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Modeling and design of
micro-structures: focusing on
functionally graded materials and
future prospects

Tohru Hirano*

Daikin Industries, Ltd., Technology and Innovation Center, Osaka, Japan

Functionally Gradient (Graded) Materials (FGMs) represent a class of advanced
materials characterized by spatial distributions in composition and structure,
resulting in corresponding changes in their material properties. The material
properties depend on the micro-structures, which are also heavily influenced
by fabrication processes. This paper provides an overview of the modeling
and design of micro-structures in FGMs, highlighting historical developments,
current technologies such as multi-scale modeling using the Finite Element
Method, the evolution of modeling techniques, and the latest research trends,
including the application of deep learning and Al. The advanced fabrication
of FGMs by additive manufacturing will be covered in view of the resultant
micro-structures. Furthermore, energy conversion FGMs will be investigated
concerning the transport properties in grain boundaries and lattice structures.
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1 Introduction

Functionally Gradient (Graded) Materials (FGMs) represent a class of advanced
materials characterized by spatial distributions in composition and structure, which result
in corresponding changes in their properties. These materials are designed to meet specific
performance requirements that traditional homogeneous materials cannot achieve. FGMs
were initially developed in Japan (Niino et al., 1987; Niino et al., 1988a; Niino et al., 1988b;
Hirano et al., 1990; Hirano et al., 1991; Sasaki et al., 1989; Sata, 1993) to address the need
for materials that can withstand extreme thermal gradients, such as those in aerospace
and nuclear applications. The significance of FGMs lies in their ability to combine the best
properties of different materials within a single component. For example, an FGM can have
a high temperature-resistant surface on one side and a structural material on the other side,
and between the two surfaces, graded compositional layers for the thermal stress-mitigation
core. This gradation in properties is achieved through the optimum design of the phase
gradation considering those material’s micro-structures, which is the focus of this paper.

Micro-structures play a crucial role in determining the overall behavior of
FGMs (Hirano et al, 1990; Hirano et al, 1991; Eshelby, 1957). By manipulating
the micro-structural features, such as grain shape and size, phase distribution,
and porosity, etc., we can tailor the material properties to meet specific

01 frontiersin.org


https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2025.1659727
https://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2025.1659727&domain=pdf&date_stamp=
2025-10-21
mailto:tohru.hirano@daikin.co.jp
mailto:tohru.hirano@daikin.co.jp
https://doi.org/10.3389/fmats.2025.1659727
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmats.2025.1659727/full
https://www.frontiersin.org/articles/10.3389/fmats.2025.1659727/full
https://www.frontiersin.org/articles/10.3389/fmats.2025.1659727/full
https://www.frontiersin.org/articles/10.3389/fmats.2025.1659727/full
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org

Hirano

needs. However, even with the same phase composition, the formed
micro-structures depend on the fabrication processes. Therefore,
the modeling and design of these micro-structures and phase
distribution are essential for optimizing the performance of FGMs
(Sasaki et al., 1989; Sata, 1993; Fukui, 1991; Kawai et al., 1992).

Traditional materials research has primarily focused on an
analytical approach, wherein the physical properties and micro-
structures of materials synthesized through various processes are
analyzed and evaluated. However, the primary goal of FGMs
development lies in the practical utilization of their unique
properties. From this perspective, a synthetic approach, namely, how
to design and fabricate materials that exhibit the desired properties,
becomes a critical issue (Niino et al., 1987; Hirano et al., 1990;
Hirano et al., 1991; Sasaki et al., 1989; Sata, 1993). While the
conventional analytical approach represents a forward problem, in
which the properties of a given material are evaluated, the design
of FGMs can be defined as an inverse problem (Hirano et al.,
1990; Hirano et al, 1991), where the required properties are
specified first, and the corresponding micro-structures and synthesis
methods are determined accordingly. Therefore, in order to enable
the design of FGMs, it is essential not only to accurately estimate
material properties, but also to control structural parameters such
as micro-structures so that the properties can be tailored to
meet specific requirements during fabrication (Niino et al., 1987;
Hirano et al., 1990; Hirano et al., 1991).

This paper aims to provide a comprehensive overview of the
historical developments, current technologies, and future prospects
related to the optimal design of compositional gradients and the
modeling of micro-structures in FGMs. It covers the evolution of
modeling techniques, the integration of advanced computational
methods, and the latest research trends, including the application
of deep learning and AI as well as new material design and
manufacturing methodologies.

Additionally, this review covers Energy Conversion FGMs
(Hirano et al., 1994; Hirano, 1995), especially on the thermoelectric
materials improvement, in view of lattice and micro-structures
improving the Energy Conversion efficiency (Hicks and Dresselhaus,
1993; Whitlow and Hirano, 1995; Nishio and Hirano, 1997). This field
of research is quite rapidly advancing in view of carrier energy filtering
of electron and phonon transport phenomena.

2 Historical background

2.1 Early research and development of
FGMs and micro-structure modeling

The concept of FGMs was first introduced in Japan in 1984
during a space plane project (Niino et al, 1987; Niino et al,
1988a; Niino et al., 1988b; Hirano et al., 1990). The goal was
to develop materials that could serve as thermal barriers capable
of withstanding extreme temperature gradients. Specifically, the
materials needed to endure surface temperatures of up to 2000 K
and a temperature gradient of 1000 K across a 10 mm section.
This initial application highlighted the potential of FGMs in
aerospace and other high-temperature environments. Early research
on FGMs focused on the inverse optimum design of the phase
composition utilizing classical or empirical micro-structure models
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and the development of processing techniques to create the desired
gradation in the phase composition. Figure 1a depicts the concept
of FGMs with ceramics, metal and micro-pore (Hirano et al., 1991),
Figure 1b depicts the phase distributions of two different materials
(V, and Vy) with micro-pore (V) expressed by power function
Vax) =1 - Vp(x)"-Vp(x), Figure 1c shows Eshelby’s Ellipsoidal
Inclusion model (Eshelby, 1957). Table 1 shows several Rules of
Mixtures based on Micro-structures (Hirano et al., 1990).

Researchers explored various methods including chemical
vapor deposition (Niino et al., 1988a; Sasaki et al., 1989), powder
metallurgy (Niino et al., 1988b; Sata, 1993) and centrifugal casting
(Fukui, 1991) to fabricate FGMs with tailored properties. As
the field progressed, the scope of FGMs applications expanded
beyond aerospace to include biomedical, automotive, and
energy sectors. For example, FGMs have been used in dental
implants (Kondo et al., 2004) and bone prostheses due to their
ability to mimic the natural gradation of properties found in
biological tissues (Bohuder et al., 2014).

2.2 Evolution of evaluation methods with
elasto-plasticity

As mentioned above, the micro-structure modeling and
optimum design of the phase composition in FGMs played a crucial
role in the development of FGMs. Early models were primarily
based on linear analyses, focusing on simple gradation profiles
and basic material properties. However, with advancements in
computational power and numerical methods, more sophisticated
models emerged. In recent years, the integration of advanced
computational techniques, such as Finite Element Method (FEM)
(Kawai et al., 1992; Teraki et al., 1992; Arai et al., 1993) and multi-
scale modeling, has further enhanced the ability to design and
optimize FGMs. These methods enable researchers to predict
the behavior of FGMs to tailor their properties under various
loading conditions including fabrication and specific applications.
The historical development of FGMs reflects a continuous effort
to improve material performance through innovative design
and modeling techniques. The advancements in micro-structure
modeling have been instrumental in realizing the full potential of
FGMs across a wide range of applications.

2.3 Energy conversion FGMs (EC-FGMs)

Subsequently in Japan, fundamental research on Functionally
Gradient (Graded) Energy Conversion Materials (EC-FGMs) was
advanced as a national project to dramatically improve the
conversion efficiency of energy conversion materials (Hirano et al.,
1994). Thermoelectric (TE) conversion materials and photovoltaic
conversion materials, among other energy conversion materials, are
inorganic semiconductor materials. To improve their properties,
precise prediction of electronic properties and control of the
micro-structure of the materials are necessary. The micro-structure
refers to all crystal defects (lattice defects), including grain
boundaries, pores, precipitates, dislocations, and stacking faults.
Figure 2 is a conceptual diagram of the structure and organization
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FIGURE 1
(a) Concept of FGMs. (b) Phase compositions of different materials (Hirano et al., 1990, 1991) (c) Eshelby’s Ellipsoidal Inclusion model (Eshelby, 1957).

TABLE 1 Rules of Mixtures based upon Micro-structures (Hirano et al., 1990).
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black: Filler)
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FIGURE 2
Physical structures of different scales in FGM devices (Hirano, 1995).

Qe

FIGURE 3
Analysis model of thermoelectric FGM module (Hirano, 1995).

of ceramics introduced by Yasui, (1982) and applied to micro-
structures of FGMs (Hirano, 1995). In the figure, the micro-
structures are classified by physical scales. Actual materials consist
of complex combinations of these microscopic structures, and the
physical properties at the crystal lattice level rarely appear directly
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as macro properties. Therefore, in material design, theoretical
considerations must be made at each physical scale of the
microscopic structures of the material, namely, the crystal lattice
level, the micro-structure level, and the solid material/device
as a whole.

For example, TE conversion devices operate under large
temperature gradients to generate electricity via the Seebeck effect.
Therefore, in addition to evaluating the power generation efficiency
of TE materials, it is essentially multi-physics to assess and mitigate
thermal stress distributions at the interfaces between electrodes and
TE elements, as well as within composite TE materials.

Also, to evaluate the performance of TE devices, it is essential to
solve multi-physics phenomena that couple thermal and electrical
transport processes. Figure 3 shows the analysis model of TE EC-
FGM module.

And the set of coupled differential equations derived from the
Boltzmann transport equation are shown in Equation 1 (Hirano,
1995), where j denotes the electric current density, g the heat flux, ¢
the electric potential, T the temperature, othe electrical conductivity,
« the Seebeck coefficient, and k the thermal conductivity (lattice k;

+ electronic k,).
j o -Vo
q | Tao -vT

o

k+ Too?

1)
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3 Current technologies and methods

Developing and optimizing FGMs rely heavily on advanced
technologies and methods. This section explores the key techniques
currently employed in the modeling and design of FGMs.

3.1 Finite element method (FEM) and its
applications

FEM allows for the simulation of complex geometries and material
behaviors by discretizing the material into smaller elements. In
the initial phase of FGMs development, inverse design procedures
based on analytical solutions under steady-state conditions were
employed, particularly for infinite plates and axisymmetric cylindrical
geometries, to optimize the graded compositional distribution
(Hiranoetal.,, 1990). However, in order to validate these designs against
experimental evaluations of synthesized FGMs, unsteady thermal
conduction and thermal stress analyses were subsequently performed
using two-dimensional finite element models that incorporate edge
effects (Kawai et al., 1992; Teraki et al., 1992). Also, the thermo-elasto-
plastic behavior of FGMs under thermal loading and the evaluation
of residual stresses after unloading were evaluated (Arai et al,
1993). Since then, FEM has become a widely adopted tool for the
analysis and design of FGMs.

Suresh and Mortensen published a book of comprehensive
review on FGMs (Suresh and Mortensen, 1998), which includes
the fundamentals of processing and thermomechanical response
of graded metals and metal/ceramic composites, covering broad
range of topics including process metallurgy, composite synthesis,
the mechanics and micromechanics of composites, and fracture
mechanics. Moreover, it includes one chapter on FEM describing
fundamentals of FEM for FGMs, thermal stress analysis, boundary
conditions and modeling, stress-strain behavior and fracture
mechanics, and practical applications and validations (Suresh and
Mortensen, 1998). On the other hand, Reddy published a paper on
the development of FEM elements tailored for multilayered plates
with graded compositions (Reddy, 2000), which has significantly
enhanced the accuracy of FGM modeling and evaluation along
with the integration of advanced FEM techniques such as adaptive
meshing and multi-physics simulations.

3.2 Multi-scale modeling with
homogenization

Multi-scale modeling is a powerful approach that integrates
information across different length scales, from the microscale to
the macroscopic level. This method allows for a comprehensive
understanding of how micro-structural features influence the overall
properties of FGMs. While Homogenization Method (Bendsoe
and Kikuchi, 1998) was developed for modeling periodic micro-
structures and widely implemented in commercial FEM solvers
such as Ansys and ABAQUS, a different approach has been
proposed for thermal stress-relaxation type FGMs (Rhee, 2007).
In this approach, the geometric characteristics of the microcells
are explicitly parameterized within each finite element, and the
graded microscale problems are solved using a non-periodic
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homogenization method. Then, the results were incorporated into
the macroscale FEM stiffness matrix (Rhee, 2007).

3.3 Micro-mechanics and fracture analysis

As mentioned above, micro-mechanics analyses focused on
understanding the relationship between the micro-structural
features of FGMs and their macroscopic properties. On the other
hand, a theoretical investigation based on fracture mechanics was
conducted by Erdogan for the first time to evaluate the fracture
strength of FGMs in the presence of initial micro-cracks introduced
during fabrication (Erdogan and Wu, 1997). In this study, a plane
elasticity problem was formulated for FGMs in which the Young’s
modulus varies continuously in the thickness direction. Surface-
perpendicular cracks were introduced to model both edge and
embedded cracks. Under three distinct loading conditions, the stress
intensity factors (SIF) were theoretically derived. Furthermore,
the crack opening displacement (COD) and stress distributions
were analyzed to clarify the influence of FGMs gradation on
fracture behavior (Erdogan and Wu, 1997). This work has provided
a theoretical foundation for the fracture-safe design of FGMs.
Furthermore, a toughness enhancement design utilizing stress-
induced phase transformation based on micro-mechanical analysis
was also proposed for metal-ceramic FGMs (Tukamoto, 2017).

The effect of material property variation on ductility and
fracture strain in FGMs was investigated using FEM and the
Gurson-Tvergaard-Needleman (GTN) model (Shahzamanian et al.,
2020), which is strain-controlled for void nucleating. The
material properties of FGMs in the tensile tests are represented
by a power low distribution in the thickness direction. The
ductility and fracture strain changes with gradation index. The
development of stress triaxiality slows down in FGMs, and the
total void volume fraction is reduced (Shahzamanian et al.,
2020).
distributions in conventional thermal barrier coating and FGMs
(Shahzamanian et al., 2020).

To support the design and lifetime prediction of thermal

Figure4 shows the comparison of thermal stress

barrier coatings (TBCs) using FGMs in gas turbine blades
and high-temperature structural components, thermal fracture
behavior analyses focusing on structures with pre-existing edge
cracks and multiple internal cracks arranged to imitate a curved
interface have been reported recently (Petrova and Schmauder,
2021). Another new method to evaluate fracture mechanism of
FGM was also introduced recently, which is based on extended
FEM (XFEM) developed by Belytschko (Moes et al., 1999). It
is reported that XFEM can analyze crack propagation without
remeshing, and capture crack paths influenced by property
gradation, ensuring high accuracy in Stress Intensity Factor
(Sinha and Pamnani, 2025).

Another application of FGMs was recently reported, in which
polymeric laminated composite materials including polymer FGMs
are investigated numerically by FEM for improving the tribological
behavior and experimentally verified (Nowler et al, 2025). By
designing a gradual variation in material properties across the
laminate thickness, the authors demonstrate reduced wear rates,
lower friction coefficients, and improved stress distribution. The
study includes FEM modeling and tribological testing, showing that
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Comparison between a conventional and FGM thermal barrier (Shahzamanian et al., 2020). (a) Conventional thermal barrier coating, (b) Thermal stress
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(a) Phase separation structure of polymer alloy (Hiraide et al.,, 2021) (b) Conceptual diagram of the network (Hiraide et al,, 2021).

FGM-based laminates outperform conventional ones under sliding
contact conditions (Nowler et al., 2025).

3.4 Transport properties in energy
conversion materials

As explained in historical background, fundamental research

on the Energy Conversion FGMs (EC-FGMs) was started to
improve the conversion efficiency of energy conversion materials
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(Hirano et al., 1994; Hirano, 1995). In this situation, precise
estimation of thermal and electronic transport properties and
tailoring of micro-structures were required. For the estimation
of the transport properties, different scales of physical structures,
ranging from lattice level crystal structure, grain level micro-
structure and macro scale device structure are considered. Several
estimation methods of the material properties for the design of
EC-FGMs were considered. As one of the energy conversion
materials, thermoelectric (TE) materials were investigated, and
models were presented for the transport properties of heavily doped
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FIGURE 6
Application of deep learning for identification of micro-structures (Noguchi et al., 2022).

TE semiconductors (Hirano et al., 1994; Hirano, 1995; Hicks and
Dresselhaus, 1993; Whitlow and Hirano, 1995; Nishio and Hirano,
1997; Chen et al.,, 2003). The dimensionless figure-of-merit (ZT)
plays a decisive role of TE materials as the critical measure of the
energy conversion performance. Equation (2) defines ZT by several
material parameters, where &, 0, k;, k,, and T are the Seebeck
coefficient, electrical conductivity, lattice thermal conductivity,

electronic thermal conductivity, and absolute temperature,
respectively.
2
7T=_%9 @)
Ky + K,

To increase ZT the use of quantum well was proposed
to increase the product a’c by Hicks and Dresselhaus (Hicks
and Dresselhaus, 1993), which introduces quantum confinement
effects that modify the electronic density of state leading to an
increase in the Seebeck coefficient and a reduction in thermal
conductivity.

Thereafter, the carrier energy filtering concept applied to Super
Lattice structure was firstly proposed in the EC-FGMs project
(Whitlow and Hirano, 1995). The concept was improved more
precisely to include ionized impurity (electron and hole) carrier
energy filtering and phonon (acoustic and optical) scattering into the
theoretical approach for the optimization of the parameters a’c, k;
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andk, influencing the charge-carrier energy spectrum and phonon
scattering, through structural changes or the material and the
scattering interactions (Nishio and Hirano, 1997). The theoretical
calculation results were shown that phonon scattering effects are
quite dominant rather than ionized impurity scattering (Nishio and
Hirano, 1997).

Chen and Dresselhaus reported a comprehensive review on the
advances in the field of TE materials (Chen et al., 2003). They focused
on two major areas as shown below and proposed so-called Phonon
Engineering, which aims to decrease the lattice thermal conductivityk;
by means of phonon scattering in addition to reduce the electronic
thermal conductivityik, due to electron scattering (Chen et al., 2003).

3.4.1 Nanostructured materials
1) Nano-structured Materials: Control of electron and phonon
transport properties through the use of nano-structures
such as quantum wells, superlattices, quantum wires, and
quantum dots.
2) of
engineering the electronic band structure and density of

Enhancement energy  conversion efficiency by
states.
3) Reduction of thermal conductivity by promoting phonon

scattering and interfacial reflection.
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Candidate new structures discovered by MT-GPT2 model with zero e-above hull (Fu et al., 2023).
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3.4.2 Bulk materials

1) Realization of the “phonon-glass electron-crystal” (PGEC)
behavior through the synthesis of new materials with complex
crystal structures.

2) Development of materials with high thermoelectric

performance with ZT approaching 1.5 at high temperatures,

and active research aiming for ZT > 1 near room temperature.

4 Recent research trends

The field of FGMs has seen significant advancements in recent
years, driven by the integration of new technologies and innovative
approaches. Also, general micro-structure modeling and design
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technologies have been widely studied and several new concepts
have emerged. This section highlights some of the key trends in
general micro-structure modeling and design technologies.

4.1 Applications of deep learning (DL) and
artificial intelligence (Al)

AT and Deep Learning (DL) have become powerful tools for
the modeling of micro-structures. For example, a novel design
framework was constructed by integrating two types of neural
networks. Deep Convolutional-Generative Adversarial Network
(DC-GAN), which generates candidate micro-structures that satisfy
geometric constraints, and Convolutional Neural Network (CNN),
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which serves as a surrogate model to learn the relationship between
microstructural geometry and its corresponding physical properties
(e.g., compliance tensor) (Tan et al, 2020). By combining these
networks into a unified “design network;” inverse design becomes
feasible, enabling the efficient generation of micro-structures
that exhibit desired material properties (Tan et al., 2020). Also,
application of DL to inverse design of phase separation structure
in polymer alloy was reported (Hiraide et al., 2021), in which
the micro-structures are dependent on the volume fraction of
polymer A and the product of the repulsive interaction and chain
length as shown in Figure 5a). In this study, forward process to
estimate Young’s modulus from micro-structure image utilized
CNN, and inverse design process was done by GAN as shown in
Figure 5b) (Hiraide et al., 2021).

Another machine learning framework was proposed that
emulates the thinking process of metallurgists, with the aim
of identifying microstructural features that critically influence
material properties (Noguchi et al, 2022). Usual machine
learning approaches often lack interpretability due to insufficient
understanding of the underlying physical mechanisms and causal
relationships. In this work, by mimicking the intuitive design
process of human experts, the Vector Quantized Variational Auto-
Encoder (VQ-VAE) seeks to automatically extract key structural
features without relying on explicit physical models, and Pixel CNN
enables highly accurate structure generation and reconstruction
as shown in (Figure 6) (Noguchi et al, 2022). The target
material system is artificially designed dual-phase steel, and the
optimization focuses on fracture-related properties (Noguchi et al.,
2022). The same authors also presented on Baysian inverse
inference of material properties from micro-structure images
(Noguchi and Inoue, 2024).

A novel framework for predictive micro-structure image
generation was presented (Azqadan et al, 2023) utilizing
Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al.,
2020). By leveraging the iterative denoising process inherent to
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DDPMs, the proposed method enables the synthesis of high-
fidelity micro-structure images conditioned on material-specific
parameters such as composition, processing history, and target
properties (Azqadan et al., 2023). The generated images exhibit
statistically consistent features with experimentally observed micro-
structures, including grain morphology and phase distribution.
This approach offers a promising solution to the inverse design
problem in materials science, facilitating the generation of
plausible micro-structures from desired macroscopic properties
(Azqadan et al, 2023). Figure7 shows the whole processes of
proposed system with DDPM.

More comprehensive survey for AI-driven approaches for multi-
scale modeling was reported recently (Peng et al., 2025), which
includes parameterized micro-structures and FEM homogenization
with meshes based on diffuse interface representation and DL
based surrogate model training. With the trained surrogate
models, micro-structure optimization or inverse design of micro-
structure can be efficiently executed (Peng et al., 2025). It also
introduced MCRpy (Seibert et al., 2022), an open-source Python
framework designed for the characterization and reconstruction
of micro-structures in materials science displayed in Figure 8.
Micro-structures, such as grain boundaries, pores and phases,
play a critical role in determining the macroscopic properties of
materials. MCRpy provides a modular and extensible platform for
analyzing micro-structural features using statistical descriptors and
for reconstructing synthetic micro-structures that match desired
characteristics. The framework supports integration with machine
learning models and optimization algorithms, enabling data-driven
materials design and analysis (Seibert et al., 2022).

4.2 Utilization of transformer models
The Transformer is a deep learning architecture introduced

by Vaswani etal, in 2017 (Vaswani et al, 2017), which has
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Application of Al in monitoring AM DLD process (Wasmer et al., 2023) (open access).

since become foundational in a wide range of machine learning
applications, particularly in natural language processing (LLM),
computer vision (ViT), and scientific domains such as Materials
Informatics (most famous example is AlphaFold (Jumper et al,
2021)). The Transformer architecture is composed of two
primary modules: the encoder and the decoder. The encoder
processes the input sequence and generates a contextualized
representation, while the decoder utilizes this representation
to generate the output sequence. A key innovation of the
which
the model to dynamically weigh the importance of different

Transformer is the self-attention mechanism, allows
elements in the input sequence. This mechanism is further
enhanced by multi-head attention, which enables the model to
attend to information from multiple representation subspaces
simultaneously. To compensate for the lack of inherent
sequential structure, positional encoding is added to the input
embeddings, allowing the model to incorporate order information
(Vaswani et al., 2017).

Frontiers in Materials

11

An innovative approach to the design of architected materials
directly from natural language descriptions was proposed (Yang
and Buehler, 2021). The authors employed a transformer-based
neural network architecture, combining CLIP and VQGAN, to
generate material structure images from textual prompts (e.g.,
“a regular lattice structure of steel”), which were subsequently
used to construct 3D models and to fabricate them via 3D
printing realizing a “Words to Matter” pipeline (Yang and Buehler,
2021). This approach introduced a novel design paradigm that
differs fundamentally from conventional Computer Aided Design
(CAD) or numerical design methods by enabling intuitive
linguistic expressions to be directly translated into material
architectures (Yang and Buehler, 2021).

A hybrid algorithm with Transformer and CNN encoders,
called as CS-Net, for micro-structure image segmentation in
materials science was proposed (Alrfou et al., 2023), which also
utilized Transfer Learning for models pre-trained specifically
on microscopic images achieved higher segmentation accuracy
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Numerical model for Two-dimensional (half) beam of AM FGMs (Silva et al., 2024).

as compared to those trained on natural image datasets
(Alrfou et al, 2023). Figure9 shows the Encoder-Decoder
architecture and the test data.

The first large-scale benchmark on generative design of inorganic
materials using transformer-based language models was presented
(Fu et al., 2023), including GPT, BART, and RoBERTa Language
models, that have demonstrated success in natural language processing
and molecular design, are applied to the generation of inorganic
material compositions, and their performance is evaluated in terms of
chemical validity, novelty, and property control. The authors trained
and compared seven transformer models using composition data
extracted from large-scale materials databases such as ICSD, OQMD,
and the Materials Project (Fu et al, 2023). Figure 10 shows the
candidate new structures discovered by MT-GPT2 model with zero
e-above hull (Fu et al., 2023).

A Transformer-based language model developed for the
prediction of polymer properties was proposed recently (Xu et al.,
2023). Traditional approaches to evaluating polymer characteristics
often rely on costly and time-consuming experiments or
simulations. This study introduces a novel methodology that
leverages the Transformer architecture to directly predict
polymer properties from their sequences. The model employs a
chemically-informed tokenizer to represent polymer structures
and is pretrained using masked language modeling (MLM) on
a large corpus of unlabeled polymer sequences. TransPolymer
demonstrates superior performance across multiple downstream
property prediction tasks. Figure 11 shows the key architecture of
TransPolymer (Xu et al., 2023).

4.3 New material design and
manufacturing methodologies

4.3.1 Additive manufacturing (AM)

Innovative material design and manufacturing methodologies
are being developed to enhance the performance and functionality

Frontiers in Materials

of FGMs. Additive manufacturing (AM), also known as 3D
printing, has emerged as a transformative technology in this field
(Haghdadi et al., 2021; Alagha et al., 2021; Sanjeeviprakash et al.,
2023). Especially, after the invention of advanced manufacturing
techniques including Selective Laser Melting (SLM), Binder Jetting
(B]) and Direct Energy Deposition (DED) have been established,
AM can allow for the precise control of material composition
and structure enabling the fabrication of Shape Memory Alloy
(SMA) parts with complex geometries and tailored properties
(Alagha et al., 2021). Figure 12 depicts the whole AM process for
SMA parts (Alagha et al., 2021).

Because AM processes for FGMs using Direct Laser Deposition
(DLD) are quite complicated, the quality monitoring is required
for commercialisation. Novel monitoring method for chemical
composition and process regimes for FGMs was proposed using
Acoustic Emission Mic and Optical Emission Spectroscopy (OES)
sensors. Figure 13 shows the application of AI in monitoring
AM DLD processes (Wasmer et al., 2023). The standard machine
equipments are in grey, the sensors and acgisition PC are in
green, and blue arrows reprisent the digital cables used for data
transport (Wasmer et al., 2023).

A case study was reported on the multi-disciplinary approach
integrating design, manufacture and evaluation of Metal-based
FGM:s using multi-feed Wire-Arc Additive Manufacturing (WAAM)
to create FGM parts with tailored properties (Silva et al., 2024). This
method allows for the layer-wise deposition of different materials
(Al-Cu), resulting in a smooth gradation of properties. The use
of topology optimization (TO) and image-based characterization
further enhances the design and performance of these FGM parts
(Silva et al.,, 2024). In Figure 14, the distributed loads Q generate
torque, and beam is subject to pure bending (Silva et al., 2024).

Another comprehensive review on the recent advancements
and challenges in AM FGMs was reported, in which conceptual
approaches for AM FGMs design, various manufacturing
techniques and the materials employed in their fabrication using AM
technologies are explained (Alkunte et al., 2024a). Moreover, many
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horizontal view (Zhang et al., 2023). (open access).

views. (D) Schematic diagram of the position of porous scaffolds within the implant. (E) Biomimetic graded pentamode-based scaffolds. (F)
Geometrical features of the graded density from longitudinal view and the tapering strut topology compared with the uniform struts in

different applications covering structural engineering, automotive,
biomedical engineering, soft robotics, electronics, 4D printing and
metamaterials are described (Alkunte et al., 2024a).

4.3.2 Metamaterials (MMs)

The concept of Metamaterials was firstly proposed in 1967 by
Russian physicist Victor Veselago through a theoretical study. He
described materials possessing properties not found in nature,
enabled by artificially engineered structures (Veselago, 1967).
Although this theory remained unverified experimentally for
several decades, it was not until 2000 that David R. Smith

Frontiers in Materials

and his colleagues successfully demonstrated a Metamaterial
exhibiting a negative refractive index in the microwave regime.
Then, Smith and his colleagues patented the concept as
Metamaterials (Smith et al., 2009).

An overview of Metamaterials (MMs) designed for the control
of elastic waves and vibrations was presented (Dai et al., 2022).
Emphasis was placed on acoustic MMs, including both passive
and active types, and their respective mechanisms for wave
manipulation. Passive MMs, such as phononic crystals and
locally resonant structures, were shown to exhibit band gap
formation and wave attenuation capabilities, while active MMs
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Different grading patterns in functionally graded lattices (FGLs) (Noronha et al., 2023).

enable dynamic tuning of wave propagation characteristics through
external stimuli (Dai et al., 2022). This paper highlighted advanced
design methodologies such as topology optimization, bio-inspired
architectures, and fractal geometries, which contribute to enhanced
wave control performance (Dai et al, 2022). AM techniques
are discussed as key enablers for fabricating complex multi-
material and multi-scale structures. Applications span across
aerospace, automotive, civil engineering, and biomedical domains,
where vibration isolation, noise reduction, and wave steering
are critical (Dai et al., 2022).

A study was reported on the design and fabrication of
biomimetic MMs using 3D printing technologies (same with
AM), focusing on structures with graded porosity and tapered
topology (Zhang et al, 2023). Inspired by natural materials
such as bone and plant stems, the proposed MMs exhibit
enhanced mechanical performance through spatial variation in
porosity and geometry (Zhang et al., 2023). The integration of
bioinspired design principles with AM enables the creation of
lightweight, mechanically robust structures suitable for applications
in biomedical implants, aerospace components, and soft robotics
(Zhang et al., 2023). Figure 15 shows several different morphologies
with graded porosity and geometry.

Similarly, Functionally Graded Lattices (FGLs) produced by AM
were investigated in view of the design, fabrication, and performance
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(Noronha et al., 2023). FGLs are engineered structures with spatially
varying properties—such as density, stiffness, and geometry—to
achieve tailored mechanical responses as shown in Figure 16. The
study explores various design strategies, evaluates mechanical
behavior under different loading conditions, and discusses
deformation mechanisms (Noronha et al., 2023). It also highlights
the broad application potential of FGLs in fields such as biomedical
engineering, aerospace, and energy absorption systems. The insights
provided will guide future development of high-performance,
multifunctional lattice materials (Noronha et al., 2023).

Recently, comprehensive overview on Functionally
Graded Metamaterials (FGMMs) including acoustic MMs
and FGLs was presented in relation to AM. It covers the
relevant technologies applied in the fabrication and design
processes, and the theoretical models are mentioned for FGMMs,
in addition to related simulation methods utilizing several
commercial solvers (Alkunte et al., 2024b).

a

4.3.3 Lattice and micro-structures improving
energy conversion efficiency

In the previous section, FGMMs including FGLs are explained,
which are basically designed and optimized to address structural
challenges such as weight reduction, relaxation of high thermal
stresses and mechanical reinforcement. In this section, however,
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we shift our focus to efforts aimed at enhancing TE performance,
specifically in relation to crystal-level Lattice structures and micro-
structures in TE materials. Therefore, in this section atomic-
scale nano-structures are investigated in view of inorganic crystal
structures or molecules for the determination of intrinsic physical
properties of materials.

In relation to crystal lattices and micro-structures for TE
materials, the material properties that affect the performance of TE
materials were expressed as a hierarchical structure. Figure 17 shows
detailed material and transport descriptors (Urban et al., 2019).
For example, as expressed in Equation 2, thermal conductivity
is comprised with lattice thermal conductivity k; and electronic
thermal conductivity k,. And the lattice thermal conductivity is
dependent on phonon group velocity, mean free path and specific
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heat, and so on. Finaly, k; is determined by Elastic constant, Defects,
Grain boundary and Anharmonicity.

For example, Grain boundary effect on k; was theoretically
investigated early on the TE properties of granular semiconductors
(Narducci et al., 2012). Energy filtering is a mechanism that
enhances the Seebeck coeflicient by selectively scattering low-
energy carriers while allowing high-energy carriers to pass through.
However, potential barriers formed at grain boundaries or within
nanostructures can induce carrier localization, which may reduce
carrier density and consequently lower electrical conductivity.
The authors demonstrate that randomly distributed barriers can
simultaneously induce both energy filtering and localization.
By incorporating quantum tunneling effects into the theoretical
model, they showed that an increase in doping concentration
can lead to an enhancement in the power factor. Figure 18
shows Energy Filtering on Grain Boundaries in polycrystalline
materials (Narducci et al., 2012).

Then, in recent years, this research field has become more
actively studied. Other examples for the enhancement of TE
properties by application of point defects were presented (Pan et al.,
2015; Fu et al., 2017). Also, quite impressive research was reported
on the enhancement of power factor by energy filtering effect
in hierarchical BiSbTe;, in which the chemical solution synthesis
of nanoparticles was proved as useful manufacturing method for
the TE materials because the small particle size causes scattering
of phonon along the crystal boundaries, effectively allowing the
thermal conductivity to be reduced while maintaining the electrical
conductivity as shown in Figure 19 (Sabarinathan et al., 2016).

A comprehensive review incorporating new perspectives in
this field was reported (Urban et al., 2019). Figure 20 shows the
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Electron transport between a pristine material and a superlattice structures (Neophytou et al., 2020).
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progress of maximum figure of merit (ZT) in bulk inorganic
systems up to 2019 displayed in this report. While there
have been selective reports of individual materials realizing
new record levels of performance (as high as ZT~2.6) in
lab scale SnSe and Cu,Se, no general approach has emerged
from these studies. It also explores the potential for enhancing
TE performance through novel physical and materials-based
approaches in addition to conventional band transport model
of TE materials. The authors emphasized the following three
areas: 1) wave effects in phonon transport, 2) correlated electron
physics, and 3) un-conventional transport in organic materials
(Urban et al., 2019).
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Previous Figure 17 was also cited from the same report,
in which Lorenz number L is expressed as the key factor
corelating between electronic thermal conductivity k, and electrical
conductivity ¢ (Urban et al., 2019). When electrons behave as a
collective hydrodynamic fluid, charge transport occurs efficiently
while thermal energy is dissipated. Such physical behavior enables
the decoupling of charge and heat transport, offering a novel
mechanism for tuning the Lorenz number (Urban et al., 2019).
Furthermore, coherent phonon interference—an emergent wave-
based description of phonon transport—has the potential to reduce
the lattice thermal conductivity below the lower bound predicted
by the classical particle model, without decreasing electronic
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Synergistically optimizing phonon and electron transport for record-high ZT values (Zhou et al., 2025).

conductivity. This phenomenon may contribute to the enhancement
of the TE figure of merit, ZT (Urban et al., 2019).

The same concept was reported later, in which two types of
nano- and micro-structures are explained. Figure 21 illustrates the
differences in electron transport between a pristine material and a
superlattice structure, highlighting the impact of band structure and
energy filtering on carrier dynamics (Neophytou et al., 2020).

Another experimental verification of enhancing TE efficiency by
new method was reported, in which synthetic minerals based on
Cu,,Sb,S,; (tetrahedrite), a TE material known for its low thermal
conductivity and moderate electrical performance (Hu et al,
2021). The authors introduce a novel sublimation-based method to
create a porous network within the material, aiming to enhance
its TE efficiency. The porous structure is expected to scatter
phonons more effectively, reducing thermal conductivity while
maintaining or improving electrical conductivity (Hu et al., 2021).
Figure 22 illustrates the generation of a porous network during Bil;
sublimation, and representative SEM images of the fracture surfaces
ofinitial and AP 0.7 vol% samples, which show a 3D porous network
structure (Hu et al., 2021).
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Quite recent study was posted, in which classical BiSbTe alloy
was processed to optimize phonon and electron transport by
new super-gravity-field re-melting method (SGF-RM) (Zhou et al.,
2025). Using SGE, the brittle (Bi,Sb),Te; alloy undergoes unusual
plastic deformation and forms mounts of defects in the micro-
structure. As a result, the micro-structure reconstruction and the
optimization of carrier concentration were realized simultaneously,
resulting in ultra-low lattice thermal conductivity (k;<0.25W/mK)
and a record-high figure of merit (ZT > 1.91) in the BiSbTe
alloy (Zhou et al., 2025). Figure 23 depicts the synergistically
optimizing phonon and electron transport. (A) Shows SGF-RM
technology, (B) exhibits bubble movement in melts, and (C) reveals
the reconstruction of microstructures after SGF-RM. (D) Explains
the process of Te evaporation causing extra holes. (E) Depicts
k; of samples before and after SGF-RM. The solid black symbols
present the experimental result of Bij,44Sb, 5,Te;; alloy before
SGF-RM (BST) and the red empty triangles present the corrected
experimental values after SGF-RM. The black solid line represents
the predicted k; considering the scattering of the Umklapp process,
normal process, and point defects (U + N + P). The red solid
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line represents the predicted k; value considering the additional
scattering of dislocations (U + N + P + I + DS). (F) Shows
Power factor values as a function of the Hall carrier concentration
predicted by the effective mass m* = 1.05m,, and drift mobility
pw = 420 cm?/V s at 300 K. (G) ZT values of BST and after SGF-
RM (Zhou et al., 2025).

Another recent study discussed comprehensive strategies to
enhance the TE performance of GeTe-based materials through
chemical modulation and defect engineering (Jiang et al., 2025).
By introducing specific dopants and controlling intrinsic Ge
vacancies, the authors achieved a significant improvement in
the figure of merit (ZT), reaching values upto 2.7 at elevated
temperatures. The work highlights the synergistic effects of carrier
concentration optimization, band structure tuning, and phonon
scattering enhancement. Especially, Several phonon scattering
mechanisms contributing to the reduction of lattice thermal
conductivity k; are compared, including point defect (0D),
dislocation (1D), grain boundary (2D) and precipitate (3D)
(Jiang et al., 2025). Figure 24 shows the schematic views of those
different phonon scattering sources in GeTe.

A quite new physical paradigm for TE materials
recently proposed based the
Bardeen—-Cooper-Schrieffer (BCS) theory and phonon drag effect
(Liu and Cheng, 2025). According to the definition of the TE

quality factor, high ZT values originate from material systems

was on superconducting

with high conductivity, large Seebeck coeflicient, and low thermal
conductivity. In the past few decades, traditional methods for
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optimizing TE performance have relied on electron-phonon
transport separation, electronic band engineering, and phonon
scattering mechanism modulation. However, even at various
optimization levels, only moderate ZT values can be obtained.
Therefore, another physical paradigm of synergistic electro/phonon
transport based on the mechanism of electron-phonon interaction
was proposed (Liu and Cheng, 2025). This approach is quite
promising for improving ZT up to three or more.

Finally, several applications of AI and DL for modeling and
predicting crystal structures are introduced. A study was reported,
in which crystal structures were represented as graphs, where atoms
are treated as nodes and interatomic bonds as edges (Xie and
Grossman, 2018). Unlike traditional machine learning methods that
rely on handcrafted features and are often limited to specific crystal
types, Crystal Graph Convolutional Neural Networks (CGCNN)
automatically learns representations from raw crystal structures.
The model demonstrates high accuracy in predicting eight material
properties derived from density functional theory (DFT), including
band gap, formation energy, and elastic moduli. Importantly,
CGCNN also provides
contribution of local chemical environments to the overall property

interpretability by quantifying the

prediction, enabling insights into structure-property relationships
and guiding materials design (Xie and Grossman, 2018).

Another study was reported, in which recent advances in
predicting lattice thermal conductivity (k;) using machine learning
(ML) techniques are reviewed (Luo et al., 2023). Traditional methods
like first-principles calculations and molecular dynamics are accurate
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FIGURE 25
High-throughput prediction of lattice thermal conductivities by ML models (Luo et al., 2023). (a) The XGBoost model-predicted log scaled k, versus the
calculated values for the testing set. The top and right histograms show the corresponding data distributions. (b) Dependence of the predicted k, on
specific elements for compounds in the Inorganic Crystallographic Structure Database (ICSD), and the values are shown by colors along with the
AHiomic @and p. (c) Schematics of the multilayer structures and the MD simulation setup. (d) Comparisons of the real and predicted k; for 100 randomly
generated RMLs and their corresponding 100 GMLs in the testing set (Luo et al., 2023).

but computationally expensive. ML approaches offer a promising
alternative by learning from existing data to predict k; efficiently.
The review categorizes ML models into three types: descriptor-based
models, graph-based models, and hybrid approaches. It also discusses
the importance of data quality, feature engineering, and model
interpretability. The authors highlight challenges such as data scarcity
and generalizability and suggest future directions including active
learning and integration with high-throughput screening. Figure 25
shows high-throughput prediction of lattice thermal conductivities by
ML models (Luo et al., 2023).

5 Conclusion: summary and future
prospects

This study has presented comprehensive review of the modeling
and design of micro-structures in Functionally Graded Materials
(FGMs), emphasizing their evolution from early aerospace
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applications to advanced energy conversion systems. FGMs,
characterized by spatially varying phase compositions and micro-
structures, offer unique advantages in tailoring material properties
to meet specific performance requirements, particularly under
extreme thermal and mechanical conditions. Micro-structural
features such as phase distribution, grain size, shape, and porosity
play a critical role in determining the behavior of FGMs. The
design of FGMs is inherently an inverse problem, requiring precise
control over these features during fabrication. Analytical and
computational tools including Finite Element Method (FEM),
multi-scale modeling, micro-mechanics, and fracture analysis
have become essential for predicting and optimizing material
performance. In energy conversion applications, particularly
thermoelectric materials, FGMs have demonstrated significant
potential in enhancing the figure of merit (ZT) through lattice
and grain boundary engineering. Concepts such as quantum
confinement, energy filtering, and phonon scattering have been
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successfully applied to improve thermal and electrical transport
properties.

Recent advancements in artificial intelligence (AI) and
deep learning (DL) have revolutionized micro-structure design.
Generative models such as GANs, DDPMs, and VQ-VAEs
enable high-fidelity inverse design, while Transformer-based
architectures facilitate natural language-driven material generation.
Tools like MCRpy and CGCNN further support property
prediction and micro-structure reconstruction. Also, several
applications of AI and DL for modeling and prediction of
crystal structures and lattice thermal conductivity are introduced
quite recently.

Additive Manufacturing (AM) technologies, including
Direct Energy Deposition (DED) and Wire-Arc Additive
Manufacturing (WAAM),
complex FGMs with spatially controlled properties. Al-assisted

have enabled the fabrication of

monitoring and quality control are enhancing the reliability of
these processes.

The integration of Al-driven design automation, advanced AM,
and multi-physics optimization will be quite important in modeling
and design of micro-structures for the next-generation FGMs. These
materials are expected to play a transformative role across aerospace,
energy, biomedical, and robotics sectors, offering multifunctional
solutions with superior structural, thermal, and environmental
compatibility.
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