance on novel data.
Furthermore, due to the GA’s global search characteristics, more
suitable initial parameters can be obtained even with relatively
small datasets, thereby diminishing the network’s dependence on
data volume.

When predicting the depth of dynamic compaction
reinforcement, the data typically display pronounced non-
linearity, intricate interactions among geotechnical parameters
(e.g., soil type, moisture content, and compaction energy), and
a limited sample size owing to the high cost of field testing.
Support Vector Regression (SVR) underperforms in such settings
because it is sensitive to high-dimensional, non-linear feature
spaces and demands extensive kernel tuning, which becomes
computationally expensive for small, noisy datasets. Although
Random Forests and XGBoost are robust for tabular data, they
struggle to capture the inherently complex, continuous non-linear
relationships in deep dynamic compaction depth prediction; their
reliance on discrete splits can lead to overfitting or underfitting
when samples are scarce. By contrast, a GA-BP model leverages
the global optimization capability of genetic algorithms to
dynamically adjust the weights and architecture of the BP neural
network, effectively modeling the complex geotechnical dynamic
characteristics while enhancing convergence and generalization
performance.

Five factors, namely, internal friction angle, cohesion, modulus
of elasticity, Poisson’s ratio and density of the soil were used as
the input nodes of the GA-BP neural network; and the amount
of tamping settlement of the rammed reinforcement was used as
the out-put of the model. The empirical Formula 6 was used to
determine the number of neurons in the hidden layer (You and
Zhang, 2022):

l = √m+ n+ a (6)

Where: l is the number of neurons in the hidden layer, n is the
dimension of the input layer, m the dimension of the output layer,
and a takes a constant between 1 and 10.

The relationship between the input and output variables of the
neuron is shown in Equation 7:

yi = f(
n

∑
i=1

wjixi)+ bj (7)

where f is the activation function, typically a sigmoid, tanh or relu
function is used; yi is the output value; wji is the weight, xi is the
normalised input variable; bj is the bias, bj = - threshold.

For the training samples, this paper, on the basis of the
orthogonal test mentioned above, carries out Latin hypercubic
sampling through the Ihsdesign function in MATLAB for the
sample variables of five factors and five levels, randomly generates
100 groups of five-factor data, and simulates and calculates the
different combinations of the five factors to obtain 100 groups
of test results as the learning samples of data for training by
ABAQUS, and divides the learning samples into training sets and
test sets in the ratio of 7:3 respectively. The learning samples
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FIGURE 11
Comparison between GA-BP and traditional BP neural network. (a) Predicted versus measured values for the training set. (b) Comparison of predicted
and measured values for the test set.

were divided into training set and testing set in the ratio of 7:3
respectively.

4.2 Analysis of model results

Use the soil’s internal friction angle, cohesion, elastic modulus,
Poisson’s ratio, and density as input variables. Treat the dynamic-
compaction settlement as the target output. Employ MATLAB to
build a GA-BP neural-network model that predicts the settlement
produced by dynamic-compaction reinforcement. The hidden layer
used tansig activation function, and the output layer used purelin
activation function. The population size of GA is set to 140, the
crossover probability is 0.7, the variation probability is 0.35, the
maximum number of generations is 350, the elite retention ratio
is 0.2, and the optimal number of nodes in the hidden layer is
determined to be 5 according to the principle of trial and error
method. It used the bootstrapmethod to estimate the uncertainty by
resampling the training data (70% of the dataset, coded) 100 times
in order to calculate 95% confidence intervals for the depth of pre-
strengthened reinforcement.The results show an average confidence
interval width of ±0.08 m, reflecting the reliability of the prediction.
The prediction results are shown in Figure 11.

Figure 11 show the prediction results of GA-BP neural network,
traditional BP neural network for strong tamping reinforcement
tamping settlement under different foundation parameters,
respectively. From the figure, it is obvious that the traditional
BP neural network has poor accuracy in predicting the tamping
settlement of strong tamping reinforcement, and the difference of
coefficient of determination R2 between the training set and the
test set is 0.8128 and 0.71745, which indicates that the model is not
well generalised to the test set, and exhibits the phenomenon of
overfitting, which results in the model not being able to deal with
the data of the test set very well. The GA-BP neural network model
constructed in this paper predicts the results with high accuracy,
and the highest error between its predicted and actual values is

FIGURE 12
Comparison of model prediction and field test results.

only 12.9%, and the coefficients of determination R2 of the training
set and the test set are 0.97445 and 0.94053, which indicates that
the GA-BP model is more accurate than the traditional BP neural
network model for the prediction of the amount of tamping and
dynamic compaction of the strong rammer reinforcement.

The conventional BP neural network tends to underestimate
the measured values and exhibits poor predictive accuracy. A
comparison of theMSE,MAE, andmaximum error in Table 6 shows
that the GA-optimized BP neural network fits the training datamore
effectively, improves generalization, and enhances network stability.
Consequently, the tamping-settlement predictions produced by the
GA-BP model can better guide on-site construction and provide a
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TABLE 6 Comparison of MSE, MAE and Maximum Error of traditional
BP and GABP.

Model MSE MAE Maximum error

traditional BP 0.1031 0.2712 0.8886

GA-BP 0.01327 0.08480 0.3406

superior reference for using dynamic compaction to treat various
foundation types.

The GA-BP model, while highly effective for this study, has
certain limitations. Its high model capacity may lead to overfitting
on small or noisy datasets, though regularization techniques like
dropout and early stopping can mitigate this issue. Additionally,
the model’s performance depends on sufficient, representative
training data, with reduced effectiveness under data scarcity or
distribution shifts. The finite element method (FEM) simplifies
boundary conditions, and the Drucker-Prager (D-P) model
assumes isotropic material behavior, limiting its ability to capture
anisotropic or time-dependent soil responses, which may impact
prediction accuracy.

5 Conclusion

The geotechnical properties of the foundation soil exert a
major influence on the effectiveness of dynamic compaction;
therefore, when evaluating compaction performance, one must
comprehensively account for the effects of the soil’s internal friction
angle, cohesion, elastic modulus, Poisson’s ratio, and density on the
resulting settlement.

(1) 3,000 kN·m and 1,000 kN·m tamping model test and field test
results of the cumulative tamping volume curve of the fit R2
have reached more than 97%, and tamping law in line with the
tamping volume with the increase in tamping energy increases
with the increase in the number of times of tamping and
gradually tends to stabilise, indicating that this paper’s method
of establishing numerical models It shows that the numerical
model established by the method in this paper has a certain
degree of reliability.

(2) The core objective of tamping reinforcement is to improve
the shear strength parameter to enhance the overall stability
of the soil body, while the deformation parameters (elastic
modulus and Poisson’s ratio) have a relatively small impact on
the reinforcement effect.

(3) The GA-BP neural-network model developed for predicting
settlement under dynamic compaction achieves high accuracy.
Soil parameters (including internal friction angle, cohesion,
elastic modulus, Poisson’s ratio, and density) substantially
affect the predicted settlement. As the first time the GA-
BP model is applied to the prediction of strong tamping
reinforcement, the database can continue to be enriched by
combining with field tests in order to further improve the
prediction accuracy of the model.

(4) The creep and consolidation behavior of the soil under
dynamic loading is a key aspect for improvement. In the future,

elastic models can be combined with viscoelastic models
to characterize the time-dependent mechanical properties of
the soil during dynamic compaction, thereby enabling more
accurate predictions of long-term deformations and delayed
effects. Subsequent studies could further optimise the model
by reconsidering the effect of groundwater and the friction
between the rammer and the soil.
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