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Conventional wound dressings can only provide basic protection for wounds 
and have limited ability to promote wound healing. Therefore, it is of great 
practical significance to develop new wound dressings with antibacterial, 
hemostatic, wound healing promotion, and good biocompatibility. Graphene 
oxide (GO), as a new type of nanomaterial, has received widespread attention in 
the fields of tissue engineering, bioimaging, biosensing, cancer therapy, and drug 
delivery. Due to unique physicochemical properties and multifunctionality of 
GO, polymers integrated with GO have the advantages of excellent antibacterial 
effect, good biocompatibility, significant wound healing promotion, and 
intelligent response, thus becoming new wound dressing materials with great 
potentials. This review systematically summaries the antibacterial, hemostatic, 
and angiogenic effects and mechanisms of GO. Then the research progress of 
GO as a core material combined with polymer compounds to form GO-based 
polymeric wound dressings is focused, followed by an in-depth discussion on 
their biocompatibility. Finally, this review further prospects the future research 
direction of GO-based polymeric wound dressings, with a view to providing 
ideas for their research and application.
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 1 Introduction

Skin is the largest external organ of the human body and an important defense barrier, 
playing a vital role in protecting the human skeleton, internal organs and underlying 
tissues from a wide range of physical and chemical injuries (Taati Moghadam et al., 
2020), therefore, repairing damaged skin is of far-reaching significance. Wound healing 
is a process involving a variety of pathophysiological events usually consisting of 
three phases: hemostasis and inflammation, new tissue formation (or proliferation) 
and tissue remodeling (Koehler et al., 2017; Barnum et al., 2020). Wounds are very 
susceptible to bacterial infections during the healing process, which can delay the 
healing process and damage the healthy skin tissue surrounding the wound (Skórkowska-
Telichowska et al., 2013). The healing of all types of wounds is facing a wide range 
of challenges due to the complexity of wound healing mechanisms. This complexity 
arises from four dynamically sequential and intertwined pathophysiological phases: the 
initial hemostatic phase requires precise coordination of platelet activation, coagulation 
cascade and inflammatory factor release. The inflammatory phase needs to tightly
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control the neutrophil/macrophage infiltration intensity and 
duration. The proliferative phase involves fibroblast differentiation, 
collagen deposition, and angiogenesis. The final reconstruction 
phase lasts for months to years as the new blood vessels 
mature and the keratinocytes stop proliferating and migrating 
and begin to differentiate, thus completing wound healing. 
At the same time, the emergence of various drug-resistant 
bacteria has put wound healing in a more critical situation. 
Therefore, the selection of appropriate wound dressings and 
the development of new wound dressings is of great practical 
significance (Saghazadeh et al., 2018; Wang et al., 2018;
Wilkinson and Hardman, 2020).

The concept of wound dressings has been around for a long 
time and includes various forms such as hydrogels, sponges and 
membranes. In general, the ideal dressing should fulfil the following 
characteristics: It prevents loss of water and body fluids; prevents 
bacterial infection of the wound and fights off invading bacteria; 
promotes the growth of granulation and epithelial tissues; does 
not leave scars after wound healing; is soft to the touch, has good 
breathability and moisture permeability, and retains moisture well; 
has good biocompatibility; and is comfortable, convenient, easy to 
prepare, inexpensive, and easily removable (Hamedi et al., 2022; 
Fiorentini et al., 2023). Currently, most of the materials chosen 
for wound dressings are polymeric compounds, such as bacterial 
cellulose, chitosan, sodium alginate (SA), polyvinyl alcohol (PVA), 
etc. Kamel et al. (2023) prepared a SA/PVA matrix composite 
scaffold for wound healing. The scaffolds were found to have good 
thermal stability and controllable biodegradation properties, and 
formed a homogeneous, regular and porous three-dimensional 
lamellar structure. In addition, the results of in vitro experiments 
showed that the scaffold had good biocompatibility and no toxicity 
reaction to human skin fibroblasts. Sathiyaseelan et al. (2021) 
prepared a chitosan/PVA matrix composite for wound management. 
It was found that the composite had a dense and well-connected 
microporous three-dimensional structure. In addition, the 
composite maintained excellent biocompatibility while possessing 
anti-inflammatory activity. The polymeric wound dressings 
generally have excellent three-dimensional structures, good 
biocompatibility and degradability, and excellent hemostatic and 
self-healing properties. However, polymeric wound dressings also 
face problems such as lack of diverse bioactivities, poor suitability 
for highly exudative wounds, controversial long-term safety, and 
low clinical conversion rates (Chattopadhyay and Raines, 2014;
Arabpour et al., 2024).

In recent years, graphene oxide (GO) has attracted much 
attention in the field of wound dressings due to its excellent 
performance as well as special physicochemical properties. GO is 
a graphene derivative consisting of a hexagonal carbon network 
and sp2 and sp3 hybridized carbon by introducing covalent 
C-O bonds into graphene, which is the same layered planar 
two-dimensional structure as graphene. Graphene itself has 
unique and excellent optical, mechanical, and electrical properties 
(Genorio et al., 2019; Torres et al., 2020), but its application 
is limited by its poor compatibility with polymers due to its 
hydrophobicity and its susceptibility to agglomeration (Patil et al., 
2021; Gostaviceanu et al., 2024). Compared to graphene, the 
presence of oxygen-containing groups in the structure of GO, such 
as -OH, -C-O-C-, -C=O, and -COOH, makes GO highly reactive, 

good hydrophilicity, and better biocompatibility (Pei et al., 2018; 
Thebo et al., 2018; Di Crescenzo et al., 2019). In addition, GO is 
amphiphilic, with its intermediate lamellae being hydrophobic while 
the edges exhibit hydrophilicity. This hydrophobicity allows GO to 
load hydrophobic substances through π-π stacking or hydrophobic 
interactions. At the same time, the hydrophilic edge provides an 
ideal site for GO functionalization modification and facilitates 
surface modification, thus creating conditions for binding with 
other chemical groups.

GO has been widely used in the biomedical industry with its 
special structure as well as excellent properties (Maiti et al., 2018; 
Patil et al., 2021). As a wound dressing, GO can exert antibacterial 
effects in a variety of physical and chemical ways, thus preventing 
wounds from bacterial infection. At the same time, GO promotes 
wound healing through its angiogenic properties. When GO is 
combined with polymeric compounds to form GO-based polymeric 
wound dressings, it not only exerts the bioactivity of GO, but also 
has excellent hemostatic properties (Lin et al., 2021; Khan A. et al., 
2023). Furthermore, studies have shown that GO-based polymeric 
wound dressings can significantly reduces the toxicity of GO, 
demonstrating a high level of safety (Ghulam et al., 2022;
Yadav et al., 2022).

This review systematically discusses the antibacterial, 
hemostatic, and angiogenic effects of GO in the wound healing 
process. The research progress of GO-based polymeric wound 
dressings is also reviewed. Finally, this review further prospects 
the future research direction of GO-based polymeric wound 
dressings to promote the clinical application of GO-based 
polymeric wound dressings. 

2 Antibacterial effects

Wound infection represents one of the most significant 
categories of hospital-acquired infections on a global scale. 
During the wound healing process, if pathogenic bacteria and 
their associated biofilm formations infect the wound, they can 
impede the healing process (Ali et al., 2019). Typically, the 
immune system mounts a natural response to infections at the 
site of the wound; however, in immunocompromised patients, 
various bacteria, including Staphylococcus aureus, Acinetobacter 
baumannii, and Escherichia coli, may disseminate throughout the 
body, leading to damage in deeper tissues and causing harm to 
the human body. Furthermore, pathogenic bacteria can enter the 
wound from other parts of the body, causing damage to adjacent 
tissues. When these bacteria enter the lymphatic and circulatory 
systems, sepsis can be triggered, representing the most severe form 
of clinical infection in patients with wound infections (Zhang et al., 
2021). With the increasing prevalence of multidrug-resistant 
bacteria, the application of numerous antibiotics has become more 
restricted. In this case, GO has attracted much attention for 
its excellent antibacterial capacity. GO can produce antibacterial 
effects through various physical or chemical ways, thus preventing 
bacterial infection in the wound and accelerating wound healing
(Abat et al., 2018). 
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FIGURE 1
(A) GO nanosheets inserted into bacterial cell membrane. (B) Agglomeration of GO nanosheets to adsorb and encapsulate bacteria. (C) GO nanosheets 
physically block bacteria.

2.1 Antibacterial effects of GO

2.1.1 Physical mechanism
GO can interact with bacterial cells through its sharp 

edges, which are oriented either parallel or perpendicular to 
the bacterial cell membranes. Due to van der Waals forces and 
hydrophobic interactions, the edges of GO become embedded 
within the phospholipid bilayer, facilitating the spontaneous 
and rapid insertion of GO into the bacterial cell envelope 
(Figure 1A). This interaction results in morphological alterations 
and ruptures of the bacterial cell membrane, leading to the leakage 
of cellular contents and ultimately, bacterial death (Liu et al., 
2011; Mohammed et al., 2020; D’Amora et al., 2023). Moreover, 
the agglomeration characteristic of GO enables it to adsorb and 
accumulate bacteria (GO nanosheets>0.29 μm2) (Figures 1B,C), 
thus inhibiting bacterial adhesion to wounds and the formation of 
biofilms (Perreault et al., 2015; Shariati et al., 2023).

Pham et al. (2015) discovered that the density of graphene edges 
substantially influences the antibacterial properties of graphene 
nanosheets. This effect can result in the formation of pores within 
the bacterial cell wall, leading to an imbalance in osmotic pressure 
and, ultimately, cell death. Chen et al. (2014) observed that the 
encapsulation of bacteria (Pseudomonas syringae and Xanthomonas 
campestris) and fungi (Fusarium graminearum and Fusarium 
oxysporum) by GO caused extensive nanosheet aggregation. This 
aggregation led to local perturbations in the phospholipid bilayer, 
a reduction in bacterial cell membrane potential, and electrolyte 
leakage from fungal spores. Di Giulio et al. (2018) stained GO-
treated S. aureus as well as Canidia albicans and observed them by 
light microscopy and atomic force microscopy (AFM), respectively. 
After 24 h of treatment with GO, Gram staining showed that GO was 

able to encapsulate S. aureus and Canidia albicans. This result was 
also confirmed by AFM images, which observed isolated bacteria 
encapsulated by a layer of GO (Figure 2).

2.1.2 Oxidative stress mechanism
Oxidative stress mechanism is considered to be an important 

antibacterial mechanism of GO (Figure 3). The oxidative stress 
induced by GO disrupts essential bacterial functions, thereby 
interfering with bacterial metabolism and ultimately leading to 
cell death. This mechanism can operate in either a reactive 
oxygen species (ROS)-dependent or ROS-independent manner. 
The former mechanism involves the irrational accumulation 
of intracellular ROS. GO catalyzes the internal production of 
ROS in bacteria, including hydroxyl radicals (OH−), hydrogen 
peroxide (H2O2), singlet molecular oxygen (1O2), and superoxide 
anions (O2

−). Accumulation of these ROS leads to bacterial 
protein inactivation, DNA damage, mitochondrial dysfunction, cell 
membrane disruption, and lipid peroxidation, resulting in bacterial 
death. The latter mechanism works through charge transfer between 
the bacteria and the GO, which directly hijacks electrons in the 
electron transport chain (ETC), disrupting energy metabolism and 
leading to bacterial death (Zou et al., 2016; Mohammed et al., 
2020; Chen et al., 2021; D’Amora et al., 2023). Perreault et al. 
(2015) investigated the antibacterial efficacy of E. coli in contact 
with GO nanosheets of varying sizes over 3 hours. Their findings 
revealed that the size of GO nanosheet had a significant effect on the 
antibacterial efficacy. The smaller GO nanosheet (GO nanosheets < 
0.10 μm2) exhibited higher antibacterial efficacy. This is attributed 
to the increased defect density in smaller GO nanosheets, which 
enhances oxidative stress mechanisms.
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FIGURE 2
Effect of graphene oxide (GO) at 50 mg/L on planktonic phase of Staphylococcus aureus PECHA 10 and Candida albicans X3. Representative images of 
control samples and those treated with GO, obtained with Gram staining (columns on the left) and AFM (columns on the right). Arrows indicate GO 
wrapping microorganisms. Asterisks indicate the GO layer. Reproduced with permission from (Di Giulio et al., 2018). Copyright@ 2018.

2.1.3 PDT mechanism
In addition to the aforementioned antibacterial mechanisms, 

GO can also exhibit antibacterial effects via antibacterial 
photodynamic therapy (PDT) (Figure 4) (Shariati et al., 2023). 
PDT induces damage to bacterial cells by absorbing light at specific 
wavelengths, leading to the generation of ROS, which ultimately 
result in the demise of pathogenic bacteria. Owing to its extensive 
surface area, diverse oxygen-containing functional groups, and 
significant near-infrared (NIR) absorption and photothermal 
characteristics, GO demonstrates superior photodynamic 
antibacterial properties (Di Lodovico et al., 2022). Mei et al. 
(2021) experimentally prepared a zinc tetraaminophthalocyanine-
modified GO nanocomposite (Pc-NH2@GO) and found that, when 
irradiated with light at a wavelength of 680 nm, this composite 
effectively eradicated bacteria (E. coli and S. aureus). Furthermore, 
the material disrupts cellular morphology and causes the leakage of 
cellular contents (Figure 5), thereby eliminating bacteria at the site 
of wound infections and accelerating the wound healing process. 
Wei et al. (2022) developed a double-crosslinked cellulose/GO 
composite hydrogel. This composite hydrogel demonstrates notable 
antibacterial activity against E. coli (96.5%) and S. aureus (100%) 
when exposed to NIR light at a wavelength of 808 nm and a 
power density of 2 W/cm2 for 240 s, attributed to the photothermal 
properties of GO. Morphological investigations employing scanning 

electron microscopy demonstrated that the cell membranes of 
bacteria exposed to composite hydrogel and subsequently irradiated 
with NIR light exhibited complete disintegration, in stark contrast 
to the unirradiated E. coli and S. aureus, which maintained their 
characteristic rod-like and spherical morphologies, respectively. 
A comparison of different antibacterial mechanisms of GO is 
presented in Table 1.

2.2 Antibacterial effects of GO-based 
polymeric wound dressings

Due to the multiple antibacterial mechanisms of GO, a variety of 
wound dressings have demonstrated excellent antibacterial effects 
along with the addition of GO. Mahmoud et al. (2025) prepared 
a rolled graphene oxide/poly-m-methylaniline (roll-GO/PmMA) 
core-shell nanocomposite by in situ polymerization technique. 
The study examined the antibacterial properties of the material 
using agar well diffusion method. The results showed that the 
nanocomposites exhibited significant antibacterial activity against 
Gram-positive (Bacillus subtilis and S. aureus) and Gram-negative 
(E. coli and Salmonella sp) bacteria. In addition, the inhibition 
zones increased significantly under light conditions (33 and 18 mm 
in the case of B. subtilis), indicating that the material possessed 
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FIGURE 3
The oxidative stress mechanism of GO. ROS-dependent: GO catalyzes the production of ROS (OH−, 1O2, etc.), causing damage to bacterial DNA, 
proteins, etc., resulting in bacterial death. ROS-independent: GO directly hijacks electrons in the electron transport chain (ETC), disrupting energy 
metabolism and leading to bacterial death. CⅠ: NADH dehydrogenase. CⅡ: succinate dehydrogenase. CⅢ: cytochrome bc1 complex. CⅣ: cytochrome 
c oxidase. Cyt C: cytochrome c. ATP: adenosine triphosphate.

FIGURE 4
The process of GO killing bacteria via PDT.
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FIGURE 5
Schematic illustration of the preparation and application of Pc-NH2@GO. Reproduced with permission from (Mei et al., 2021). Copyright@ 2021.

TABLE 1  Comparison of different antibacterial mechanisms of GO.

Antibacterial 
mechanism

Damage type Size 
dependency

Response 
speed

Drug 
resistance

Light 
requirement

References

Physical mechanism Physical damage >0.29 μm2 Rapid No No Perreault et al. 
(2015); Shariati et al. 

(2023)

Oxidative Stress 
mechanism

Chemical damage <0.10 μm2 Slow Yes No Perreault et al. 
(2015); 

D’Amora et al. 
(2023)

PDT mechanism Chemical damage —— Rapid No Yes Di Lodovico et al. 
(2022); Shariati et al. 

(2023)

good photocatalytic antibacterial performance. Mustafa et al. (2024) 
prepared polypropylene (PPY) hybrid polymeric membranes by 
thermally induced phase separation (TIPS) method and introduced 
rGO for composite modification. The results showed that the 
PPY/rGO hybrid film exhibited significant inhibition against S. 
aureus and E. coli. In the agar diffusion experiment, the inhibition 
zones of the composite reached 8 mm in E. coli and 9 mm in 
S. aureus. Das et al. (2023) utilized a solvent casting technique 
incorporating sodium carboxymethyl cellulose (CMC), SA, AgNPs, 
and GO to fabricate antibacterial nanocomposite films. The research 
indicated that the mechanical properties of the CMC/SA/Ag-GO 
nanocomposite films were enhanced as the weight percentage of 
GO increased. Additionally, the study assessed the antibacterial 
efficacy of these films. The circle of inhibition diameters of 
CMC/SA/Ag-GO2% nanocomposite films against E. coli and S. 

aureus were measured at 21.30 ± 0.70 mm and 18.00 ± 1.00 mm, 
respectively, indicating that these composites exhibit substantial 
antibacterial activity.

Chen et al. (2020) incorporated polyhexamethylene guanidine 
(PHMG)-modified graphene oxide (mGO) into a chitosan/PVA 
(CS/PVA) matrix, significantly enhancing its antibacterial efficacy 
(Figures 6A–D. The antibacterial efficacy of the composites 
against both S. aureus and E. coli increased with increasing 
dose. Among the groups, the composites containing 0.5 wt% 
mGO showed the best efficacy, its antibacterial efficacy was as 
high as 80.32% ± 1.42% and 77.33% ± 2.52% against S. aureus
and E. coli, respectively (Figures 6E,F). Unnikrishnan et al. 
(2024) developed a multifunctional GO/silver oxide-PVA/chitosan 
(GO/Ag2O-PVA/CS) polymeric composite. The study focused on 
the antibacterial effect of GO in polymeric matrix. Antibacterial 

Frontiers in Materials 06 frontiersin.org

https://doi.org/10.3389/fmats.2025.1635502
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Li et al. 10.3389/fmats.2025.1635502

FIGURE 6
Antibacterial activity of PVA/CS incorporated with different concentrations of GO, PHMG, and mGO. Representative photographs of bacterial colonies 
formed by (A) S. aureus and (B) E. coli treated with PVA, PVA/CS, PVA/CS/GO, PVA/CS/PHMG, and PVA/CS/mGO for 3 h. The loss of bacterial viability of
(C) S. aureus and (D) E. coli after treatment of PVA/CS incorporated with 0.5 wt% GO, PHMG, and mGO. Concentration-dependent antibacterial activity 
of PVA/CS/PHMG, PVA/CS/GO, and PVA/CS/mGO against (E) S. aureus and (F) E. coli. (∗p < 0.05). Reproduced with permission from (Chen et al., 2020). 
Copyright © 2020. PVA: polyvinyl alcohol. PHMG: polyhexamethylene guanidine. CS: chitosan. mGO: modified graphene oxide.

experiments showed that PVA-CS alone had limited inhibitory 
effect on E. coli and S. aureus. However, the addition of 10 wt% 
GO significantly enhanced the inhibition of the composites 
against the above bacteria. This enhancement is mainly attributed 
to GO nanosheets disrupting bacterial cell membranes, ROS 
generation, and encapsulating bacteria. Kan et al. (2023) prepared 
a core-shell structured nanocomposite (PVA-PEG-SiO2@PVA-
GO) with PVA/polyethylene glycol (PEG)/SiO2 nanoparticles 
as the core and PVA-GO as the shell, and systematically 
investigated its antibacterial properties. The results showed that 

through the synergistic effect of GO and silica nanoparticles, 
the composites could undergo a hydrogel transformation upon 
exposure to water, modulating the slow-release behavior of the 
drugs and significantly enhancing the antibacterial persistence. 
Staphylococcus aureus was used as a model strain in the 
antibacterial evaluation. GO polymer core-shell nanofibres 
(PVA-PEG-SiO2-1x-CHX@PVA-GO) possessed a pronounced 
bacteriostatic circle, with an antibacterial activity up to 71.92% 
± 2.48% (100% with positive control), showing significant 
antibacterial effect. 
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FIGURE 7
GO-based polymeric wound dressings enrich blood cells, causing them to collect on the wound surface and exert pressure on the wound, promoting 
blood clotting on the wound surface.

3 Hemostatic effects

3.1 Hemostatic effects of GO

3.1.1 Activation and aggregation of platelets by 
GO

Excessive bleeding is a significant cause of mortality among 
individuals affected by natural disasters, traffic accidents, and 
traumatic injuries (Chan et al., 2015; Feng et al., 2016; Chen et al., 
2019). Consequently, extensive research efforts have been directed 
towards the development of innovative hemostatic and absorbent 
agents to enhance hemostatic technologies.

GO exhibits a remarkable ability to activate and aggregate 
platelets, which fundamentally underpins its hemostatic function. The 
oxygen-containing functional groups on GO nanosheets can stimulate 
platelet activation, leading to robust aggregation and initiation of the 
coagulation cascade (Quan et al., 2015; Guajardo et al., 2021). Studies 
have shown that GO can trigger the release of intracellular Ca2+

in platelets, enhancing integrin-mediated adhesion and fibrinogen 
binding (Liang et al., 2018). In vivo models also demonstrate 
that GO accelerates thrombus formation, and the surface charge 
intensity of GO is closely correlated with its procoagulant capacity; 
higher negative surface charge induces stronger platelet activation 
and clotting responses (Li et al., 2019). These findings provide a 
theoretical basis for the extensive application of GO in hemostatic 
materials (Du et al., 2023). 

3.1.2 Electrostatic interaction between GO and 
platelet glycoproteins

GO nanosheets carry abundant negative charges, enabling 
efficient binding to positively charged glycoproteins (such as 

GPIIb/IIIa) on the surface of platelets, thus promoting cell 
aggregation (Quan et al., 2015). This electrostatic attraction further 
facilitates the accumulation of platelets and erythrocytes on the 
GO surface, improves the local concentration of coagulation 
factors, shortens clotting time, and enhances the hemostatic effect 
(Figueroa et al., 2021). The rough surface texture of GO also 
favors trapping and adhesion of blood cells, expediting the clotting 
process (Kenry et al., 2015; Feng and Wang, 2022). In composite 
wound dressings, GO’s presence enhances interactions with blood 
components and maximizes its charge-driven procoagulant action
(Feng and Wang, 2022). 

3.1.3 Enhanced fluid absorption via hydrophilic 
functional groups

The unique chemical structure of GO confers high 
hydrophilicity due to its abundance of -OH, -C-O-C-, and -
COOH groups (Singh et al., 2012). These functional groups 
create ideal liquid pathways within the material, making 
GO-based systems highly effective in absorbing blood and 
wound exudate (Borges-Vilches et al., 2022; Kanjwal and 
Ghaferi, 2022). Three-dimensional porous GO constructs 
show ultrafast uptake of liquid, enabling swift accumulation 
of blood components at the wound interface to support 
rapid hemostasis (Guajardo et al., 2021). In addition, 
GO’s hydrophilic nature reduces tissue adhesion, allows 
for painless dressing removal, and minimizes secondary 
wound damage (Aguado-Henche et al., 2022). Incorporating 
GO into polymer matrices not only strengthens absorption 
performance but also augments the overall mechanical properties 
of hemostatic dressings, supporting clinical applications
(Feng and Wang, 2022).
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FIGURE 8
Schematic diagram of hemostasis and anti-adhesion mechanism of CSAG33. (A) First, the CSAG33 rapidly absorbed plasma to enrich blood red blood 
cells and platelets for the rapid formation of primary clotting clots. Second, the CSAG33 simultaneously activated exogenous and endogenous 
coagulation cascade pathways to reinforce the initial clotting plug through rich stimuli. (B) Compared to QuikClot® and CSAG0, CSAG33 exhibited 
weaker electrostatic interactions, hydrogen bonding interactions and higher porosity and surface roughness, which resulting in lower tissue adhesion 
strength. The removal of CSAG33 was accompanied with the defectdriven detachment of part of the blood scab, which sustained the wound seal and 
achieved non-rebleeding removal. Reproduced with permission from (Du et al., 2023). Copyright © 2023.

3.1.4 Mechanical reinforcement and network 
enhancement in polymeric dressings

Acting as a nanofiller, GO significantly improves the mechanical 
strength, elasticity, and cross-linked network density of polymeric 
hemostatic dressings (Hu et al., 2013; Liang et al., 2019). Hydrogels, 
sponges, and nanofiber constructs containing GO display enhanced 
fluid absorption and robust compressive hemostatic capacity (Borges-
Vilches et al., 2022). The mechanical integrity provided by GO 
enables stable physical compression of bleeding sites and, via swelling-
induced pressure, further expedites clot formation (Ahuja et al., 2006; 
Zhang et al., 2019; Feng and Wang, 2022; Du et al., 2023) (Figure 7). 
Extensive in vitro and in vivo studies demonstrate that GO-reinforced 
hemostatic materials achieve superior hemostatic speed and efficacy 
compared to conventional dressings (Homem et al., 2022; Kanjwal and 
Ghaferi, 2022), revealing promising prospects for clinical translation. 

3.2 Hemostatic effects of GO-based 
polymeric wound dressings

Chen et al. (2019) developed a novel Bletilla striata 
polysaccharide/GO composite sponge (BGCS). The hemostatic 

efficacy of BGCS was evaluated using both an in vivo rat tail 
transection model and an in vitro dynamic whole blood coagulation 
test. In the rat tail transection model, BGCS demonstrated rapid 
blood absorption upon gentle application to the wound site, forming 
a stable clot at the interface to effectively arrest hemorrhage. Across 
six replicate experiments, the mean bleeding cessation time for 
BGCS was 45.9 ± 4.6 s. For the in vitro dynamic whole blood 
coagulation assay, it was observed that the group treated with 
BGCS exhibited a significantly lower absorbance compared to 
the control group, indicating enhanced blood coagulation. Within 
the initial 30 s of exposure to whole blood, the absorbance of the 
BGCS group was markedly reduced relative to the control group, 
with nearly complete coagulation achieved within this timeframe. 
Du et al. (2023) developed a novel chitosan/GO composite sponge 
(CSAG) and systematically evaluated its hemostatic properties. The 
CSAG series samples achieve different pore structures and surface 
properties by adjusting the GO content (0%, 10%, 20%, 33%). The 
samples with high GO content (33 wt%, CSAG33) showed excellent 
hemostatic and anti-adhesion capabilities in a series of in vitro
and in vivo hemostatic experiments. CSAG33 rapidly enriches 
blood cells and activates both the exogenous and endogenous 
coagulation cascade pathways, resulting in rapid clot formation 
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FIGURE 9
Hemolysis and hemostasis evaluation. (A) Optical images of different samples in red blood cells and (B) on the filter papers after creating an incision in 
the tail of rats (n = 3). (C) Hemolysis ratios of different samples. (D) Blood loss of different samples in the rat-tail amputation model (n = 3, ∗∗∗p < 0.001, 
and ns means not significant). Reproduced with permission from (Sun et al., 2024). Copyright © 2024.

and accelerated hemostasis (Figure 8A). In addition, compared to 
QuikClot®and CSAG0, non-bleeding removal of CSAG33 was 
achieved due to the higher porosity and surface roughness of 
CSAG33, as well as weaker electrostatic interactions and hydrogen 
bonding (Figure 8B). Huang et al. (2025) prepared tranexamic acid-
functionalized GO- acellular dermal matrix composite sponges 
(PGO0.35T1) and systematically evaluated their in vivo hemostatic 
capacity. The introduction of GO significantly enhanced the sponge 

porosity and specific surface area. In the rat tail amputation 
hemostasis test and liver hemostasis test, PGO0.35T1 sponges rapidly 
absorbed large amounts of blood and formed stable clots. The sponge 
group had significantly better hemostasis time and blood loss than 
the gauze and acellular dermal matrix control groups. In particular, 
in the liver hemostasis test, the hemostasis time was reduced to 76 
± 4 s and blood loss was reduced to 0.19 ± 0.03 g in the PGO0.35T1
group, which was much lower than in the control group.
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FIGURE 10
Pro- and anti-angiogenic pathways of GO. Low-dose GO 
(1–50 ng/mL) promotes angiogenesis through ROS-mediated Akt 
phosphorylation, eNOS activation, and increased NO production. 
High-dose GO (>100 ng/mL) inhibits angiogenesis due to excessive 
ROS accumulation.

Sun et al. (2024) fabricated a quaternized chitosan-GO 
composite sponge (Col-QCS-GO) and evaluated its hemostatic 
efficacy using a rat tail transection model. The results indicated 
that the Col-QCS-GO sponge exhibited minimal blood loss 
(<50.0 mg), whereas the saline control group demonstrated 
substantial blood loss (293.1 ± 23.4 mg) on the filter paper 
(Figures 9B,D), indicating superior hemostatic performance of 
the Col-QCS-GO sponge. Furthermore, in vitro hemolysis tests 
revealed that triton-treated erythrocyte solutions appeared bright 
red, whereas Col-QCS-GO sponges-treated erythrocyte solutions 
appeared colorless and transparent (Figure 9A). At the same time, 
quantitative analysis showed that the hemolysis rate of the Col-
QCS-GO sponges was below 5% (Figure 9C), which confirming 
their favorable safety profile. Du et al. (2025) developed a peptide-
immobilized GO/chitosan composite sponge (GCCS-TRAP), which 
had remarkable rapid hemostatic properties. The study evaluated the 
hemostatic capacity of GCCS-TRAP through a rat femoral artery 
hemorrhage model. The results showed that GCCS-TRAP had 
excellent hemostatic effect. The mean hemostatic time of GCCS-
TRAP was 81.3 s and the blood loss was 1.03 g, both of which 
were significantly better than other hemostatic materials. In vitro
coagulation experiments showed that GCCS-TRAP could rapidly 
absorb blood. The blood clotting index (BCI) of GCCS-TRAP was 
only 7.1%, indicating that it can induce blood coagulation efficiently.

Several studies have confirmed that hemostatic materials 
incorporating GO can enhance hemostasis and reduce hemostasis 
time. However, the specific hemostatic mechanism of GO remains 
unclear, and the hemostatic efficacy of most studied materials often 
depends on additional drugs, as well as the porous structure and 
mechanical compression properties of the hemostatic materials. 
Consequently, further research is required to elucidate the 
hemostatic mechanism of GO. 

4 Angiogenic effects

4.1 Angiogenic effects of GO

The process of human wound healing is a multifaceted 
mechanism that involves various cellular and tissue components 
within the body. This process encompasses several distinct phases, 
including hemostasis, inflammation reduction, antibacterial activity, 
cellular proliferation, and tissue remodeling (Rodrigues et al., 2019). 
Research has demonstrated that GO can facilitate angiogenesis, a 
process also known as neovascularization, which involves multiple 
signaling pathways. The angiogenic process encompasses the 
proliferation of endothelial cells in response to growth factors (GFs), 
followed by cell migration and capillary formation. Angiogenesis is 
an important part of the wound healing process and promotes 
wound healing (Hassan et al., 2022; Jiang et al., 2022). Newly formed 
blood vessels grow from healthy tissue at the wound edges toward 
the center of the wound, delivering oxygen, nutrients, and immune 
cells to the wound microenvironment while removing metabolic 
waste products, providing the foundation for cell proliferation, 
collagen synthesis, and tissue remodeling (An et al., 2021; Fu et al., 
2023). At the same time, angiogenesis is accompanied by an increase 
in ROS scavenging capacity, thus protecting endothelial cell function 
and avoiding microangiopathy in a high-glucose environment 
(An et al., 2021). In addition, angiogenesis accelerates wound 
tissue re-epithelialization. Neovascular endothelial cells secrete 
factors such as EGF (Epidermal Growth Factor), which promotes 
keratinocyte migration and epidermal barrier reconstruction 
(Veith et al., 2019; An et al., 2021). This process is crucial for wound 
healing. Upon injury, the body initiates angiogenesis through the 
activation of endogenous pro-angiogenic factors (e.g., VEGF). 
These pro-angiogenic GFs are stored within the extracellular 
matrix (ECM) and in platelets and inflammatory cells that enter 
the circulation. Genes such as hypoxia-inducible factor (HIF) 
and cyclooxygenase-2 (COX-2) are upregulated in response to 
inflammation and hypoxia, thereby regulating the production of 
these factors. Research has demonstrated that wound healing is 
intricately linked to the equilibrium between ROS levels and the 
generation of oxidative stressors (Dunnill et al., 2017). Furthermore, 
it has been observed that low concentrations of ROS facilitate 
angiogenesis, while elevated levels of ROS impede this process 
(Dunnill et al., 2017). Studies have indicated that low doses of 
GO nanosheets (1–50 ng/mL) exhibit pro-angiogenic activity, 
potentially attributed to their ability to regulate intracellular ROS 
production. However, at high doses (>100 ng/mL), GO nanosheets 
exhibited anti-angiogenic activity, which can be attributed to the 
elevated levels of ROS (Figure 10) (D’Amora et al., 2023).
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FIGURE 11
(A) Digital images of the untreated and treated CAM and (B) percentage increase in the average number of blood vessels and average thickness of 
blood vessels obtained on day 10 of the CAM assay. The values are normalized to that of the untreated control on day 8 (n = 9, ∗∗p < 0.01 and ∗∗∗p < 
0.001 versus control). Reproduced with permission from (Chakraborty et al., 2018). Copyright © 2018.

The pro-angiogenic effects of GO are primarily associated with 
increased intracellular ROS and reactive nitrogen species, along 
with the activation of phosphorylated endothelial nitric oxide 
synthase (eNOS) and serine/threonine kinase (Akt). Notably, GO 
may modulate these processes through the regulation of nitric oxide 
(NO) production (Bretón-Romero and Lamas, 2014). Furthermore, 
NO production is a critical factor in both physiological and 
pathological angiogenesis, serving as a key regulator of endothelial 
cell proliferation, vascular tone, and angiogenesis (Namba et al., 
2003). Mukherjee et al. (2015) discovered that GO and rGO induce 
the intracellular generation of ROS and reactive nitrogen species, 
along with the activation of phospho-Akt and phospho-eNOS. 
Specifically, ROS influence the phosphorylation of Akt, while the 
upregulation of eNOS triggers the activation of the nitric oxide 
(NO) signaling pathway, leading to an increase in intracellular NO 
production and subsequently promoting angiogenesis (Figure 10). 
Given GO’s remarkable antibacterial properties and pro-angiogenic 
activity, GO-based polymeric wound dressings will have great 
potential for future applications. 

4.2 Angiogenic and wound healing effects 
of GO-based polymeric wound dressings

Song et al. (2024) nitro-modified GO and constructed a 
composite hydrogel (BC/PVA/NGO) with bacterial cellulose (BC) 
and (PVA) as the inner skeleton and an outer layer enriched 

with modified GO (NGO). BC/PVA/NGO composite hydrogel 
significantly accelerated the wound healing process in a mouse total 
skin defects model. BC/PVA/NGO significantly promoted wound 
healing compared to the control and BC/PVA hydrogel alone groups. 
After 15 days of treatment, the BC/PVA/NGO hydrogel group 
showed a high wound closure rate of 99.13%, which was significantly 
better than the control group and the composite hydrogel group not 
doped with NGO. Histological (H&E and Masson staining) analysis 
further confirmed that the NGO hydrogel was effective in reducing 
inflammatory cell infiltration, promoting collagen deposition and 
neovascularisation, and enhancing reconstruction of the hair follicle 
and epidermal layer. Elshahawy et al. (2024) systematically prepared 
a composite hydrogel with PVA/tragacanth gum (TG) matrix loaded 
with GO and cinnamon oil (CMO) aimed at promoting wound 
repair. Cell scratching experiments showed that GO-containing 
composite hydrogels significantly promoted fibroblast adhesion, 
migration and proliferation. The composite hydrogel doped with 
5% GO promoted cell migration up to 74.05%, much higher than 
the control. It was shown that the material contributed to cell 
proliferation and re-epithelialisation, accelerating the wound closure 
process. Chakraborty et al. (2018) synthesized a porous scaffold by 
freeze-drying, starting from a polymeric blend of PVA and CMC 
with different amounts of rGO (0, 0.0025, 0.0005, 0.0075% and 
0.01% w/v). The pro-angiogenic features of scaffolds were validated 
in vivo by using the chick chorioallantoic membrane (CAM) model. 
Two days after scaffolds implanting on the CAM of a developing 
chick embryo, angiogenesis was remarkably increased (Figure 11A). 
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Scaffolds with 0.0005, 0.0075% and 0.01% rGO induced a significant 
increase in the number of blood vessels (Figure 11B), along with an 
absolute increase in blood vessel thickness up to 51.7% compared 
with scaffold with 0.005% rGO.

Wang et al. (2021) prepared a composite hydrogel incorporating 
functionalized GO and chitosan (CS). The whole skin defect 
experiment confirmed that CS/GO hydrogel could effectively 
promote wound healing (Figure 12A). Among them, the rats 
treated with CS/GO hydrogel demonstrated the best wound closure 
rate at all stages. At day 21, the wound closure rate of CS/GO 
hydrogel-treated rats reached 92.2%, which was higher than that 
of chitosan hydrogel-treated rats (90%) (Figure 12B), suggesting 
that the addition of GO to the hydrogel could improve the wound 
closure rate and promote wound healing. H&E staining results 
further confirmed the ability of CS/GO hydrogel to promote wound 
healing. The spacing between the granulation tissues in the control 
group was approximately 2,300 μm, whereas in the CS/GO group 
the spacing was reduced to 600 µm. The magnified image shows 
a large amount of immature granulation tissue in the control 
group. However, in the CS/GO group, the collagen fibres were well 
arranged (Figure 12C). Chen et al. (2025) prepared SA/GO/calcium 
chloride/cerium nitrate hemostatic powder (SACC-GO) by ball 
milling method. The wound healing efficacy of SACC-GO was 
evaluated using a rat total skin defects model. Compared to the 
control group, wounds treated with SACC-GO exhibited a higher 
wound healing rate. On day 14, the control group had a 70% 
wound healing rate, while the SACC-GO group had almost complete 
wound healing. In addition, H&E staining showed that the epithelial 
tissue around the wound was well-organized, featuring an increased 
number of hair follicles, and nearly complete regeneration of 
dermal tissue, indicating a significant healing effect. Khan et al. 
(2023b) synthesized a composite hydrogel by blending gelatin and 
GO-functionalized bacterial cellulose (GO-fBC) with tetraethyl 
orthosilicate (TEOS). The study revealed that this hydrogel 
exhibited excellent hemocompatibility, haemostatic properties and 
antibacterial properties. Furthermore, it was observed that the 
hydrogel significantly enhanced the viability and proliferation of 
mouse embryonic fibroblasts (NIH/3T3). With the increase of 
GO addition, the cell viability and proliferation capacity will be 
further enhanced. Among them, GBG-4 (hydrogel with 0.04 mg 
graphene oxide addition) demonstrated the most pronounced effect 
on fibroblast growth. These findings suggest that the hydrogel 
possesses potential wound healing capabilities.

GO demonstrates significantly promote angiogenesis through 
multiple pathways, including modulating cell behavior, inducting 
angiogenic factor secretion, and adjusting oxidative stress levels. 
Several animal experiments have also demonstrated that GO-based 
polymeric wound dressings can significantly improve wound closure 
rate and accelerate wound healing in animals. Consequently, GO 
holds considerable promise for applications in wound healing, tissue 
engineering, and regenerative medicine. However, GO still faces 
some shortcomings and challenges in wound healing. Although GO 
has shown its capability to promote angiogenesis and accelerate 
wound healing by modulating cell behavior and inducing growth 
factor secretion, its specific molecular mechanisms have not 
been fully elucidated. Specifically, further research is required to 
investigate how GO interacts with cell membranes, receptors, or 
signaling pathways such as VEGF, PI3K/Akt, HIF-1α, among others, 

as well as to determine whether these interactions exhibit dose-
dependent characteristics. 

5 Biocompatibility of GO and 
GO-based polymeric dressings

It has been found that specific concentrations of GO can be toxic 
to a wide range of organisms such as earthworms, zebrafish, mice, 
etc., as the use of GO increases the levels of ROS and superoxide 
dismutase (SOD) in living organisms (Ghulam et al., 2022). 
Duo et al. (2022) investigated the toxicity of GO to earthworms by 
exposing earthworms to different concentrations of GO in a filter 
paper contact test and a soil contact test. The lethal concentration 
50 (LC50) of the former earthworms exposed to GO was 2.52 
and 2.36 mg/mL at 24 and 48 h, respectively, while the LC50 of 
the latter earthworms exposed to GO on day 14 was 68.8 g/kg. 
Histopathology has shown that the skin and gut of earthworms can 
be severely damaged as GO concentrations increase. Liu et al. (2014) 
found that GO is significantly toxic to zebrafish embryos, affecting 
embryo hatching and larval length. Hashemi et al. (2016) analyzed 
the cytotoxicity of GO on mouse spermatogonial stem cells (SSCs). 
The results showed that GO significantly increased ROS levels at 
concentrations of 100 and 400 μg/mL, whereas it had no significant 
effect at lower concentrations. In addition, (MTT) assay showed 
significant reduction in the cell number of GO-treated SSCs at high 
concentrations (100 and 400 μg/mL) compared to untreated SSCs, 
displaying significant cytotoxicity.

However, reports have shown that the toxicity of GO is 
significantly improved when it is combined with polymeric 
compounds to form GO-based polymeric wound dressings for 
use, demonstrating a high level of safety. This may be an effective 
means of reducing the toxicity of GO and increasing its range 
of applications. Khan et al. (2023c) prepared a bioactive hydrogel 
made of bacterial cellulose (BC), gelatin and GO and explored the 
hemocompatibility of the hydrogel by in vitro hemolysis assay. The 
results showed that the hemolysis rate of all hydrogel samples (HGel-
1 to HGel-3) was less than 0.5%, which was significantly lower 
than the clinical safety threshold (5%), suggesting that the hydrogels 
have excellent hemocompatibility. Ningrum et al. (2023) prepared 
a hydrogel wound dressing with PVA, Moringa oleifera leaf (MOL) 
extract and GO. The study assessed the cytotoxicity of hydrogel on 
3T3L1 mouse fibroblasts by MTT assay. The results showed that 
the cell viability of all hydrogel samples ranged from 83%–135% 
(Figure 13), which was higher than the toxicity threshold of ISO 
10993–5:2009. Demenj et al. (2025) prepared a multi-bioactive 
scaffold based on GO, gelatin and alginate. The study was conducted 
to evaluate the toxicity of the scaffold using Caenorhabditis elegans
assay. The scaffold was co-incubated with C. elegans for 4 days and 
the survival rate was 100% in all groups, showing that the scaffold 
had no significant toxicity to C. elegans. In terms of growth rate, there 
was a slight decrease in body length (about 20%) compared to the 
control group, but there was no significant abnormality in overall 
growth and health. González et al. (2024) prepared a biocomposite 
hydrogel based on collagen with rGO and systematically investigated 
the biocompatibility of the hydrogel. The effects of hydrogels with 
different rGO contents (COL/rGO25, COL/rGO50, COL/rGO100) 
on human dermal fibroblasts (HDF) were evaluated by MTT assay. 
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FIGURE 12
Wound healing by employing CS hydrogel and CS-CGO composite hydrogel. (A) Representative images of wounds treated with CS hydrogel and 
CS-CGO composite hydrogel at 0, 7, 14, and 21 days. (B) Quantitative analysis of wound closure area for each group. (C) H&E stained histological 
images of wound tissue from control group, CS hydrogel group, and CS-CGO group on 21 days. Reproduced with permission from (Wang et al., 2021). 
Copyright © 2021.

The results showed that the cell viability of all hydrogel samples 
was higher than 80%. In addition, the roughness and good water 
retention of the material surface further promoted cell adhesion and 
proliferation.

Studies have confirmed that GO-based polymeric wound 
dressings can improve biocompatibility, but the conformational 
relationship and the material ratios of the GO-based polymeric 
wound dressings still need to be further investigated in the 
future. In addition, novel functionalization strategies (e.g., surface 
modification, stimulus response, etc.) can be developed to improve 
the biocompatibility of GO. GO-based polymeric wound dressings 
are expected to achieve safer and more efficient applications in 
biomedical fields. 

6 Conclusions and future prospects

GO-based polymeric wound dressings exhibit significantly 
better overall performance than traditional dressings through 
the innovative combination of GO and polymeric compounds. 
The superior functionality of these dressings, including high 

antibacterial efficacy, rapid hemostasis, pro-angiogenesis, and 
accelerated wound healing, is fundamentally derived from the 
multiple bioactivities provided by GO as the core functional 
component (Shariati et al., 2023). GO’s unique physicochemical 
structure enables it to synergize sterilization through physical 
destruction, oxidative stress, and PDT effects. Promotes hemostasis 
through activation of platelets, enrichment of coagulation factors, 
and enhancement of fluid absorption. Driving angiogenesis by 
regulating ROS levels and Akt/eNOS signaling pathway. When GO 
is incorporated into the polymer matrix, its bioactivity is maximized 
for release. The polymeric compounds not only serves as a carrier to 
optimize the dispersion and stability of GO, but also synergistically 
amplifies the efficacy of GO through its three-dimensional 
porous structure, mechanical enhancement effect and high 
biocompatibility. In addition, the polymer matrix is key to reducing 
the potential toxicity of GO (Ghulam et al., 2022; Yadav et al., 
2022). While high doses of GO alone may trigger cellular 
damage, the composite polymer significantly improves the safety 
of the dressing, such as hemocompatibility and cytotoxicity, by 
reducing the direct contact of GO with the tissue through physical 
encapsulation. This synergistic optimization allows GO-based 
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FIGURE 13
Cytotoxicity assay cultured on the hydrogels after a 24 h incubation compared to control treated with different concentrations. Data represents means 
± SD from at least five independent experiments. Reproduced with permission from (Ningrum et al., 2023). Copyright © 2023.

dressings to meet clinical safety thresholds while fulfilling functional
requirements.

However, challenges remain in advancing GO-based polymeric 
wound dressings to the clinic. Although GO-based polymeric 
wound dressings have demonstrated excellent antibacterial 
properties, their exact mechanism of action, especially whether 
it is the same as that of GO alone, remains a key issue that has not 
been systematically explored. While much of the existing research 
has focused on the overall antibacterial properties of dressings, 
little work has been dedicated to investigating the interactions of 
the components in composite wound dressings and their unique 
contributions to the antibacterial mechanism. Furthermore, the 
specific molecular mechanisms by which GO exerts hemostatic, and 
pro-angiogenic effects in composite wound dressings still need to be 
explored in greater depth. Such as the dose-dependent effects and 
precise manner in which GO modulates key signaling pathways 
(e.g., VEGF, PI3K/Akt, HIF-1α), and its specific targets in the 
coagulation cascade.

Preparation of GO requires strict control of the degree 
of oxidation and the number of layers to ensure the stability 
and consistency of the performance of GO-based polymeric 
wound dressings. The primary method for synthesizing GO is 
the Hummers’ method. This method utilizes a strong oxidizing 
agent (KMnO4, H2SO4, etc.) to react with graphite to introduce 
oxygen-containing functional groups, ultimately making GO 
(Chen et al., 2022; Gostaviceanu et al., 2024). GO prepared by 
the Hummers’ method may suffer from inconsistencies in size, 
number of layers, and degree of oxidation, which may affect 
its effectiveness. Furthermore, chemical modifications (such 
as binding to polymers, proteins, or drugs) of GO are often 
required to improve their biocompatibility and functionality. 
However, these functionalization processes involve complex 
chemical reactions and expensive reagents, potentially increasing 
production complexity and expenses, as well as introducing new
toxicity concerns.

The long-term in vivo biocompatibility, degradation metabolic 
pathways, and possible chronic effects of GO-based polymeric 
wound dressings need to be more systematically evaluated. There 
is a need to establish standardized methods to study the long-term 

behavior of different sizes, oxidation levels, surface modifications 
and dispersion states of GO in composite wound dressings and 
their impact on safety. In addition, animal experiments and clinical 
translation of GO-based polymeric wound dressings are flawed to 
some extent. Current studies are mostly based on mouse or rat 
models (Hao et al., 2023; Yu et al., 2023), whose healing processes 
differ from those of humans, and such differences may affect the 
translation of experimental results in a clinical setting, so future 
studies need to be validated in models that are closer to the clinic. 
Furthermore, in order to realize the wide application of GO-based 
polymeric wound dressings in the clinic, future studies should 
prioritize the optimization of the dosage of GO in the dressings, the 
long-term safety assessment of the dressings, and the comparative 
efficacy study with the existing wound dressings. Research in these 
areas will provide sufficient theoretical support for the widespread 
use of GO-based polymeric wound dressings in clinical settings in 
the future.

GO-based polymeric wound dressings represent an 
important direction for upgrading traditional wound dressings 
to functionalization and intelligence. GO, as its core active 
ingredient, is the cornerstone for conferring superior bioactivity 
to these dressings. The polymer matrix provides an ideal carrier 
platform for GO, which not only synergistically amplifies 
its bioactivity, but also improves its biocompatibility and 
reduces potential risks. Deepening the understanding of the 
mechanism, optimizing the dressing design and preparation 
process, and promoting clinical translational research will greatly 
facilitate the clinical application of GO-based polymeric wound 
dressings, and provide more efficient and safer treatment options
for patients.
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