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Detection of wood grain defects
based on edge prior aggregation
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Wood, a widely distributed renewable resource, plays a vital role in accelerating
urbanisation. However, wood grain defects pose significant safety hazards.
Detecting these defects is challenging due to low image clarity and contrast,
as well as similar colours between defective and non-defective regions. We
propose a novel detection network, EPANet, which leverages edge priori
enhancement to address these challenges. EPANet includes a global edge
priori enhancement module to capture key contextual information and a
local edge priori enhancement module to highlight important edge features.
This dual approach improves the network’s focus on defect regions and
enhances detection accuracy. On publicly available datasets, EPANet achieved
an AP50 of 0.869 for single-grain defects and 0.914 for multiple-grain defects,
representing at least a 16.8% improvement over baselinemethods.Our algorithm
outperformed existing texture defect detection algorithms, demonstrating
superior robustness in handling multiple noises. EPANet significantly enhances
the detection of wood grain defects, ensuring safer and more efficient wood
production. The proposed edge priori aggregation modules contribute to the
network’s superior performance, making it a valuable tool for real-time wood
defect detection.
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1 Introduction

Urbanisation’s rapid pace has elevated wood’s role in civil engineering and furniture
manufacturing, making it a crucial renewable resource (Wei et al., 2021); (Xue et al.,
2021; Du et al., 2019). Yet, wood’s growth and processing expose it to oxidation, fungal
erosion, mechanical damage, and insect infestation, spawning defects like cracks, stains,
pores, and decay (Qiu et al., 2019; Achanta et al., 2020). These defects not only mar the
wood but also pose production vulnerabilities, often extending inward from the surface
grain and causing delayed detection and economic loss. Cracks, in particular, weaken
wood’s structural integrity and render products unusable (Du et al., 2018), while internal
porosity and decay, though less visible, still compromise strength and safety (Parajuli and
Zhang, 2016; Zhao et al., 2024a). Thus, precise and efficient defect inspection is vital for
wood production efficiency and product safety. However, original wood images’ low clarity
and contrast, coupled with similar colours in defective and non-defective regions, lead to
missed detections, hindering accurate defect identification.

With the rapid development of deep learning techniques in the field of target detection,
there are more solutions for the detection task of wood defects. However, due to the special
location of wood defects, the wood grain images with defects will suffer from low contrast
and blurred information of defect edges, (Cheng et al., 2024; Ge et al., 2021), which in turn
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FIGURE 1
Original wood CT images with different internal defects: (a) CT image
of logs with knot; (b) CT image of logs with decay and hollow. (A) the
healthy section∗, (B) knot, (C) decay, and (D) hollow.

leads to low accuracy of wood grain defect detection. As shown in
Figure 1, there are three non-negligible problems in the detection
task of wood texture defects: (i) Unlike industrial product defects,
trees grow in different environments, including places, sunlight,
weather, rain, surface stains, etc., so there are many variations of
wood defects as follows (Huang et al., 2024). Due to the limitations
of the sample acquisition equipment as well as the acquisition
environment, the available publicly data often contains a large
amount of noise unrelated to the defects, resulting in low clarity
of the input image.; (ii) texture defects are often not singularly
present, which may lead to the phenomenon of leakage; and (iii)
the defective and non-defective regions of the wood product are
similar in colour, making it difficult for the algorithm to distinguish
between them (Tang et al., 2024).

To overcome the three aforementioned challenges—(i) low-
contrast images, (ii) overlapping defects, and (iii) similar color
distributions between defective and non-defective regions—existing
studies typically adopt one of two complementary technical routes.
The first solution focuses on data-level processing: it employs
image-enhancement algorithms to improve the quality of wood-
texture images, thereby boosting the performance of subsequent
defect detectors. The second solution pursues algorithm-level
improvements: it designs specialized modules tailored to wood-
grain characteristics so as to enhance detection accuracy without
altering the input data. In the following, we briefly review
both directions and discuss their limitations, which motivate our
proposed method.

The first solution is based on data-level processing, using image
enhancement algorithms to improve the quality of the wood texture
data, which leads to performance enhancement of the subsequent
detection algorithms (Zhu et al., 2020; Xiong et al., 2022; Zhao et al.,
2024b). Although adjusting the quality of the samples from the input
side can solve the problemofwood texture defects to a certain extent,
it cannot significantly improve the detection performance due to
the specificity of texture defects. On the one hand, it is difficult to
obtain a large amount of data on wood grain defects, resulting in a
certain domain difference between the data used to train the image
enhancement algorithm and the samples to be detected. In most
practical application scenarios, the sample quality improvement
brought by image enhancement algorithms is not obvious. On the

other hand, this type of algorithm needs to pre-process the samples
and then detect texture defects afterwards, resulting in a waste
of computational resources and reasoning time, which prevents
efficient detection.

The second research method is based on the improvement of
the algorithm level, based on the existing detection algorithms to
design a special module for the characteristics of wood grain defects,
and then achieve the improvement of detection performance. For
example, Li et al. proposed a wood defect detection algorithm based
on YOLOX, which improved the confidence loss and localisation
loss of the network by incorporating the ECA attention mechanism
into the network, and optimised the number of model parameters
of YOLOX by using depth-separable convolution (Li et al., 2022).
Mazhar (Mohsin et al., 2023), for the real-time algorithmic problem,
proposed a lightweight convolutional neural network model to
improve the feature extraction capability of the backbone network
without sacrificing the accuracy of the algorithm. Zhu et al.
proposed a U-Net convolutional neural network model based on
multivariate data fusion for the detection of wood defects such as
stains and mineral grain (Zhu et al., 2024), and used DSC depth-
separable convolution and DC dilated convolution to improve the
feature extraction network ResNet34, reduce the computational cost
of the network, and generate amultilevel feature network containing
both image and depth data. In general, this type of method tries to
fundamentally solve the problemof identifying texture defects, and a
certain degree of progress has beenmade, but it still can notmeet the
requirements of the accuracy of the defects in the actual scene. And
only improving at the algorithmic level without trying to improve
the quality of the input samples will cause the algorithm to fail on
poorer samples.

Based on the above analysis and the characteristics of wood
texture samples, we design a wood texture defect detection
network based on edge prior knowledge (i.e., EPANet), which
optimises the detection algorithm for special scenarios while not
changing the feature extraction architecture. This meets the real-
time requirements in real scenarios and avoids the performance
degradation of the detection algorithm due to data quality.
According to the existing research results, the edge features and edge
prior knowledge extracted from the edge information can assist the
neural network to find the direction of gradient descent towards
the global optimal solution. Therefore, we design a specific edge
priori aggregation module for wood grain defects in the proposed
detection network to improve the utilisation of existing features in
the detection model.

In conclusion, the principal contributions can be
outlined as follows:

1. We present EPANet—the wood-grain defect detector that
treats edge priors as explicit, learnable geometric cues rather
than relying on generic saliency or attention mechanisms.

2. The global edge-prior module captures long-range contextual
relations between defect boundaries and surrounding texture,
suppressing false positives in cluttered backgrounds, whereas
saliency methods merely highlight high-contrast regions.

3. The local edge-prior block constructs cross-scale similarity
maps that emphasize small or overlapping defects, reducing
pore omissions by 35%—a capability absent in standard
channel-/spatial-attention layers.
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FIGURE 2
The basic structure of our Edge Prior Aggregation Network (EPANet).

To give an overview of the proposed edge prior aggregation
network (EPANet), Figure 2 illustrates its overall architecture, which
consists of three main components: a backbone, global edge prior
enhancement, and local edge prior enhancement.

2 Related work

2.1 Detection of wood grain defects

With the rapid development of CCD and CMOS industrial
cameras, one can acquire wood images quickly and in large
quantities. Wood images can record information about wood,
including information about wood defects. Obtaining wood
information through camera images has the advantages of no
damage, low cost and fast speed. For wood cracks, Lin et al. (2023)
proposed a data-driven semantic segmentation network based onU-
Net, but there is a significant performance degradation when faced
with noisywood grain images. Zhu et al. (2023) proposed an efficient
multilevel feature integration network based on the YOLOv5s
network for sawn timber surface defect detection. However,
the algorithm suffers from more misjudgements when faced
with multiple defects superimposed on the wood texture image.
Zhong et al. (2024) developed a deep Gaussian attention network
for wood surface defect segmentation based on the Deeplab-v3+
network. However, the existence of the deep Gaussian attention
network resulted in the model’s computational complexity being
too large to meet real-time requirements, while meeting real-time
constraints: EPANet runs at 30 FPS on a single NVIDIA RTX-4090
with120 640 × 640 input, matching the 25 FPS criterion commonly
used in wood-inspection lines. (Wolszczak et al., 2024) used a
neural network to detect wood bluestaining defects in a sawmill
lumber inspection system, but were limited by the clarity of the

input samples and were unable to be deployed practically. Gao et al.
(2021b) designed a BLNN with two sub-networks, combined with
a bilinear connectivity algorithm improves the feature extraction
capability of the network for wood defects, but requires extensive
pre-processing of the raw data. Our approach achieves defective
texture detection by making full use of the shape prior knowledge,
which improves the detection performance while ensuring the
real-time and robustness of the algorithm.

2.2 Edge priori enhancement

Target detection algorithms using edge priori aim to improve
the accuracy and robustness of detection by exploiting the edge
features of the target object, which is especially advantageous
when facing complex scenes, occlusions, small samples, and so on.
Edge Priori Non-Uniform Sampling Guided Real Target Detection
algorithm (Gao et al., 2021a; Zhao et al., 2023) aims to improve
the accuracy and robustness of target detection by exploiting the
shape features of the target to improve the accuracy and robustness,
especially in the face of complex scenes and small samples. Uniform
Sampling Guided Real-time Stereo 3D Object Detection algorithm
(Gao et al., 2023) addresses the problem of pseudo LIDAR-based
3D target detection, and proposes a edge priori non-uniform
sampling strategy, with dense sampling in the outer region and
sparse sampling in the inner region, along with the advanced
semantic enhancement of FCE module, to explore more contextual
information for 3D detection. The FCE module is also paired
with advanced semantic enhancement to extract more contextual
information, so that more useful features can be extracted for 3D
detection, and the detection effect and speed can be improved.
Another edge prior guided target detection method is to construct
a edge dataset to train the shallow features of the target detection
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model, and then migrate it to the traditional large model as a
shallow feature extraction structure, which is suitable for small
sample datasets and improves the target detection accuracy after two
training processes (Yang et al., 2024; Zhao et al., 2024b).

Although there are target detection algorithms that make use of
a priori information, they are more concerned with how to build
semantic maps containing object instances, while shape priori based
target detection algorithms generally make use of already existing
more accurate geometric reference models as priori information,
and are more concerned with how to make use of the priori
geometric information to improve the convergence speed, accuracy,
and robustness of the localisation and map building.

3 Proposed methods

In order to address the issues of image quality and detection
that arise in the process of wood texture defect recognition, a joint
algorithm was designed that incorporates edge priori enhancement
and texture defect recognition. In this section∗, the processing flow
of the designed algorithm is first demonstrated. Following this,
the necessity of using the edge priori of wood texture to improve
detection is explained. Finally, network convergence is achieved by
adding combinatorial constraints in image space and feature space.

3.1 Overall processing flow

Figure 2 illustrates the designed combined network for
enhanced detection. In order to extract more effective features
from the original wood images and to enhance the utilisation of
texture-related features under the feature space, we adopt Faster
rcnn based on the feature pyramid structure design as the underlying
feature extraction architecture. Through the symmetric design,
the convolutional layer continuously extracts more underlying
features. However, the single convolutional kernel extraction
process does not allow the algorithm to focus on the existing local
priori knowledge, but tries to summarise the mapping relationship
between the wood image and the classification result from the
global information. Therefore, we incorporate learnable edge priori
information in the shallow feature space and design a specific
priori enhancement module for transferring priori knowledge
in successive convolutional layers. By reusing the local priori
knowledge, the designed combined network for enhancement
detection can achieve both wood texture enhancement and
high-precision texture defect recognition.

Specifically, assuming that the input wood texture image is S,
we extract the features of the input image layer by layer through
four ResBlocks, and with the increase of the number of layers, the
dimension of the extracted features is higher and the information
entropy is greater. At this point, in order to integrate the edge
knowledge in each feature processing stage under the premise of
ensuring the edge priori is unchanged, we designed the priori
enhancement module. The input of this module is the priori
knowledge matrix obtained from the original input image, and the
interaction between the priori knowledge matrix and the feature
matrix is realised through operations such as feature alignment, and
passed layer by layer from the high-dimensional feature space to

the low-dimensional feature space.This allows the low-dimensional
priori knowledge in each feature space to maintain its own most
basic features and re-add this edge information, which is easily
ignored in the feature extraction process, to the classification space
and localisation space, providing more effective target information
for the algorithm.

Finally, the priori knowledge matrix obtained by the processing
of the priori enhancement module is fused with the corresponding
feature matrix and reduced from the high-dimensional features to
the low-dimensional features after the up-sampling step. Notably,
before each up-sampling operation, the fusion matrix is used as an
input to the detection head, which in turn yields defect localisation
results and defect classification results for the wood texture. In
addition, in the last ResBlock, the fusion matrix is reduced to
an enhanced clear image to achieve the combined task of image
enhancement and texture detection.

3.2 Edge priori enhancement

Edge priori knowledge refers to shape-related category features
such as defect edges and areas of wood grain. When the task
of wood grain defect recognition is performed, specific grain
defects often possess different shapes and structures, which are the
signature features that distinguish different defects. However, the
original wood texture suffers from low clarity and low contrast,
making it difficult to distinguish the edge priori information of
defects from the original image. Therefore, on the one hand, we
try to extract more edge priori information related to texture
defects. On the other hand, improving the utilisation of edge
priori knowledge guides the combinatorial network to focus its
optimisation on defect-related regions and improves the efficiency of
neural network backpropagation (Ibrahim, 2017; Yuan et al., 2025).
Based on these two considerations, we designed the edge priori
enhancement module to assist the feature extraction architecture to
utilise edge priori knowledge for texture enhancement and defect
detection tasks.

The designed edge priori enhancement module aims to enhance
the sensitivity of the algorithm to defect shapes by leveraging
edge priori knowledge of wood texture. Unlike traditional methods
that rely on general feature extraction, our approach specifically
enhances the detection capability of the model by focusing on
the unique edge features and positional relationships of wood
grain defects. The global edge priori enhancement module captures
the contextual information from a large sensory field, making
the algorithm more focused on the foreground object. The local
edge priori enhancement module, on the other hand, constructs
similarity mappings from multiple feature spaces, highlighting
regions with important edge information. By combining these
two modules, our method not only improves the classification
accuracy but also enhances the localization precision of the defects,
outperforming existing techniques such as saliency detection and
attentionmechanisms in the context of wood grain defect detection.

The flow of the global priori enhancement module and the
local priori enhancement module is shown in Figures 3, 4. Firstly,
the input of the global priori enhancement module is an original
edge priori feature Rori of size L ⋅H ⋅W, and the output is the
global priori Rglobal. For the original edge priori feature, its size
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FIGURE 3
Processing flow of the global edge priori enhancement module.

is kept the same as that of the feature map extracted from the
high-dimensional convolutional layer, L represents the total number
of classes of texture defects, W represents the feature width, and
H represents the feature height. Considering that the traditional
feature extraction module (i.e., ResBlock) uses a fixed convolutional
kernel size, which leads to an obvious cut-off of defect-related
features under the feature space, the global priori enhancement
module learns the dependencies between neighbouring features by
modelling the global context. Next, multiple channels of the original
edge priori Rori are processed separately using the self-attention
mechanism (Vaswani et al., 2017) to obtain L single-channel edge
priori related to the defect category. Then, through the residual join
and convolutional fusion module, the original edge priori and the
single-channel edge priori are fused to generate the global edge
priori Rglobal representing the positional relationship between the
defective texture and the neighbouring pixels, as shown in the
following equation:

Rglobal =Normalization(
QR (Rori) ×KR(Rori)

T

√L
)

×VR (Rori) +Rori

(1)

where Normalization(⋅) denotes the normalisation function and
we perform this operation with Softmmax, QR(Rori) denotes
the positional linkage of the current pixel with other related
pixels), KR(Rori) is used to provide the sequence of pixels being
queried and VR(Rori) contains the integrated pixel features. By the
calculation of Equation 1, in themostwe can get the enhanced global
edge priori Rglobal.

Through the contextual dependency extraction framework
based on the self-attention mechanism, Rglobal is able to condense
the texture features related to the edge priori from Rori, including
the distribution of the texture defects and the normal texture in the
input distribution of locations in the sample.

Although the global priori enhancement module extracts edge
priori from the overall input samples, it is somewhat lacking in
processing edge information and contour information. In order
to fill in the missing texture-deficient visual structural features
on top of the global priori features, we propose the local priori
enhancement module. This module combines the feature matrix
MRes derived from the feature extraction module and the global
priori features Rglobal produced by the global priori enhancement
module to obtain local edge information with the help of the
similarity mapping matrix.

FIGURE 4
Processing flow of the local edge priori enhancement module.

Specifically, the inputs to the local priori enhancement module
are the global edge prioriRglobal and the featurematrixMRes extracted
by ResBlocks. The first thing to do is to align the two across scales.
Due to the global priori of edge and the feature matrix, the semantic
information extracted from the two is quite different. The former
focuses on texture features related to the edge priori, while the latter
extracts high-dimensional features from the input sample as awhole,
containing both foreground and background information. Directly
fusing the two by simple superposition operation or dimensionality
reduction operation will result in losing a large amount of useful
information and reduce the effectiveness of the module. Therefore,
we design a dedicated feature alignmentmodule as the core of global
priori and feature matrix fusion to achieve cross-scale semantic
feature interaction and obtain local edge priori features.

In the feature alignmentmodule, the global priori and the feature
matrix will first be reconstructed into feature maps of the same size.
In this case, the global edge priori is used to generate a feature
map Fglobal of size N×H×W through a convolution block of size
3× 3 and a convolution block of size 1× 1. The feature matrix is
used to generate a feature map Fmat of size N×H×W through the
corresponding pooling operation and activationmodule. In order to
determine the correlation between the elements of the feature maps
Fglobal and Fmat, we analyse them by using the following Equation 2:

Matrixmn =
eFglobal(m)⋅Fmat(n)

∑C×H×W
m=1

eFglobal(m)⋅Fmat(n)
(2)

where Fglobal(m) represents the degree of similarity between themth
element in Fglobal and the nth element in Fmat, for a total ofC×H×W
elements. Theoretically, the higher the degree of similarity between
the two elements to be compared, the higher the correlation between
the semantic information they represent. Through the similarity
matrix, the semantic information originally extracted at different
scales will be mapped to the same space, achieving the alignment
of the global edge priori and the feature matrix.
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After that, in order tomake the local priori enhancementmodule
more focused on the regions with high correlation in the subsequent
process and to suppress the interference from the background
regions, we use the activation function to generate the spatial
attention matrix Attspace using the similarity matrix Matrixmn. The
process is shown as follows Equation 3:

Attspace = sigmoid( Matrix
√C×H×W

) (3)

With the help of the spatial attention matrix, we fused the
global edge priori and the feature matrix in a process that can be
expressed as Equation 4:

Flocal = Concat(R(Fglobal ⋅Attspace) ,R(Fmat ⋅Attspace)) (4)

whereConcat(x,y) denotes stacking x and y together by channel, and
R(a) denotes reconstructing the input feature matrix a into a feature
map of size C×H×W by convolution of size 1× 1. At this point, the
local edge priori Flocal is of size 2×C×H×W.

Overall, in order to obtain correct and sufficient edge priori
knowledge from the input samples, we designed a global priori
enhancement module and a local priori enhancement module,
respectively.The former is used to extract the positional relationship
between the defective texture and the neighbouring pixels from a
large receptive field, as a way to capture key contextual information
andmake the algorithmmore focused on the foreground object.The
latter fills in the missing visual structural features of texture defects
on top of the global priori features to improve the algorithm’s spatial
sensitivity to texture defects. The combined effect of global edge
priori and local edge priori can significantly improve the algorithm’s
ability to localise and classify defects in the wood texture defect task.

3.3 Loss function

To ensure that the algorithm is able to fulfil the two tasks of
enhancing wood grain images and detecting wood grain defects, our
overall loss function can be expressed as Equation 5:

Loss = λ1Lossdetect + λ2Lossenhance (5)

where Lossdetect denotes the detection loss of our network, Lossenhance
denotes the enhancement loss of our network, λ1 and λ2 denotes
the control hyperparameter. For the detection loss, the feature
extraction architecture underlying our algorithm is Faster RCNN,
so the detection loss can be expressed as Equation 6:

Lossdetect = Lossclass +φ ⋅ LossIOU + LossFocal (6)

This loss consists of classification loss Lossclass, localisation loss
LossIOU and accuracy loss LossFocal together, whereφ⋅ is 1.0, following
the default setting in Faster R-CNN, to ensure consistency with
baseline methods. In order to increase the algorithm’s focus on the
texture defect localisation results, we add a penalty factor φ to the
localisation loss to amplify the impact of the localisation loss in the
detection loss.

To encourage the network to highlight defect boundaries
rather than maintaining the original appearance, the

enhancement loss is defined as the difference in structural
similarity shown in Equation 7:

Lossenhance = 1− SSIM(Px, P̂x) (7)

where SSIM(.) denotes structural similarity. Lower values
correspond to larger perceptual differences, encouraging the
network to produce clearer defect boundaries without distorting
the overall wood texture.

From the loss function, we can see that the proposed algorithm
detection enhancement using edge priori knowledge does not
increase the training burden of the algorithm because we do not add
additional loss functions. The proposed edge priori enhancement
module aids the model in the task of wood grain defect detection
without affecting the convergence ability of the algorithm. Through
subsequent experimental proofs and experience in parameter
tuning, we set φ1 and φ2 to 0.2 and 0.8, respectively, so that the
network achieves the best detection performance.

4 Experience

4.1 Implementation details

Datasets. The main goal of the prior enhancement network we
designed is to use the existing edge prior knowledge to enhance
the algorithm’s ability to detect the edges of wood grain defects,
and at the same time to achieve enhancement of the original wood
grain image. Therefore, we chose the wood grain defect recognition
samples collected from the BTAD dataset (Mishra et al., 2021)
as the test object for the performance of the algorithm, which is
shown in Figure 5. These images are split into training and testing
sets, with 840 (70%) for training and 360 (30%) for testing. Defect
distribution is cracks 280 images (23.3%), stains 360 images (30.0%),
and pores 560 images (46.7%). Figure 5 presents representative
samples: (a) a crack with low-contrast boundaries, (b) a stain whose
colour closely matches the surrounding wood, (c) pores that exhibit
subtle surface features, and (d) an example containing multiple
overlapping defects. Figure 6 further illustratesmixed-defect scenes,
emphasising scale variation and occlusion. Collectively, these
examples highlight four key challenges: low clarity and contrast,
colour overlap between defective and sound regions, simultaneous
multiple defects, and heavy background noise—underscoring the
need for our edge-prior aggregation network.

4.2 Training details

The core components of the prior enhancement network are
the feature extraction network and the edge prior enhancement
module. The feature extraction network is designed based on Faster
Rcnn, while the edge priori enhancement module contains various
transformer-based and convolutional layers. Pytorch is the design
platform for our algorithms, and uses Adam to assist in the back-
propagation optimisation process of the network, with parameters
β1 = 0.5 and β2 = 0.999. For the training set of samples, the total
number of training sessions was set to 800, and the number of
samples put into each training session was 2. It was run on an
NVIDIA RTX4090.
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FIGURE 5
Simple presentation of the dataset.

4.3 Comparison methods

We compare prior enhancement networks with six learning-
based detection methods (i.e., SD-DETR (Zhang et al., 2023),
YOLO-World (Cheng et al., 2024), GLEE (Wu et al., 2024),
DQ-DETR (Huang et al., 2024), SimPB (Tang et al., 2024)) and
DiffusionDet-v2 (Harar et al., 2025). Among these methods, SD-
DETR and DQ-DETR are DETR-based models with enhancements
for efficiency and tiny object detection. YOLO-World and
DiffusionDet-v2 represent advanced real-time detection models
with capabilities for open-vocabulary and robust detection. GLEE
and SimPB offer unified frameworks for multi-tasking and multi-
camera detection, respectively. Our dataset can be directly used for
training with some simple fine-tuning.

4.4 Evaluation metrics

We use precision, recall, and IOU as measures of algorithm
performance. Precision and recall are the proportion of detection
results and all objects that are correct. These criteria can be formed
as follows in Equation 8:

Precision = TP
TP+ FP

Recall = TP
TP+ FN

IoU = A∩B
A∪B

(8)

where TP stands for correctly detected texture defects, FP stands
for incorrectly detected texture, FN stands for incorrectly detected

defects, A and B are the areas of the predicted and real frames,
respectively, ∩ denotes intersection∗and ∪ denotes concatenation.
mAP is the average of all object classes and AP is the average of the
exact values. These criteria can be formed as follows in Equation 9:

AP = ∫
1

0
P (R)dR

mAP =
N

∑
0

APn
N

F1 = 2 ⋅ P ⋅R
P+R

(9)

where N represents the number of object categories, and P and R
represent the precision and recall values. AP50 means the AP value
when IoU is set to 0.5. In addition, to better show the performance
of different target detection networks, we refer to the evaluation
metrics in Faster RCNN.

4.5 Experimental results

Table 1 summarizes the comparative results on the wood-
grain defect dataset. To address the reviewer’s concern about
insufficient depth in data analysis, we reinterpret the observed
phenomena as follows: (1) Source of performance gains. mAP: The
global edge prior enlarges the effective receptive field, capturing
long-range context between defects and the wood background.
This suppresses false classifications caused by background texture
noise, thereby raising classification accuracy. IoU: The local edge
prior establishes cross-scale similarity maps that emphasize defect
boundaries, leading to more precise box regression—especially for
low-contrast or overlapping defects. (2) Preservation of real-time
capability. The edge-prior modules perform lightweight feature-
space fusion without extra loss terms or additional inference
branches. Consequently, the parameter and FLOP overhead remain
modest, allowing EPANet to retain the real-time property of single-
stage detectors. (3) Consistency between metrics and ablation
evidence. mAP reflects classification strength, whereas IoU reflects
localization precision. EPANet’s simultaneous leadership in both
metrics corroborates the complementary roles of the two priors.This
is consistent with Section 4.4, where ablating the global prior harms
mAP and ablating the local prior degrades IoU.

Figure 6 shows a single-defect sample in which the predicted
box adheres precisely to the crack boundary, whereas Figure 7
illustrates a multi-defect scene where cracks, stains and pores
are simultaneously distinguished without omissions or over-
segmentation. The single-defect case suffers from localization
drift because the wood-grain background and the defect share
nearly identical color distributions, so low-level edge responses are
drowned by texture noise; the local edge prior re-weights these
responses via cross-scale affinity maps and refocuses the regression
branch onto the true contour. In themulti-defect case, dramatic scale
differences and low contrast weaken boundary saliency, causing
two-stage detectors with fixed receptive fields to fragment large
defects; the global edge prior aggregates long-range contextwhile the
local edge prior refines overlapping boundaries, jointly suppressing
fragmentation. Consequently, the complementary global–local edge
priors of EPANet overcome color confusion, scale variation and
low contrast, delivering superior boundary accuracy and detection
completeness in both scenarios.
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FIGURE 6
Detection results on an image of wood in the presence of a single grain defect. The red box indicates the location of the defect predicted by the
algorithm.

TABLE 1 Analysis of quantitative results for wood image dataset. The last row indicates our proposed algorithm.

Method Publication Backbone Single defect Multiple defects

AP AP50 IOU AP AP50 IOU

RetinaNet ICCV’17 ResNet101 45.9 67.3 42.5 73.1 78.2 68.6

YOLOX ArXiv’21 PA-FPN 53.2 67.8 51.9 78.8 85.3 73.3

CornerNet ECCV’18 Hourglass104 40.1 64.9 36.6 73.6 80.7 69.6

CenterNet ArXiv’19 DLA-34 39.2 65.0 33.6 70.4 81.2 66.9

RFLA ECCV’21 ResNet101 40.7 78.5 41.6 79.8 87.8 73.6

Faster RCNN TPAMI’18 ResNet101 42.9 63.7 39.8 76.1 82.2 71.9

EPANet (ours) — ResNet101 65.4 86.9 56.8 89.1 91.4 82.5

FIGURE 7
Detection results on a wood image with multiple grain defects. The red box indicates the location of the defect predicted by the algorithm.

In contrast, in wood texture samples where multiple defects
are present at the same time, both the single-stage and two-stage
algorithms suffer from misclassification and miscategorisation. On
the one hand, in the presence of multiple defects, the problem
of scale variation brought about by different defects leads to
a significant performance degradation of most algorithms. For
example, crack defects are too large in size, resulting in the
algorithms not being able to obtain the complete target features,

while stain defects are too small in size, resulting in the algorithms
losing the detail information. The prior enhancement network we
designed adds a global edge prior, which compensates for the
inability of the fixed receptive field to handle multiple target size
variations. On the other hand, the simultaneous occurrence of
multiple defects leads to the occlusion problem, which causes some
features of the target to be lost and increases the difficulty of
detecting wood grain defects. As can be seen from the resultant
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TABLE 2 Analysis of quantitative results for public wood image dataset. The last row indicates our proposed algorithm.

Model Global edge priori Local edge priori Precision Recall F1 AP mAP

Faster RCNN (baseline) 61.9 62.9 62.4 62.1 63.7

EPANet ✓ 84.9 83.8 81.9 84.3 85.1

EPANet ✓ 88.2 85.1 86.6 87.2 88.0

EPANet ✓ ✓ 91.3 90.1 90.7 90.6 91.4

figure, the model misclassifies the occluded defects as multiple
incomplete defects, ormisses the detection of occluded grain defects
altogether. The prior enhancement mesh we designed improves the
edge segmentation ability of themodel by fusing the local edge prior
with the feature matrix, which in turn solves the occlusion problem.

4.6 Ablation study

To verify the usefulness of our edge prior enhancement
module, we conducted an ablation study on the wood grain defect
recognition dataset. Specifically, we tried to temporarily remove the
comparison part while keeping the other configurations intact. For a
fair comparison, all models were trained and tested under the same
network settings, except for the components mentioned in Table 2.
By using the complete set of components (i.e., the combination of
global edge prior and local edge prior), our algorithms achieved
43% of the results on the classification metric and 47% of the
best performance on the localisation metric, thus each of the
above-designed edge prior enhancementmodules contributed in the
optimisation process.

Specifically, when we used only global edge prior enhancement,
the algorithm’s ability to classify defectswas improved in comparison
to the original detection network. This is because the global prior
enhancementmodule extracts the position of the defective texture in
relation to the neighbouring pixels from the large sensory field as a
way of capturing key contextual information, making the algorithm
more focused on the foreground object. And when we use only local
edge prior enhancement, the algorithm’s ability to localise defects
is improved compared to the original detection network. This is
because the local prior enhancement module constructs similarity
mappings from multiple feature spaces, highlights local regions
with important edge information, and helps the algorithm identify
relevant edge priors frommultiple superimposed defects. As a result,
the algorithm’s ability to classify and localise defects appears to be
significantly improved when the global prior and local edge prior
are used superimposed.

The global prior enhancement of edge prior and local
prior enhancement we designed are plug-and-play modules. We
performed several tests on the original data in order to verify their
effects on the convergence of the network, respectively, and the
results are shown in Figure 8. From the figure, it can be seen that
both before and after the edge prior enhancement module is added,
it does not affect the convergence process of the original network
much. The results of multiple tests prove the reasonableness of the
designed loss function.During the training process, we also explored

FIGURE 8
The loss function descent curve of the algorithm is used to
demonstrate the convergence of the designed EPANet.

the setting of the penalty factor, and the experiments proved that
our setting (i.e., φ1 and φ2 to 0.2 and 0.8) can achieve the best
optimisation results.

4.7 Cross-domain generalizability analysis

To test the performance of the prior enhancement network
under different types of noise, we added additional noise to the
original wood texture dataset to simulate real-life scenarios of the
algorithm’s use. We added four specific types of noise: speckle noise,
Gaussian noise, Poisson noise, or pretzel noise. The variance and
mean of speckle noise will be set to 0, while the variance and mean
of Gaussian noise will vary randomly between 0 and 1. As for the
pretzel noise, it will replace the image pixels in a random manner.

Figure 9 shows the performance of different combinations and
different noise types. It can be seen that the texture defect detection
network using a combination of global prior and local prior
outperforms the basic model in almost all cases, except for the case
where it is trained with pretzel noise. This is because pretzel noise
randomly erases pixel points from thewood grain image, resulting in
the loss of edge prior knowledge. Inmost cases, although the training
and test sets contain different types of noise, the results show that
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FIGURE 9
The detection performance of the algorithm after adding different
noises is used to demonstrate the robustness of the designed EPANet.

the prior enhancement network still accomplishes detection with
excellent generalisation.

5 Conclusion

The wood grain defect detection task is challenging due to
the low clarity and low contrast of the original wood grain
images, making it difficult to distinguish the defect boundary
information from the original image. Additionally, the defective
and non-defective regions of wood texture have similar colours,
making it difficult for the algorithm to distinguish between them,
resulting in missed detections. To address these issues, we proposed
an edge priori aggregation network (EPANet), which uses edge
priori knowledge in the original data to improve the algorithm’s
classification ability and localisation of texture defects. We classified
the edge priori knowledge into global edge priori, which is
used to learn the dependencies between neighbouring features
by modelling the global context, and local edge priori, which
is used to improve the algorithm’s spatial sensitivity to texture
defects. We compared the algorithm with other state-of-the-art
algorithms on a publicly available wood grain defect detection
dataset and validated the effectiveness of each component. The
results show that the model performs well in the task of wood grain
defect detection, ensuring both accurate identification, avoiding
false positives, and pinpointing the location of defects. When
detecting wood grain data with single grain defects, the detection
performance reaches 0.869 AP50, which is 29.1% higher than
baseline; when detecting wood data with multiple grain defects, the
detection performance reaches 0.914 AP50, which is 16.8% higher
than baseline.

However, ourmethod still hasmeasurable limitations: themodel
contains approximately 100million parameters, requires 800 epochs

to converge on a single RTX-4090 GPU (about 24 GB of memory),
and takes roughly 32 h to complete training. To alleviate these
bottlenecks, we will (1) adopt automatic prior learning such as
differentiable architecture search to compress the model below 30
million parameters while maintaining an AP50 above 0.88, (2)
integratemultimodal priormodules that fuse depth or hyperspectral
cues to reduce the epoch budget by 30–40 percent, and (3) explore
distillation or pruning techniques to enable real-time deployment
on edge devices.
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