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Editorial on the Research Topic
Wide-bandgap oxide semiconductors: unveiling excitonic potential
s

Excitons, bound states of electrons and holes via Coulomb attraction, are usually short-
lived and weakly bound in semiconductors like silicon, primarily because of the strong
dielectric screening effects. On the other hand, in the case of wide band semiconductors,
exciton binding energies are significantly enhanced, ranging from approximately 60 meV
in ZnO to more than 100 meV in β-Ga2O3, which often exceeds the thermal energy
at room temperature (kT ∼ 25 meV) (Das et al., 2022; Sikdar et al., 2020). This makes
excitonic transitions stable and spectroscopically resolvable even at ambient conditions.
Consequently, sharp excitonic absorption and emission features can be observed in
photoluminescence (PL), reflectance, or ellipsometric spectra, often dominating the optical
response near the band edge.Thepresence of the excitonic properties provides a platform for
various optoelectronic applications of such materials. The various applications of excitons
observed in a wide band gap oxide semiconductor is shown in the schematic of Figure 1.

ZnO, one of the most extensively studied wide band gap oxide semiconductors, shows
three clear excitonic peaks. It has perhaps served as a model system for room-temperature
excitonic lasing, and the development of polariton condensates in ZnO microcavities has
propelled research into solid-state Bose–Einstein condensation. In contrast, β-Ga2O3, a
fourth-generation semiconductor with a relatively broad bandgap of about 4.8 eV, has
much larger exciton binding energies and anisotropic excitonic behaviour, much due
to its low-symmetric monoclinic crystal structure. These characteristics, along with its
high breakdown field, render Ga2O3 a highly promising material for numerous possible
applications, including deep-ultraviolet photonics and high-power electronics devices (Shi
and Qiao, 2022).

Despite their potential characteristics, retaining their excitonic properties
can be challenging. This is due to the material issues, such as the presence of
grain boundaries, native vacancies, and structural flaws. These material defects
can act as nonradiative recombination sites that suppress excitonic emission.
Excitons are typically more localised (Frenkel-type) and have a low radiative
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FIGURE 1
A schematic showing various applications of excitons present in a
wide band gap oxide semiconductor.

recombination efficiency in materials such as TiO2. This affects
their utility in light-emitting applications but plays a crucial role
in photocatalytic activity and charge separation processes (Olvera-
Neria et al., 2024). Nevertheless, controlling crystallinity, surface
states, and doping levels is essential for harnessing excitonic effects
in a device.

Characterising excitonic properties in wide band gap materials
has also been important for effectively understanding and
designing functioning optoelectronic (excitonic) devices. Exciton
lifetimes and recombination pathways can be directly measured
using time-resolved photoluminescence (TRPL). High-resolution
techniques such as cathodoluminescence (CL) spectroscopy
and hyperspectral imaging can, on the other hand, image
the exciton distribution, particularly in the vicinity of defects
or interfaces.

Theoretical modelling has also been key in understanding
the physics of the exciton, its origin, decay, and its engineering.
State-of-the-art many-body perturbation theory, combined with the
Bethe–Salpeter equation (BSE), has enabled quantitative predictions
of exciton binding energies, wavefunctions, and optical spectra in
excitonic wide band gap materials (Onida et al., 2002; Sun et al.,
2020). These models are critical for the absolute understanding of
excitonic behaviour and for guiding the design of heterostructures
and quantum-confined systems.

Currently, the focus is mostly on excitonic engineering, which
manipulates exciton formation, transport, and recombination

through nano-structuring, strain modulation, and a dielectric
environment. Quantum confinement of excitons, as provided by
nanowires, quantum wells, and 2D oxides, can further improve
excitonic binding and charge recombination dynamics. Integrated
systems of 2D materials and oxide semiconductors can offer new
opportunities for ultrafast charge separation and energy transfers.
These systems are key to the fields of photovoltaics and excitonic
transistors.

In summary, wide-bandgap oxide semiconductors' excitonic
characteristics are essential to a variety of cutting-edge technologies
and are no longer only an academic curiosity. The future of
light-matter interaction will be shaped by the accurate control of
excitonic dynamics as growth techniques advance and theoretical-
experimental integration becomes more profound.
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