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Modeling and design of 
micro-structures: focusing on 
functionally graded materials and 
future prospects

Tohru Hirano*

Daikin Industries, Ltd., Technology and Innovation Center, Osaka, Japan

Functionally Gradient (Graded) Materials (FGMs) represent a class of advanced 
materials characterized by spatial distributions in composition and structure, 
resulting in corresponding changes in their material properties. The material 
properties depend on the micro-structures, which are also heavily influenced 
by fabrication processes. This paper provides an overview of the modeling 
and design of micro-structures in FGMs, highlighting historical developments, 
current technologies such as multi-scale modeling using the Finite Element 
Method, the evolution of modeling techniques, and the latest research trends, 
including the application of deep learning and AI. The advanced fabrication 
of FGMs by additive manufacturing will be covered in view of the resultant 
micro-structures. Furthermore, energy conversion FGMs will be investigated 
concerning the transport properties in grain boundaries and lattice structures.
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 1 Introduction

Functionally Gradient (Graded) Materials (FGMs) represent a class of advanced 
materials characterized by spatial distributions in composition and structure, which result 
in corresponding changes in their properties. These materials are designed to meet specific 
performance requirements that traditional homogeneous materials cannot achieve. FGMs 
were initially developed in Japan (Niino et al., 1987; Niino et al., 1988a; Niino et al., 1988b; 
Hirano et al., 1990; Hirano et al., 1991; Sasaki et al., 1989; Sata, 1993) to address the need 
for materials that can withstand extreme thermal gradients, such as those in aerospace 
and nuclear applications. The significance of FGMs lies in their ability to combine the best 
properties of different materials within a single component. For example, an FGM can have 
a high temperature-resistant surface on one side and a structural material on the other side, 
and between the two surfaces, graded compositional layers for the thermal stress-mitigation 
core. This gradation in properties is achieved through the optimum design of the phase 
gradation considering those material’s micro-structures, which is the focus of this paper.

Micro-structures play a crucial role in determining the overall behavior of 
FGMs (Hirano et al., 1990; Hirano et al., 1991; Eshelby, 1957). By manipulating 
the micro-structural features, such as grain shape and size, phase distribution, 
and porosity, etc., we can tailor the material properties to meet specific

Frontiers in Materials 01 frontiersin.org

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2025.1659727
https://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2025.1659727&domain=pdf&date_stamp=
2025-10-21
mailto:tohru.hirano@daikin.co.jp
mailto:tohru.hirano@daikin.co.jp
https://doi.org/10.3389/fmats.2025.1659727
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmats.2025.1659727/full
https://www.frontiersin.org/articles/10.3389/fmats.2025.1659727/full
https://www.frontiersin.org/articles/10.3389/fmats.2025.1659727/full
https://www.frontiersin.org/articles/10.3389/fmats.2025.1659727/full
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org


Hirano 10.3389/fmats.2025.1659727

needs. However, even with the same phase composition, the formed 
micro-structures depend on the fabrication processes. Therefore, 
the modeling and design of these micro-structures and phase 
distribution are essential for optimizing the performance of FGMs 
(Sasaki et al., 1989; Sata, 1993; Fukui, 1991; Kawai et al., 1992).

Traditional materials research has primarily focused on an 
analytical approach, wherein the physical properties and micro-
structures of materials synthesized through various processes are 
analyzed and evaluated. However, the primary goal of FGMs 
development lies in the practical utilization of their unique 
properties. From this perspective, a synthetic approach, namely, how 
to design and fabricate materials that exhibit the desired properties, 
becomes a critical issue (Niino et al., 1987; Hirano et al., 1990; 
Hirano et al., 1991; Sasaki et al., 1989; Sata, 1993). While the 
conventional analytical approach represents a forward problem, in 
which the properties of a given material are evaluated, the design 
of FGMs can be defined as an inverse problem (Hirano et al., 
1990; Hirano et al., 1991), where the required properties are 
specified first, and the corresponding micro-structures and synthesis 
methods are determined accordingly. Therefore, in order to enable 
the design of FGMs, it is essential not only to accurately estimate 
material properties, but also to control structural parameters such 
as micro-structures so that the properties can be tailored to 
meet specific requirements during fabrication (Niino et al., 1987; 
Hirano et al., 1990; Hirano et al., 1991).

This paper aims to provide a comprehensive overview of the 
historical developments, current technologies, and future prospects 
related to the optimal design of compositional gradients and the 
modeling of micro-structures in FGMs. It covers the evolution of 
modeling techniques, the integration of advanced computational 
methods, and the latest research trends, including the application 
of deep learning and AI as well as new material design and 
manufacturing methodologies.

Additionally, this review covers Energy Conversion FGMs 
(Hirano et al., 1994; Hirano, 1995), especially on the thermoelectric 
materials improvement, in view of lattice and micro-structures 
improving the Energy Conversion efficiency (Hicks and Dresselhaus, 
1993; Whitlow and Hirano, 1995; Nishio and Hirano, 1997). This field 
of research is quite rapidly advancing in view of carrier energy filtering 
of electron and phonon transport phenomena. 

2 Historical background

2.1 Early research and development of 
FGMs and micro-structure modeling

The concept of FGMs was first introduced in Japan in 1984 
during a space plane project (Niino et al., 1987; Niino et al., 
1988a; Niino et al., 1988b; Hirano et al., 1990). The goal was 
to develop materials that could serve as thermal barriers capable 
of withstanding extreme temperature gradients. Specifically, the 
materials needed to endure surface temperatures of up to 2000 K 
and a temperature gradient of 1000 K across a 10 mm section. 
This initial application highlighted the potential of FGMs in 
aerospace and other high-temperature environments. Early research 
on FGMs focused on the inverse optimum design of the phase 
composition utilizing classical or empirical micro-structure models 

and the development of processing techniques to create the desired 
gradation in the phase composition. Figure 1a depicts the concept 
of FGMs with ceramics, metal and micro-pore (Hirano et al., 1991), 
Figure 1b depicts the phase distributions of two different materials 
(VA and VB) with micro-pore (VP) expressed by power function 
VA(x) = 1 – VB(x)n–VP(x), Figure 1c shows Eshelby’s Ellipsoidal 
Inclusion model (Eshelby, 1957). Table 1 shows several Rules of 
Mixtures based on Micro-structures (Hirano et al., 1990).

Researchers explored various methods including chemical 
vapor deposition (Niino et al., 1988a; Sasaki et al., 1989), powder 
metallurgy (Niino et al., 1988b; Sata, 1993) and centrifugal casting 
(Fukui, 1991) to fabricate FGMs with tailored properties. As 
the field progressed, the scope of FGMs applications expanded 
beyond aerospace to include biomedical, automotive, and 
energy sectors. For example, FGMs have been used in dental 
implants (Kondo et al., 2004) and bone prostheses due to their 
ability to mimic the natural gradation of properties found in 
biological tissues (Bohuder et al., 2014). 

2.2 Evolution of evaluation methods with 
elasto-plasticity

As mentioned above, the micro-structure modeling and 
optimum design of the phase composition in FGMs played a crucial 
role in the development of FGMs. Early models were primarily 
based on linear analyses, focusing on simple gradation profiles 
and basic material properties. However, with advancements in 
computational power and numerical methods, more sophisticated 
models emerged. In recent years, the integration of advanced 
computational techniques, such as Finite Element Method (FEM) 
(Kawai et al., 1992; Teraki et al., 1992; Arai et al., 1993) and multi-
scale modeling, has further enhanced the ability to design and 
optimize FGMs. These methods enable researchers to predict 
the behavior of FGMs to tailor their properties under various 
loading conditions including fabrication and specific applications. 
The historical development of FGMs reflects a continuous effort 
to improve material performance through innovative design 
and modeling techniques. The advancements in micro-structure 
modeling have been instrumental in realizing the full potential of 
FGMs across a wide range of applications. 

2.3 Energy conversion FGMs (EC-FGMs)

Subsequently in Japan, fundamental research on Functionally 
Gradient (Graded) Energy Conversion Materials (EC-FGMs) was 
advanced as a national project to dramatically improve the 
conversion efficiency of energy conversion materials (Hirano et al., 
1994). Thermoelectric (TE) conversion materials and photovoltaic 
conversion materials, among other energy conversion materials, are 
inorganic semiconductor materials. To improve their properties, 
precise prediction of electronic properties and control of the 
micro-structure of the materials are necessary. The micro-structure 
refers to all crystal defects (lattice defects), including grain 
boundaries, pores, precipitates, dislocations, and stacking faults. 
Figure 2 is a conceptual diagram of the structure and organization 
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FIGURE 1
(a) Concept of FGMs. (b) Phase compositions of different materials (Hirano et al., 1990, 1991) (c) Eshelby’s Ellipsoidal Inclusion model (Eshelby, 1957).

TABLE 1  Rules of Mixtures based upon Micro-structures (Hirano et al., 1990).

Micro-structures in 
the hypothetical 

layer (white:Matrix, 
black: Filler)

Thermal 
conductivity

λ

Coefficient of 
thermal expansion

α

Elastic moduli
E, K, G

Material strength
σy

 Laminar Reuss Rule Modulus based Rule Volgt Rule Volgt Rule

 Fibrous (1) Reuss Rule Modulus based Rule Volgt Rule Volgt Rule

 Fibrous (2) Volgt Rule Volgt Rule Reuss Rule (Reuss Rule)

 Thin Layer Volgt Rule Volgt Rule Reuss Rule (Reuss Rule)

 Flake-like Eshelby’s Theory Eshelby’s Theory Eshelby’s Theory ?

Spherical Particulate

Kerner’s Equation Kerner’s or Turner’s Equation Kerner’s Equation ?

Skeletal

Tuchinskii’s Method Tuchinskii’s Method Tuchinskii’s Method (Tuchinskii’s)
(Method)

Micro-Poers Maxwell’s Equation - Mackenzie’s Equation Haynes or Ryskewitsch’s 
Equation
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FIGURE 2
Physical structures of different scales in FGM devices (Hirano, 1995).

FIGURE 3
Analysis model of thermoelectric FGM module (Hirano, 1995).

of ceramics introduced by Yasui, (1982) and applied to micro-
structures of FGMs (Hirano, 1995). In the figure, the micro-
structures are classified by physical scales. Actual materials consist 
of complex combinations of these microscopic structures, and the 
physical properties at the crystal lattice level rarely appear directly 

as macro properties. Therefore, in material design, theoretical 
considerations must be made at each physical scale of the 
microscopic structures of the material, namely, the crystal lattice 
level, the micro-structure level, and the solid material/device 
as a whole.

For example, TE conversion devices operate under large 
temperature gradients to generate electricity via the Seebeck effect. 
Therefore, in addition to evaluating the power generation efficiency 
of TE materials, it is essentially multi-physics to assess and mitigate 
thermal stress distributions at the interfaces between electrodes and 
TE elements, as well as within composite TE materials.

Also, to evaluate the performance of TE devices, it is essential to 
solve multi-physics phenomena that couple thermal and electrical 
transport processes. Figure 3 shows the analysis model of TE EC-
FGM module.

And the set of coupled differential equations derived from the 
Boltzmann transport equation are shown in Equation 1 (Hirano, 
1995), where j denotes the electric current density, q the heat flux, ф
the electric potential, T the temperature, σthe electrical conductivity,
α the Seebeck coefficient, and κ the thermal conductivity (lattice κL
+ electronic κe).

{
{
{

j

q

}
}
}
=[

[

σ

Tασ

σα

k+Tσα2
]

]

{
{
{

−∇φ

−∇T

}
}
}

(1)
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3 Current technologies and methods

Developing and optimizing FGMs rely heavily on advanced 
technologies and methods. This section explores the key techniques 
currently employed in the modeling and design of FGMs. 

3.1 Finite element method (FEM) and its 
applications

FEM allows for the simulation of complex geometries and material 
behaviors by discretizing the material into smaller elements. In 
the initial phase of FGMs development, inverse design procedures 
based on analytical solutions under steady-state conditions were 
employed, particularly for infinite plates and axisymmetric cylindrical 
geometries, to optimize the graded compositional distribution 
(Hirano et al., 1990). However, in order to validate these designs against 
experimental evaluations of synthesized FGMs, unsteady thermal 
conduction and thermal stress analyses were subsequently performed 
using two-dimensional finite element models that incorporate edge 
effects (Kawai et al., 1992; Teraki et al., 1992). Also, the thermo-elasto-
plastic behavior of FGMs under thermal loading and the evaluation 
of residual stresses after unloading were evaluated (Arai et al., 
1993). Since then, FEM has become a widely adopted tool for the 
analysis and design of FGMs. 

Suresh and Mortensen published a book of comprehensive 
review on FGMs (Suresh and Mortensen, 1998), which includes 
the fundamentals of processing and thermomechanical response 
of graded metals and metal/ceramic composites, covering broad 
range of topics including process metallurgy, composite synthesis, 
the mechanics and micromechanics of composites, and fracture 
mechanics. Moreover, it includes one chapter on FEM describing 
fundamentals of FEM for FGMs, thermal stress analysis, boundary 
conditions and modeling, stress-strain behavior and fracture 
mechanics, and practical applications and validations (Suresh and 
Mortensen, 1998). On the other hand, Reddy published a paper on 
the development of FEM elements tailored for multilayered plates 
with graded compositions (Reddy, 2000), which has significantly 
enhanced the accuracy of FGM modeling and evaluation along 
with the integration of advanced FEM techniques such as adaptive 
meshing and multi-physics simulations. 

3.2 Multi-scale modeling with 
homogenization

Multi-scale modeling is a powerful approach that integrates 
information across different length scales, from the microscale to 
the macroscopic level. This method allows for a comprehensive 
understanding of how micro-structural features influence the overall 
properties of FGMs. While Homogenization Method (Bendsoe 
and Kikuchi, 1998) was developed for modeling periodic micro-
structures and widely implemented in commercial FEM solvers 
such as Ansys and ABAQUS, a different approach has been 
proposed for thermal stress-relaxation type FGMs (Rhee, 2007). 
In this approach, the geometric characteristics of the microcells 
are explicitly parameterized within each finite element, and the 
graded microscale problems are solved using a non-periodic 

homogenization method. Then, the results were incorporated into 
the macroscale FEM stiffness matrix (Rhee, 2007). 

3.3 Micro-mechanics and fracture analysis

As mentioned above, micro-mechanics analyses focused on 
understanding the relationship between the micro-structural 
features of FGMs and their macroscopic properties. On the other 
hand, a theoretical investigation based on fracture mechanics was 
conducted by Erdogan for the first time to evaluate the fracture 
strength of FGMs in the presence of initial micro-cracks introduced 
during fabrication (Erdogan and Wu, 1997). In this study, a plane 
elasticity problem was formulated for FGMs in which the Young’s 
modulus varies continuously in the thickness direction. Surface-
perpendicular cracks were introduced to model both edge and 
embedded cracks. Under three distinct loading conditions, the stress 
intensity factors (SIF) were theoretically derived. Furthermore, 
the crack opening displacement (COD) and stress distributions 
were analyzed to clarify the influence of FGMs gradation on 
fracture behavior (Erdogan and Wu, 1997). This work has provided 
a theoretical foundation for the fracture-safe design of FGMs. 
Furthermore, a toughness enhancement design utilizing stress-
induced phase transformation based on micro-mechanical analysis 
was also proposed for metal–ceramic FGMs (Tukamoto, 2017).

The effect of material property variation on ductility and 
fracture strain in FGMs was investigated using FEM and the 
Gurson-Tvergaard-Needleman (GTN) model (Shahzamanian et al., 
2020), which is strain-controlled for void nucleating. The 
material properties of FGMs in the tensile tests are represented 
by a power low distribution in the thickness direction. The 
ductility and fracture strain changes with gradation index. The 
development of stress triaxiality slows down in FGMs, and the 
total void volume fraction is reduced (Shahzamanian et al., 
2020). Figure 4 shows the comparison of thermal stress 
distributions in conventional thermal barrier coating and FGMs
(Shahzamanian et al., 2020).

To support the design and lifetime prediction of thermal 
barrier coatings (TBCs) using FGMs in gas turbine blades 
and high-temperature structural components, thermal fracture 
behavior analyses focusing on structures with pre-existing edge 
cracks and multiple internal cracks arranged to imitate a curved 
interface have been reported recently (Petrova and Schmauder, 
2021). Another new method to evaluate fracture mechanism of 
FGM was also introduced recently, which is based on extended 
FEM (XFEM) developed by Belytschko (Moes et al., 1999). It 
is reported that XFEM can analyze crack propagation without 
remeshing, and capture crack paths influenced by property 
gradation, ensuring high accuracy in Stress Intensity Factor
(Sinha and Pamnani, 2025).

Another application of FGMs was recently reported, in which 
polymeric laminated composite materials including polymer FGMs 
are investigated numerically by FEM for improving the tribological 
behavior and experimentally verified (Nowler et al., 2025). By 
designing a gradual variation in material properties across the 
laminate thickness, the authors demonstrate reduced wear rates, 
lower friction coefficients, and improved stress distribution. The 
study includes FEM modeling and tribological testing, showing that 
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FIGURE 4
Comparison between a conventional and FGM thermal barrier (Shahzamanian et al., 2020). (a) Conventional thermal barrier coating, (b) Thermal stress 
distribution, (c) FGM thermal barrier coating, (d) Thermal stress distribution.

FIGURE 5
(a) Phase separation structure of polymer alloy (Hiraide et al., 2021) (b) Conceptual diagram of the network (Hiraide et al., 2021).

FGM-based laminates outperform conventional ones under sliding 
contact conditions (Nowler et al., 2025). 

3.4 Transport properties in energy 
conversion materials

As explained in historical background, fundamental research 
on the Energy Conversion FGMs (EC-FGMs) was started to 
improve the conversion efficiency of energy conversion materials 

(Hirano et al., 1994; Hirano, 1995). In this situation, precise 
estimation of thermal and electronic transport properties and 
tailoring of micro-structures were required. For the estimation 
of the transport properties, different scales of physical structures, 
ranging from lattice level crystal structure, grain level micro-
structure and macro scale device structure are considered. Several 
estimation methods of the material properties for the design of 
EC-FGMs were considered. As one of the energy conversion 
materials, thermoelectric (TE) materials were investigated, and 
models were presented for the transport properties of heavily doped 
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FIGURE 6
Application of deep learning for identification of micro-structures (Noguchi et al., 2022).

TE semiconductors (Hirano et al., 1994; Hirano, 1995; Hicks and 
Dresselhaus, 1993; Whitlow and Hirano, 1995; Nishio and Hirano, 
1997; Chen et al., 2003). The dimensionless figure-of-merit (ZT) 
plays a decisive role of TE materials as the critical measure of the 
energy conversion performance. Equation (2) defines ZT by several 
material parameters, where α, σ, κL, κe, and T are the Seebeck 
coefficient, electrical conductivity, lattice thermal conductivity, 
electronic thermal conductivity, and absolute temperature,
respectively.

ZT = α2σ
 κL + κe
 T (2)

To increase ZT the use of quantum well was proposed 
to increase the product α2σ by Hicks and Dresselhaus (Hicks 
and Dresselhaus, 1993), which introduces quantum confinement 
effects that modify the electronic density of state leading to an 
increase in the Seebeck coefficient and a reduction in thermal
conductivity.

Thereafter, the carrier energy filtering concept applied to Super 
Lattice structure was firstly proposed in the EC-FGMs project 
(Whitlow and Hirano, 1995). The concept was improved more 
precisely to include ionized impurity (electron and hole) carrier 
energy filtering and phonon (acoustic and optical) scattering into the 
theoretical approach for the optimization of the parameters α2σ, κL

andκe influencing the charge‐carrier energy spectrum and phonon 
scattering, through structural changes or the material and the 
scattering interactions (Nishio and Hirano, 1997). The theoretical 
calculation results were shown that phonon scattering effects are 
quite dominant rather than ionized impurity scattering (Nishio and 
Hirano, 1997).

Chen and Dresselhaus reported a comprehensive review on the 
advances in the field of TE materials (Chen et al., 2003). They focused 
on two major areas as shown below and proposed so-called Phonon 
Engineering, which aims to decrease the lattice thermal conductivityκL
by means of phonon scattering in addition to reduce the electronic 
thermal conductivityκe due to electron scattering (Chen et al., 2003). 

3.4.1 Nanostructured materials
1) Nano-structured Materials: Control of electron and phonon 

transport properties through the use of nano-structures 
such as quantum wells, superlattices, quantum wires, and 
quantum dots.

2) Enhancement of energy conversion efficiency by 
engineering the electronic band structure and density of
states.

3) Reduction of thermal conductivity by promoting phonon 
scattering and interfacial reflection.
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FIGURE 7
High-fidelity Micro-stracture image Generation by DDPM (Azqadan et al., 2023) (open access).

FIGURE 8
MCRpy: Micro-structures characterization and reconstruction framework (Seibert et al., 2022).

FIGURE 9
(a) Encoder-Decoder architecture (Alrfou et al., 2023) (b) Test Data, ImageNet Data, Microscopy (Alrfou et al., 2023) (CNN + SwinTransformer).
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FIGURE 10
Candidate new structures discovered by MT-GPT2 model with zero e-above hull (Fu et al., 2023).

FIGURE 11
The Key Architecture of TransPolymer: Pretraining and Finetuning (Xu et al., 2023) (open access).

3.4.2 Bulk materials
1) Realization of the “phonon-glass electron-crystal” (PGEC) 

behavior through the synthesis of new materials with complex 
crystal structures.

2) Development of materials with high thermoelectric 
performance with ZT approaching 1.5 at high temperatures, 
and active research aiming for ZT > 1 near room temperature.

4 Recent research trends

The field of FGMs has seen significant advancements in recent 
years, driven by the integration of new technologies and innovative 
approaches. Also, general micro-structure modeling and design 

technologies have been widely studied and several new concepts 
have emerged. This section highlights some of the key trends in 
general micro-structure modeling and design technologies. 

4.1 Applications of deep learning (DL) and 
artificial intelligence (AI)

AI and Deep Learning (DL) have become powerful tools for 
the modeling of micro-structures. For example, a novel design 
framework was constructed by integrating two types of neural 
networks. Deep Convolutional-Generative Adversarial Network 
(DC-GAN), which generates candidate micro-structures that satisfy 
geometric constraints, and Convolutional Neural Network (CNN), 
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FIGURE 12
Whole AM process for Shape Memory Alloys (SMA) parts (Alagha et al., 2021) (open access).

which serves as a surrogate model to learn the relationship between 
microstructural geometry and its corresponding physical properties 
(e.g., compliance tensor) (Tan et al., 2020). By combining these 
networks into a unified “design network,” inverse design becomes 
feasible, enabling the efficient generation of micro-structures 
that exhibit desired material properties (Tan et al., 2020). Also, 
application of DL to inverse design of phase separation structure 
in polymer alloy was reported (Hiraide et al., 2021), in which 
the micro-structures are dependent on the volume fraction of 
polymer A and the product of the repulsive interaction and chain 
length as shown in Figure 5a). In this study, forward process to 
estimate Young’s modulus from micro-structure image utilized 
CNN, and inverse design process was done by GAN as shown in 
Figure 5b) (Hiraide et al., 2021).

Another machine learning framework was proposed that 
emulates the thinking process of metallurgists, with the aim 
of identifying microstructural features that critically influence 
material properties (Noguchi et al., 2022). Usual machine 
learning approaches often lack interpretability due to insufficient 
understanding of the underlying physical mechanisms and causal 
relationships. In this work, by mimicking the intuitive design 
process of human experts, the Vector Quantized Variational Auto-
Encoder (VQ-VAE) seeks to automatically extract key structural 
features without relying on explicit physical models, and PixelCNN 
enables highly accurate structure generation and reconstruction 
as shown in (Figure 6) (Noguchi et al., 2022). The target 
material system is artificially designed dual-phase steel, and the 
optimization focuses on fracture-related properties (Noguchi et al., 
2022). The same authors also presented on Baysian inverse 
inference of material properties from micro-structure images
(Noguchi and Inoue, 2024).

A novel framework for predictive micro-structure image 
generation was presented (Azqadan et al., 2023) utilizing 
Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 
2020). By leveraging the iterative denoising process inherent to 

DDPMs, the proposed method enables the synthesis of high-
fidelity micro-structure images conditioned on material-specific 
parameters such as composition, processing history, and target 
properties (Azqadan et al., 2023). The generated images exhibit 
statistically consistent features with experimentally observed micro-
structures, including grain morphology and phase distribution. 
This approach offers a promising solution to the inverse design 
problem in materials science, facilitating the generation of 
plausible micro-structures from desired macroscopic properties 
(Azqadan et al., 2023). Figure 7 shows the whole processes of 
proposed system with DDPM.

More comprehensive survey for AI-driven approaches for multi-
scale modeling was reported recently (Peng et al., 2025), which 
includes parameterized micro-structures and FEM homogenization 
with meshes based on diffuse interface representation and DL 
based surrogate model training. With the trained surrogate 
models, micro-structure optimization or inverse design of micro-
structure can be efficiently executed (Peng et al., 2025). It also 
introduced MCRpy (Seibert et al., 2022), an open-source Python 
framework designed for the characterization and reconstruction 
of micro-structures in materials science displayed in Figure 8. 
Micro-structures, such as grain boundaries, pores and phases, 
play a critical role in determining the macroscopic properties of 
materials. MCRpy provides a modular and extensible platform for 
analyzing micro-structural features using statistical descriptors and 
for reconstructing synthetic micro-structures that match desired 
characteristics. The framework supports integration with machine 
learning models and optimization algorithms, enabling data-driven 
materials design and analysis (Seibert et al., 2022). 

4.2 Utilization of transformer models

The Transformer is a deep learning architecture introduced 
by Vaswani et al., in 2017 (Vaswani et al., 2017), which has 
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FIGURE 13
Application of AI in monitoring AM DLD process (Wasmer et al., 2023) (open access).

since become foundational in a wide range of machine learning 
applications, particularly in natural language processing (LLM), 
computer vision (ViT), and scientific domains such as Materials 
Informatics (most famous example is AlphaFold (Jumper et al., 
2021)). The Transformer architecture is composed of two 
primary modules: the encoder and the decoder. The encoder 
processes the input sequence and generates a contextualized 
representation, while the decoder utilizes this representation 
to generate the output sequence. A key innovation of the 
Transformer is the self-attention mechanism, which allows 
the model to dynamically weigh the importance of different 
elements in the input sequence. This mechanism is further 
enhanced by multi-head attention, which enables the model to 
attend to information from multiple representation subspaces 
simultaneously. To compensate for the lack of inherent 
sequential structure, positional encoding is added to the input 
embeddings, allowing the model to incorporate order information
(Vaswani et al., 2017).

An innovative approach to the design of architected materials 
directly from natural language descriptions was proposed (Yang 
and Buehler, 2021). The authors employed a transformer-based 
neural network architecture, combining CLIP and VQGAN, to 
generate material structure images from textual prompts (e.g., 
“a regular lattice structure of steel”), which were subsequently 
used to construct 3D models and to fabricate them via 3D 
printing realizing a “Words to Matter” pipeline (Yang and Buehler, 
2021). This approach introduced a novel design paradigm that 
differs fundamentally from conventional Computer Aided Design 
(CAD) or numerical design methods by enabling intuitive 
linguistic expressions to be directly translated into material 
architectures (Yang and Buehler, 2021).

A hybrid algorithm with Transformer and CNN encoders, 
called as CS-Net, for micro-structure image segmentation in 
materials science was proposed (Alrfou et al., 2023), which also 
utilized Transfer Learning for models pre-trained specifically 
on microscopic images achieved higher segmentation accuracy 
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FIGURE 14
Numerical model for Two-dimensional (half) beam of AM FGMs (Silva et al., 2024).

as compared to those trained on natural image datasets 
(Alrfou et al., 2023). Figure 9 shows the Encoder-Decoder 
architecture and the test data.

The first large-scale benchmark on generative design of inorganic 
materials using transformer-based language models was presented 
(Fu et al., 2023), including GPT, BART, and RoBERTa Language 
models, that have demonstrated success in natural language processing 
and molecular design, are applied to the generation of inorganic 
material compositions, and their performance is evaluated in terms of 
chemical validity, novelty, and property control. The authors trained 
and compared seven transformer models using composition data 
extracted from large-scale materials databases such as ICSD, OQMD, 
and the Materials Project (Fu et al., 2023). Figure 10 shows the 
candidate new structures discovered by MT-GPT2 model with zero 
e-above hull (Fu et al., 2023). 

A Transformer-based language model developed for the 
prediction of polymer properties was proposed recently (Xu et al., 
2023). Traditional approaches to evaluating polymer characteristics 
often rely on costly and time-consuming experiments or 
simulations. This study introduces a novel methodology that 
leverages the Transformer architecture to directly predict 
polymer properties from their sequences. The model employs a 
chemically-informed tokenizer to represent polymer structures 
and is pretrained using masked language modeling (MLM) on 
a large corpus of unlabeled polymer sequences. TransPolymer 
demonstrates superior performance across multiple downstream 
property prediction tasks. Figure 11 shows the key architecture of 
TransPolymer (Xu et al., 2023). 

4.3 New material design and 
manufacturing methodologies

4.3.1 Additive manufacturing (AM)
Innovative material design and manufacturing methodologies 

are being developed to enhance the performance and functionality 

of FGMs. Additive manufacturing (AM), also known as 3D 
printing, has emerged as a transformative technology in this field 
(Haghdadi et al., 2021; Alagha et al., 2021; Sanjeeviprakash et al., 
2023). Especially, after the invention of advanced manufacturing 
techniques including Selective Laser Melting (SLM), Binder Jetting 
(BJ) and Direct Energy Deposition (DED) have been established, 
AM can allow for the precise control of material composition 
and structure enabling the fabrication of Shape Memory Alloy 
(SMA) parts with complex geometries and tailored properties 
(Alagha et al., 2021). Figure 12 depicts the whole AM process for 
SMA parts (Alagha et al., 2021).

Because AM processes for FGMs using Direct Laser Deposition 
(DLD) are quite complicated, the quality monitoring is required 
for commercialisation. Novel monitoring method for chemical 
composition and process regimes for FGMs was proposed using 
Acoustic Emission Mic and Optical Emission Spectroscopy (OES) 
sensors. Figure 13 shows the application of AI in monitoring 
AM DLD processes (Wasmer et al., 2023). The standard machine 
equipments are in grey, the sensors and acqisition PC are in 
green, and blue arrows reprisent the digital cables used for data 
transport (Wasmer et al., 2023).

A case study was reported on the multi-disciplinary approach 
integrating design, manufacture and evaluation of Metal-based 
FGMs using multi-feed Wire-Arc Additive Manufacturing (WAAM) 
to create FGM parts with tailored properties (Silva et al., 2024). This 
method allows for the layer-wise deposition of different materials 
(Al-Cu), resulting in a smooth gradation of properties. The use 
of topology optimization (TO) and image-based characterization 
further enhances the design and performance of these FGM parts 
(Silva et al., 2024). In Figure 14, the distributed loads Q generate 
torque, and beam is subject to pure bending (Silva et al., 2024).

Another comprehensive review on the recent advancements 
and challenges in AM FGMs was reported, in which conceptual 
approaches for AM FGMs design, various manufacturing 
techniques and the materials employed in their fabrication using AM 
technologies are explained (Alkunte et al., 2024a). Moreover, many 
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FIGURE 15
Topological morphologies of sea urchin spine and its biomimetic scaffolds (Zhang et al., 2023). Sea urchin spines’ needle-like appearance and internal 
architecture of graded porosity. (A) The optical image shows the natural features of the sea urchin spine. (B) Micro-computed tomography (CT) images 
show internal graded porosity in horizontal view and longitudinal views. (C) SEM images present the delicate internal morphologies in (c1-c2) sectional 
views. (D) Schematic diagram of the position of porous scaffolds within the implant. (E) Biomimetic graded pentamode-based scaffolds. (F)
Geometrical features of the graded density from longitudinal view and the tapering strut topology compared with the uniform struts in 
horizontal view (Zhang et al., 2023). (open access).

different applications covering structural engineering, automotive, 
biomedical engineering, soft robotics, electronics, 4D printing and 
metamaterials are described (Alkunte et al., 2024a). 

4.3.2 Metamaterials (MMs)
The concept of Metamaterials was firstly proposed in 1967 by 

Russian physicist Victor Veselago through a theoretical study. He 
described materials possessing properties not found in nature, 
enabled by artificially engineered structures (Veselago, 1967). 
Although this theory remained unverified experimentally for 
several decades, it was not until 2000 that David R. Smith 

and his colleagues successfully demonstrated a Metamaterial 
exhibiting a negative refractive index in the microwave regime. 
Then, Smith and his colleagues patented the concept as 
Metamaterials (Smith et al., 2009).

An overview of Metamaterials (MMs) designed for the control 
of elastic waves and vibrations was presented (Dai et al., 2022). 
Emphasis was placed on acoustic MMs, including both passive 
and active types, and their respective mechanisms for wave 
manipulation. Passive MMs, such as phononic crystals and 
locally resonant structures, were shown to exhibit band gap 
formation and wave attenuation capabilities, while active MMs 
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FIGURE 16
Different grading patterns in functionally graded lattices (FGLs) (Noronha et al., 2023).

enable dynamic tuning of wave propagation characteristics through 
external stimuli (Dai et al., 2022). This paper highlighted advanced 
design methodologies such as topology optimization, bio-inspired 
architectures, and fractal geometries, which contribute to enhanced 
wave control performance (Dai et al., 2022). AM techniques 
are discussed as key enablers for fabricating complex multi-
material and multi-scale structures. Applications span across 
aerospace, automotive, civil engineering, and biomedical domains, 
where vibration isolation, noise reduction, and wave steering 
are critical (Dai et al., 2022).

A study was reported on the design and fabrication of 
biomimetic MMs using 3D printing technologies (same with 
AM), focusing on structures with graded porosity and tapered 
topology (Zhang et al., 2023). Inspired by natural materials 
such as bone and plant stems, the proposed MMs exhibit 
enhanced mechanical performance through spatial variation in 
porosity and geometry (Zhang et al., 2023). The integration of 
bioinspired design principles with AM enables the creation of 
lightweight, mechanically robust structures suitable for applications 
in biomedical implants, aerospace components, and soft robotics 
(Zhang et al., 2023). Figure 15 shows several different morphologies 
with graded porosity and geometry.

Similarly, Functionally Graded Lattices (FGLs) produced by AM 
were investigated in view of the design, fabrication, and performance 

(Noronha et al., 2023). FGLs are engineered structures with spatially 
varying properties—such as density, stiffness, and geometry—to 
achieve tailored mechanical responses as shown in Figure 16. The 
study explores various design strategies, evaluates mechanical 
behavior under different loading conditions, and discusses 
deformation mechanisms (Noronha et al., 2023). It also highlights 
the broad application potential of FGLs in fields such as biomedical 
engineering, aerospace, and energy absorption systems. The insights 
provided will guide future development of high-performance, 
multifunctional lattice materials (Noronha et al., 2023).

Recently, a comprehensive overview on Functionally 
Graded Metamaterials (FGMMs) including acoustic MMs 
and FGLs was presented in relation to AM. It covers the 
relevant technologies applied in the fabrication and design 
processes, and the theoretical models are mentioned for FGMMs, 
in addition to related simulation methods utilizing several 
commercial solvers (Alkunte et al., 2024b). 

4.3.3 Lattice and micro-structures improving 
energy conversion efficiency

In the previous section, FGMMs including FGLs are explained, 
which are basically designed and optimized to address structural 
challenges such as weight reduction, relaxation of high thermal 
stresses and mechanical reinforcement. In this section, however, 
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FIGURE 17
Hierarchical structure for detailed material and transport descriptors (Urban et al., 2019).

FIGURE 18
Energy filtering on grain boundary (Narducci et al., 2012).

we shift our focus to efforts aimed at enhancing TE performance, 
specifically in relation to crystal-level Lattice structures and micro-
structures in TE materials. Therefore, in this section atomic-
scale nano-structures are investigated in view of inorganic crystal 
structures or molecules for the determination of intrinsic physical 
properties of materials.

In relation to crystal lattices and micro-structures for TE 
materials, the material properties that affect the performance of TE 
materials were expressed as a hierarchical structure. Figure 17 shows 
detailed material and transport descriptors (Urban et al., 2019). 
For example, as expressed in Equation 2, thermal conductivity 
is comprised with lattice thermal conductivity κL and electronic 
thermal conductivity κe. And the lattice thermal conductivity is 
dependent on phonon group velocity, mean free path and specific 

heat, and so on. Finaly, κL is determined by Elastic constant, Defects, 
Grain boundary and Anharmonicity.

For example, Grain boundary effect on κL was theoretically 
investigated early on the TE properties of granular semiconductors 
(Narducci et al., 2012). Energy filtering is a mechanism that 
enhances the Seebeck coefficient by selectively scattering low-
energy carriers while allowing high-energy carriers to pass through. 
However, potential barriers formed at grain boundaries or within 
nanostructures can induce carrier localization, which may reduce 
carrier density and consequently lower electrical conductivity. 
The authors demonstrate that randomly distributed barriers can 
simultaneously induce both energy filtering and localization. 
By incorporating quantum tunneling effects into the theoretical 
model, they showed that an increase in doping concentration 
can lead to an enhancement in the power factor. Figure 18 
shows Energy Filtering on Grain Boundaries in polycrystalline 
materials (Narducci et al., 2012).

Then, in recent years, this research field has become more 
actively studied. Other examples for the enhancement of TE 
properties by application of point defects were presented (Pan et al., 
2015; Fu et al., 2017). Also, quite impressive research was reported 
on the enhancement of power factor by energy filtering effect 
in hierarchical BiSbTe3, in which the chemical solution synthesis 
of nanoparticles was proved as useful manufacturing method for 
the TE materials because the small particle size causes scattering 
of phonon along the crystal boundaries, effectively allowing the 
thermal conductivity to be reduced while maintaining the electrical 
conductivity as shown in Figure 19 (Sabarinathan et al., 2016).

A comprehensive review incorporating new perspectives in 
this field was reported (Urban et al., 2019). Figure 20 shows the 
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FIGURE 19
Enhancement of power factor by energy filtering effect (Sabarinathan et al., 2016).

FIGURE 20
Progress of maximum ZT in bulk inorganic systems achieved over time (Urban et al., 2019).
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FIGURE 21
Electron transport between a pristine material and a superlattice structures (Neophytou et al., 2020).

FIGURE 22
(a) Schemaitc illustration for the generation of porous network during BiI3 sublimation, (b,c) Representative SEM images of the fracture surfaces of 
initial and AP 0.7 vol% samples (Hu et al., 2021).

progress of maximum figure of merit (ZT) in bulk inorganic 
systems up to 2019 displayed in this report. While there 
have been selective reports of individual materials realizing 
new record levels of performance (as high as ZT∼2.6) in 
lab scale SnSe and Cu2Se, no general approach has emerged 
from these studies. It also explores the potential for enhancing 
TE performance through novel physical and materials-based 
approaches in addition to conventional band transport model 
of TE materials. The authors emphasized the following three 
areas: 1) wave effects in phonon transport, 2) correlated electron 
physics, and 3) un-conventional transport in organic materials
(Urban et al., 2019).

Previous Figure 17 was also cited from the same report, 
in which Lorenz number L is expressed as the key factor 
corelating between electronic thermal conductivity κe and electrical 
conductivity σ (Urban et al., 2019). When electrons behave as a 
collective hydrodynamic fluid, charge transport occurs efficiently 
while thermal energy is dissipated. Such physical behavior enables 
the decoupling of charge and heat transport, offering a novel 
mechanism for tuning the Lorenz number (Urban et al., 2019). 
Furthermore, coherent phonon interference—an emergent wave-
based description of phonon transport—has the potential to reduce 
the lattice thermal conductivity below the lower bound predicted 
by the classical particle model, without decreasing electronic 
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FIGURE 23
Synergistically optimizing phonon and electron transport for record-high ZT values (Zhou et al., 2025).

conductivity. This phenomenon may contribute to the enhancement 
of the TE figure of merit, ZT (Urban et al., 2019).

The same concept was reported later, in which two types of 
nano- and micro-structures are explained. Figure 21 illustrates the 
differences in electron transport between a pristine material and a 
superlattice structure, highlighting the impact of band structure and 
energy filtering on carrier dynamics (Neophytou et al., 2020).

Another experimental verification of enhancing TE efficiency by 
new method was reported, in which synthetic minerals based on 
Cu12Sb4S13 (tetrahedrite), a TE material known for its low thermal 
conductivity and moderate electrical performance (Hu et al., 
2021). The authors introduce a novel sublimation-based method to 
create a porous network within the material, aiming to enhance 
its TE efficiency. The porous structure is expected to scatter 
phonons more effectively, reducing thermal conductivity while 
maintaining or improving electrical conductivity (Hu et al., 2021). 
Figure 22 illustrates the generation of a porous network during BiI3
sublimation, and representative SEM images of the fracture surfaces 
of initial and AP 0.7 vol% samples, which show a 3D porous network 
structure (Hu et al., 2021).

Quite recent study was posted, in which classical BiSbTe alloy 
was processed to optimize phonon and electron transport by 
new super-gravity-field re-melting method (SGF-RM) (Zhou et al., 
2025). Using SGF, the brittle (Bi,Sb)2Te3 alloy undergoes unusual 
plastic deformation and forms mounts of defects in the micro-
structure. As a result, the micro-structure reconstruction and the 
optimization of carrier concentration were realized simultaneously, 
resulting in ultra-low lattice thermal conductivity (κL<0.25W/mK) 
and a record-high figure of merit (ZT > 1.91) in the BiSbTe 
alloy (Zhou et al., 2025). Figure 23 depicts the synergistically 
optimizing phonon and electron transport. (A) Shows SGF-RM 
technology, (B) exhibits bubble movement in melts, and (C) reveals 
the reconstruction of microstructures after SGF-RM. (D) Explains 
the process of Te evaporation causing extra holes. (E) Depicts
κL of samples before and after SGF-RM. The solid black symbols 
present the experimental result of Bi0.48Sb1.52Te3.03 alloy before 
SGF-RM (BST) and the red empty triangles present the corrected 
experimental values after SGF-RM. The black solid line represents 
the predicted κL considering the scattering of the Umklapp process, 
normal process, and point defects (U + N + P). The red solid 
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FIGURE 24
Schematic view for different types of phonon scattering sources in GeTe (Jiang et al., 2025).

line represents the predicted κL value considering the additional 
scattering of dislocations (U + N + P + I + DS). (F) Shows 
Power factor values as a function of the Hall carrier concentration 
predicted by the effective mass m∗ = 1.05m0 and drift mobility 
μw = 420 cm2/V s at 300 K. (G) zT values of BST and after SGF-
RM (Zhou et al., 2025).

Another recent study discussed comprehensive strategies to 
enhance the TE performance of GeTe-based materials through 
chemical modulation and defect engineering (Jiang et al., 2025). 
By introducing specific dopants and controlling intrinsic Ge 
vacancies, the authors achieved a significant improvement in 
the figure of merit (ZT), reaching values upto 2.7 at elevated 
temperatures. The work highlights the synergistic effects of carrier 
concentration optimization, band structure tuning, and phonon 
scattering enhancement. Especially, Several phonon scattering 
mechanisms contributing to the reduction of lattice thermal 
conductivity κL are compared, including point defect (0D), 
dislocation (1D), grain boundary (2D) and precipitate (3D) 
(Jiang et al., 2025). Figure 24 shows the schematic views of those 
different phonon scattering sources in GeTe.

A quite new physical paradigm for TE materials 
was recently proposed based on the superconducting 
Bardeen–Cooper–Schrieffer (BCS) theory and phonon drag effect 
(Liu and Cheng, 2025). According to the definition of the TE 
quality factor, high ZT values originate from material systems 
with high conductivity, large Seebeck coefficient, and low thermal 
conductivity. In the past few decades, traditional methods for 

optimizing TE performance have relied on electron-phonon 
transport separation, electronic band engineering, and phonon 
scattering mechanism modulation. However, even at various 
optimization levels, only moderate ZT values can be obtained. 
Therefore, another physical paradigm of synergistic electro/phonon 
transport based on the mechanism of electron-phonon interaction 
was proposed (Liu and Cheng, 2025). This approach is quite 
promising for improving ZT up to three or more.

Finally, several applications of AI and DL for modeling and 
predicting crystal structures are introduced. A study was reported, 
in which crystal structures were represented as graphs, where atoms 
are treated as nodes and interatomic bonds as edges (Xie and 
Grossman, 2018). Unlike traditional machine learning methods that 
rely on handcrafted features and are often limited to specific crystal 
types, Crystal Graph Convolutional Neural Networks (CGCNN) 
automatically learns representations from raw crystal structures. 
The model demonstrates high accuracy in predicting eight material 
properties derived from density functional theory (DFT), including 
band gap, formation energy, and elastic moduli. Importantly, 
CGCNN also provides interpretability by quantifying the 
contribution of local chemical environments to the overall property 
prediction, enabling insights into structure–property relationships 
and guiding materials design (Xie and Grossman, 2018).

Another study was reported, in which recent advances in 
predicting lattice thermal conductivity (κL) using machine learning 
(ML) techniques are reviewed (Luo et al., 2023). Traditional methods 
like first-principles calculations and molecular dynamics are accurate 
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FIGURE 25
High-throughput prediction of lattice thermal conductivities by ML models (Luo et al., 2023). (a) The XGBoost model-predicted log scaled κL versus the 
calculated values for the testing set. The top and right histograms show the corresponding data distributions. (b) Dependence of the predicted κL on 
specific elements for compounds in the Inorganic Crystallographic Structure Database (ICSD), and the values are shown by colors along with the 
ΔHatomic and ρ. (c) Schematics of the multilayer structures and the MD simulation setup. (d) Comparisons of the real and predicted κL for 100 randomly 
generated RMLs and their corresponding 100 GMLs in the testing set (Luo et al., 2023).

but computationally expensive. ML approaches offer a promising 
alternative by learning from existing data to predict κL efficiently. 
The review categorizes ML models into three types: descriptor-based 
models, graph-based models, and hybrid approaches. It also discusses 
the importance of data quality, feature engineering, and model 
interpretability. The authors highlight challenges such as data scarcity 
and generalizability and suggest future directions including active 
learning and integration with high-throughput screening. Figure 25 
shows high-throughput prediction of lattice thermal conductivities by 
ML models (Luo et al., 2023). 

5 Conclusion: summary and future 
prospects

This study has presented comprehensive review of the modeling 
and design of micro-structures in Functionally Graded Materials 
(FGMs), emphasizing their evolution from early aerospace 

applications to advanced energy conversion systems. FGMs, 
characterized by spatially varying phase compositions and micro-
structures, offer unique advantages in tailoring material properties 
to meet specific performance requirements, particularly under 
extreme thermal and mechanical conditions. Micro-structural 
features such as phase distribution, grain size, shape, and porosity 
play a critical role in determining the behavior of FGMs. The 
design of FGMs is inherently an inverse problem, requiring precise 
control over these features during fabrication. Analytical and 
computational tools including Finite Element Method (FEM), 
multi-scale modeling, micro-mechanics, and fracture analysis 
have become essential for predicting and optimizing material 
performance. In energy conversion applications, particularly 
thermoelectric materials, FGMs have demonstrated significant 
potential in enhancing the figure of merit (ZT) through lattice 
and grain boundary engineering. Concepts such as quantum 
confinement, energy filtering, and phonon scattering have been
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successfully applied to improve thermal and electrical transport 
properties.

Recent advancements in artificial intelligence (AI) and 
deep learning (DL) have revolutionized micro-structure design. 
Generative models such as GANs, DDPMs, and VQ-VAEs 
enable high-fidelity inverse design, while Transformer-based 
architectures facilitate natural language-driven material generation. 
Tools like MCRpy and CGCNN further support property 
prediction and micro-structure reconstruction. Also, several 
applications of AI and DL for modeling and prediction of 
crystal structures and lattice thermal conductivity are introduced
quite recently.

Additive Manufacturing (AM) technologies, including 
Direct Energy Deposition (DED) and Wire-Arc Additive 
Manufacturing (WAAM), have enabled the fabrication of 
complex FGMs with spatially controlled properties. AI-assisted 
monitoring and quality control are enhancing the reliability of
these processes.

The integration of AI-driven design automation, advanced AM, 
and multi-physics optimization will be quite important in modeling 
and design of micro-structures for the next-generation FGMs. These 
materials are expected to play a transformative role across aerospace, 
energy, biomedical, and robotics sectors, offering multifunctional 
solutions with superior structural, thermal, and environmental 
compatibility.
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