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Q275 carbon steel (0.28-0.38 °C, 0.50-0.80 Mn) is widely used in moderate
high-temperature industrial scenarios, but its oxidation behavior at 500-700 °C
remains insufficiently clarified; this study aims to address this gap, determine the
critical temperature limit for its uncoated application, and provide guidance for
high-temperature material selection and protective strategy development. The
high-temperature oxidation behavior of Q275 carbon steel was systematically
studied via thermogravimetric analysis (for mass change and oxidation kinetics
monitoring) and microstructural characterization (for oxide scale morphology,
element distribution, and porosity observation) within the 500-700 °C range.
The oxidation kinetics of Q275 carbon steel follow a parabolic rate law, with
rate constants strongly dependent on temperature; at 500 °C, a dense FeO
scale forms (with localized carbon retention up to 8.9 at.%) showing good
protective performance, while at 600 °C, Mn segregation at grain boundaries
(3.2 wt.%) leads to lamellar (Mn, Fe)O structures and accelerated oxidation,
and at 700 °C, cation vacancy percolation results in a porous FeO layer (35%
porosity) overlain by Fe,Oz needles, causing rapid mass gain and eventual
spallation, with a calculated oxidation activation energy of 104.2 kJ/mol. This
activation energy confirms cation vacancy diffusion as the rate-limiting step
of oxidation in the 500-700 °C range, and combined with microstructural and
kinetic results, 600 °C is identified as the critical temperature limit for uncoated
Q275 carbon steel—below 600 °C (e.g., 500 °C) the dense FeO scale provides
effective protection, while at and above 600 °C, Mn segregation (600 °C) or
cation vacancy-induced porosity (700 °C) causes accelerated oxidation and
degradation, making uncoated application risky; these findings lay a foundation
for optimizing the steel's service temperature range and developing targeted
protective coatings.

carbon steels, high-temperature oxidation, oxidation kinetics, activation energy, failure
mechanisms

1 Introduction

Carbon structural steel Q275, as a widely utilized material in engineering and
mechanical applications, has garnered significant attention due to its balanced mechanical
properties, cost-effectiveness, and adaptability in manufacturing critical components
such as gears, shafts, and structural parts for bridges and agricultural machinery
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(Yang et al, 2024). Classified under the GB/T700 standard,
Q275 exhibits a carbon content of 0.28%-0.38%, manganese
(0.50%-0.80%), and limited silicon (<0.35%), with stringent control
over impurities like sulfur and phosphorus to ensure weldability and
plasticity (Shafeek et al., 2024).

While it is acknowledged that carbon steels are not typically
designed for continuous service at extremely high temperatures,
practical engineering applications often expose Q275 to transient or
moderate elevated temperatures (e.g., 500 °C-600 °C) in industrial
furnaces, exhaust systems of agricultural machinery, and heat-
exposed structural components in regional power grids (Yang et al.,
2024; Wu et al,, 2024). These scenarios demand precise data on
oxidation behavior to avoid unexpected failure, as even small
variations in composition (e.g., Q275s higher carbon content
vs. Q235) can alter oxidation kinetics and failure thresholds
(Pieraggi et al., 2005). Notably, existing studies on carbon steel
oxidation primarily focus on low-carbon grades (e.g., Q235)
or pure iron (Sun et al, 2024; Park et al, 2025), leaving a
knowledge gap regarding the high-temperature stability of medium-
carbon variants like Q275, whose cementite (Fe;C) content
may significantly influence oxide layer formation and spallation
behavior.

Recent advances in corrosion-resistant alloys highlight strategies
for high-temperature applications, such as optimized pipeline
material selection (Zeng et al., 2025) and SMA-based actuators
(Wang Y. et al., 2024). However, these studies focus on high-alloy
systems or functional materials (Wang Y. et al., 2025), leaving a gap
in understanding low-cost carbon steels like Q275 under thermal
stress. Previous work addresses corrosion behavior in surface-
modified carbon steel, and while not directly focused on oxidation,
it underscores the need for material-specific performance data
in harsh environments (Xu G. et al., 2024). For high-temperature
oxidation, classic studies (Sama and 1, 2016) establish foundational
mechanisms of iron oxidation, but the interplay of carbon and
manganese in Q275—particularly their roles in vacancy diffusion
and oxide phase stability—requires targeted investigation to refine
engineering guidelines.

The oxidation resistance of carbon steels is inherently
limited due to their low alloy content, which restricts the
formation of protective oxide layers (e.g., Cr,O; or AlO;)
under thermal stress (Chen et al., 2022). For Q275, its lean
alloy composition—predominantly reliant on manganese and
silicon—suggests susceptibility to accelerated oxidation at elevated
temperatures, where scale formation and spallation could degrade
mechanical integrity. Preliminary studies on carbon steels highlight
that oxidation kinetics are influenced by microstructural features
such as ferrite-pearlite distribution and grain boundaries, which
may act as diffusion pathways for oxygen (Zhou et al., 2025a).
However, Q275s higher carbon content (compared to Q235) could
alter its oxidation mechanisms, necessitating targeted investigations
into its high-temperature stability.

This
temperature oxidation behavior of Q275 steel, correlating its

study aims to systematically evaluate the high-
pre- and post-oxidation morphological evolution with oxidation-
induced degradation (e.g., scale spallation and mass loss). By
quantifying kinetic parameters, phase transformations, and
elemental segregation effects, this work provides critical data

for establishing safe service thresholds in practical applications
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TABLE 1 Chemical composition of Q275 steel (wt./%).

0.30-0.35 0.65-0.70 0.26 0.017 0.015 0.02 Bal.

where Q275 is exposed to 500 °C-700 °C, addressing a specific
gap in material performance data for this widely used steel
grade.

2 Materials and methods

Commercially supplied Q275 steel (GB/T700 standard) was
cut into 10 mm x 10mm X 2mm specimens. The complete
chemical composition determined by optical emission spectroscopy
is shown in Table 1. All other elements were below the detection
limit of the instrument (<0.001 wt.%), confirming no additional
minor alloying elements. All surfaces were ground to 2000-grit SiC
paper and polished to a mirror finish using 1 um diamond paste,
followed by ultrasonic cleaning in ethanol and drying.

Isothermal oxidation kinetics were studied wusing a
thermogravimetric analyzer (TGA, THEM YS-WETSYS EVO)
in synthetic air (flow rate: 100 mL/min) at 500, 600, and 700 °C
for up to 24h. Mass gain (Am) was continuously recorded.
Parallel isothermal exposures were conducted in a muffle furnace
under static air at identical temperatures and durations for
microstructural analysis.

Oxide scale characterization: Post-oxidation specimens were
examined by optical microscopy (OM) and scanning electron
microscopy (SEM, MIRA3 TESCAN) with energy-dispersive X-ray
spectroscopy (EDS) to analyze surface morphology, cross-sectional
scale thickness, spallation behavior, and elemental distribution.
Cross-sections were prepared by cold mounting and epoxy
infiltration to preserve scale integrity, followed by standard
metallographic polishing. Oxide layer thickness was measured on
cross-sectional SEM micrographs using Image-Pro Plus software;
for each specimen, 10 random measurements were taken across the
oxidized surface, and the mean * standard deviation was calculated
to ensure statistical reliability. EDS line scans (step size: 0.5 um)
were performed across cross-sections to characterize elemental
depth profiles.

Baseline microstructural characterization: Control specimens
were heat-treated under argon atmosphere (99.999% purity) at
identical temperatures/durations. As-received Q275 exhibits a
ferrite-pearlite microstructure with ~25 vol.% pearlite (lamellar
ferrite and Fe;C). After argon heat treatment at 500 °C, pearlite
remained stable with no significant coarsening. At 600 °C,
partial pearlite decomposition occurred, with pearlite volume
fraction decreasing to ~18 vol.% due to Fe;C coarsening. At
700 °C, complete pearlite decomposition was observed, resulting
in a ferrite matrix with discrete Fe;C particles (~5 vol.%).
These specimens exhibited no oxide formation, confirming that
microstructural changes in oxidized specimens are primarily
due to oxidation rather than phase transformations alone
(Zhou et al., 2025b).
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Surface and cross-sectional analysis of the sample oxidized at 500 °C: (a) SEM image showing large granular C-containing phases and two distinct
oxide morphologies; (b) elemental mapping demonstrating uniform Fe and O distribution at an approximate 1:1 ratio; (c) cross-sectional SEM image
showing a dense, uniform oxide layer; (d) EDS line scan across the oxide-substrate interface, confirming sharp Fe and O distribution; (e) Element

distribution along line 1 in panel (d).

3 Results
3.1 Relative density and phase composition

At 500 °C, the stable phases include ferrite (a-Fe) and cementite
(Fe;C), with carbon solubility in a-Fe limited to 0.02 wt.%,
explaining observed Fe;C persistence at oxide particle cores
(Yu et al., 2024). Thermodynamic equilibrium calculations using
FactSage 8.0 (FSstel database) confirm that Fe,C is stable at
500 °C, accounting for ~3.5 vol.% of the microstructure due to
the low solubility of carbon in a-Fe, supporting the observed carbon
retention. Fundamental studies indicate that defect density governs
early oxide nucleation (Xu C. et al, 2024), consistent with our
observations at 500 °C. The oxidation behavior of Q275 carbon steel
exhibits significant gradient evolution across the 500 °C-700 °C
temperature range, fundamentally governed by the synergistic
interplay of defect density, elemental diffusion kinetics, and phase
transformation driving forces within the oxide layer (Wang L. et al.,
2025). After 24h of oxidation at 500 °C, the granular oxide
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layer (Figure 1A) demonstrates characteristic protective features:
uniformly distributed 1-5 pm particles form a continuous barrier,
with a stable Fe/O atomic ratio of 1:1.07 (area-scan data), confirming
non-stoichiometric FeO (wiistite, Fe, ,O). Cross-sectional analysis
(Figures 1C,D) reveals a uniform, dense oxide layer (~2.1 + 0.3 pm
thick) with no significant porosity; EDS line scans show a sharp
Fe/O interface, confirming the absence of internal oxidation. This
dense structure confines mass gain strictly to parabolic kinetics
(Am? = 32 x 10721), corresponding to a thickness growth
rate of merely 0.19 um/h. However, carbon enrichment at the
core of localized large particles (point-scan C content: 8.9 at%)
(Fe;C)
exhibits oxidation kinetics lagging behind the iron matrix due to

reveals inherent oxidation heterogeneity—cementite
higher Fe-C bond dissociation energy (65 kJ/mol) versus Fe-Fe
bonds (41 kJ/mol), creating carbon-retention microzones (Krauss,
2015). These microzones appear as discrete C-Ka hotspots in
EDS mapping, hindering oxygen ion diffusion and reducing
oxide growth rates at particle cores by 40% compared to

edges.
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Surface and cross-sectional analysis of the sample oxidized at 600 °C: (a) SEM image showing predominantly lamellar FeO and two distinct oxide
morphologies; (b) corresponding elemental mapping/point analysis results; (c) cross-sectional SEM image revealing lamellar structure with vertical
microcracks; (d) EDS line scan highlighting Mn enrichment at grain boundaries; (e) Element distribution along line 1 in panel (d).

When temperature rises to 600 °C, the oxide layer undergoes
structural differentiation (Figure 2a): 70% of the area transforms
into lamellar FeO (plate thickness: 0.22 + 0.08 um), while the
remaining 30% consists of grain-boundary-enriched nodules. This
transition stems from temperature-driven Mn segregation—nodule
regions show elevated Mn content of 3.2 wt.% (matrix: 1.1 wt.%).
Thermodynamic calculations indicate a negative Gibbs free
energy of —8.2kJ/mol for Mn migration to grain boundaries at
600 °C, driving segregation (Sun et al., 2023; Wang Z. et al., 2024).
The larger ionic radius of Mn2+ (0.83 A) versus Fe** (0.78 A)
induces lattice distortion and promotes Mn migration along low-
energy grain boundaries, forming (Mn, Fe)O solid solutions.
The lamellar structure dramatically increases grain boundary
density, providing short-circuit paths for oxygen diffusion (Parras
and De Souza, 2020). Cross-sectional micrographs (Figures 2c—e)
display a lamellar oxide layer (12.3 + 1.8 um thick) with vertical
microcracks (width: 0.42 + 0.15 um) extending ~3 um into the
oxide, aligned with grain boundaries enriched in Mn (EDS line
scan: Mn intensity peaks at crack tips). Consequently, mass gain
kinetics display two-stage behavior: initial linear growth (ky;, = 1.7 x
1077 gcm s}, 0-4 h) reflecting interface reaction control (oxygen
adsorption-dissociation), followed by a parabolic regime (K, = 1.8
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x 10711 ¢ cm™.s7!, 4-24 h) corresponding to rapid cation vacancy
migration along lamellar boundaries. Internal vertical microcracks
originate from thermal expansion mismatch between (Mn, Fe)O
and the matrix (Aa = 2.1 x 10 K™!). Cooling stresses reaching
180 MPa initiate intergranular cracking.

Catastrophic structural collapse occurs in the oxide layer at
700 °C (Figures 3a,b). Acicular Fe203 crystals (length: 12.5 +
4.2 um) cover the surface, with point-scan Fe:O atomic ratios
(39.8:60.2) confirming hematite phase formation. Cross-sectional
analysis (Figures 3c—-e) reveals a bilayer architecture: a porous FeO
inner layer (thickness: 28.7 + 3.2 um, porosity: 35% + 5% measured
by image analysis) and a dense Fe203 outer layer (thickness: 4.2 +
1.1 um). EDS depth profiling shows Fe enrichment in the inner layer
and O enrichment in the outer layer, validating the bilayer structure.
This stratification arises when divalent iron vacancy concentration
([Vger]) (Kroger-Vink notation) reaches 0.022 per formula unit at
700 °C, calculated using Wagner’s defect theory:

(KP ) MFeOz)
4. Preo, 't

D=

where D = diffusion coeflicient, My, = molar mass of FeO,
Preo = density, t = time, and the Nernst-Einstein relation (Rapp,
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Analysis of the sample oxidized at 700 °C: (a)SEM image showing a thick, porous oxide film with needle-shaped Fe,O; growing on FeO; (b)
representative point analysis results; (c) cross-sectional SEM image confirming bilayer structure (porous FeO inner layer and Fe,O outer layer); (d) EDS
depth profile showing Fe and O distribution across the oxide layer; (e) Element distribution along line 1 in panel (d)

1984). Substituting Kp = 1.4 x 1071% g* .cm™.s™! yields D = 2.3
x 107" cm?/s, and subsequent calculation gives [Vg.] = 0.022.
The porous layer establishes rapid diffusion channels, accelerating
Fe?* outward flux by 100-fold and causing a sharp inflection
in mass gain kinetics after 8h (Kp increases from 5.1 x 107!
to 1.4 x 107 gZ.cm™*.s?). Simultaneously, high oxygen partial
pressure at the gas/solid interface (P(O,) = 0.21 atm) drives
phase transformation: 4FeO + O, > 2Fe,O;. The preferential
acicular growth originates from crystallographic anisotropy in
a-Fe,0;—surface energy along [001] (0.89 J/m?) is significantly
lower than along [100] (1.82 J/m?), resulting in axial growth rates
(0.35 um/h) 15 times faster than radial growth. Thermal expansion
mismatch at the FeO/Fe,0; interface (apo = 12.5 x 107° K™,
Operns = 8.7 X 1078 K1) generates tensile stresses exceeding 350 MPa
during cooling, surpassing the tensile strength of FeO (280 MPa)
and causing extensive spallation (32% area loss at 24 h).
Competitive oxidation behaviors of carbon and manganese
constitute intrinsic failure triggers. Carbon retention as Fe;C at
oxide particle cores (Figure 1, 500 °C) arises from reaction energy
barrier differences: Fe>FeO activation energy is 104 kJ/mol versus
150 kJ/mol for Fe;C>Fe + CO,, consistent with thermodynamic
calculations using FactSage 8.0 which confirm Fe;C stability at
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500 °C (AG = —12.6 kJ/mol). EDS mapping (Figure 1b) shows these
carbon-retention microzones as discrete C-Ka hotspots, directly
inhibiting oxygen diffusion by 40% at particle cores. Mn enrichment
at grain boundaries (Figure 2 nodules, 600 °C) not only alters local
oxide composition but also induces cooling stress concentration due
to higher thermal expansion in (Mn, Fe)O (13.8 x 10° K™ vs.
matrix a-Fe: 11.7 x 107° K™, initiating microcracks visible in cross-
sectional SEM (Figure 2C). Although high temperature at 700 °C
accelerates carbon oxidation (complete consumption within 0.5 h,
confirmed by EDS point scans showing <0.1 at% C), irreversible porous
structure formation (35% porosity, Figure 3¢) ultimately compromises
oxide functionality. In summary, high-temperature oxidation failure
in Q275 steel follows a temperature-triggered cascade: low-defect
dense layer - grain boundary diffusion-dominated lamellae > porous
channel-induced failure. This progression is comprehensively captured
through quantitative correlations between mass gain kinetics and
microstructural evolution.

The oxidation kinetics in this study are governed by the parabolic
rate law, mathematically expressed as:

2 _
X —2th
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FIGURE 4

High-temperature oxidation kinetics of Q275 carbon steel. (a—c) Isothermal oxidation mass gain curves at 500 °C, 600 °C, and 700 °C. (d) Arrhenius
plot of InKp vs. 1/T, with the fitted equation: InKp = —Q/(R-T) + InCp, yielding an activation energy of 104.2 kJ/mol. Inset: schematic illustration of the
three-stage oxidation mechanism: dense layer formation — grain boundary diffusion-dominated lamellae — porous channel-induced failure.

where X represents the mass gain per unit area (gcm?), t is
oxidation time (s), and the parabolic rate constant Kp has units
of gcm™.s7! (Liu et al,, 2025). This constant exhibits exponential
temperature dependence according to the Arrhenius relationship:

kP = Cpe(#)

Here, Cp denotes the pre-exponential factor (dimensionality
identical to Kp), Q is the oxidation activation energy (kJ-mol ™), R
is the gas constant (8.314 J-mol K1), and T stands for absolute
temperature (K). To determine the activation energy Q, the equation
is linearized:

nk,=-2x L+ inC,

Using experimentally determined Kp values at 500 °C (773 K),
600 °C (873 K), and 700 °C (973 K) derived from parabolic fitting of
data in Figures 4a—c plot of InKp versus 10°/T (Figure 4d) reveals
excellent linearity (R? = 0.998). The slope m = —12.54 x 10° K of the
fitted line directly relates to the activation energy:
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Q=-mxR=1254x10>%8.314x 107> = 104.2

The intercept b = 2.76 yields the pre-exponential factor
Cp = exp(b) = 158g-cm™s7!
(104.2 kJ-mol™!) elucidates the rate-controlling mechanism at the
microscopic level: its close alignment with the migration energy
barrier of Fe?* in the FeO lattice (96-102 kJ-mol™!) confirms cation
vacancy diffusion as the rate-determining step. Compared to the
theoretical value for pure iron oxidation (96 kJ-mol ™), the observed
positive deviation of 8.2 kJ-mol™! in Q corresponds directly to

. This activation energy value

microstructural observations—Mn grain boundary segregation
at 600°C (3.2wt.% in nodular zones, Figure2) introduces
approximately 5 kJ-mol™ of lattice distortion energy, while carbon
retention at 500 °C (8.9 at% C at particle cores, Figure 1) contributes
approximately 3.2kJ-mol! to local diffusion inhibition. For
engineering applications, extrapolation using this activation energy
predicts drastic oxidation rate acceleration when exceeding 600 °C:
K, "C/IK,*° °C = 5.6 and K,* "C/K,%* °C = 4.2, definitively
establishing 600 °C as the critical safety threshold for material
service.
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The oxidation behavior of Q275 carbon steel undergoes a
progressive transition from protective to catastrophic failure with
increasing temperature, fundamentally governed by defect dynamics
and elemental segregation. At 500 °C, the formation of a dense FeO
scale with limited carbon retention provides effective protection, as
evidenced by well-behaved parabolic kinetics. However, the situation
deteriorates at 600 °C when Mn segregation to grain boundaries
promotes lamellar oxide growth and introduces microcracks, marking
the onset of accelerated degradation. The complete loss of protective
capability occurs at 700 °C through interconnected vacancy clustering
that creates porous diffusion channels, enabling runaway oxidation and
eventual spallation. The measured activation energy of 104.2 kJ/mol not
only identifies cation vacancy diffusion as the controlling mechanism
but also quantifies the detrimental effects of Mn and C through
their contributions to the overall energy barrier. These results clearly
delineate 600 °C as the upper service temperature limit for unprotected
components, while simultaneously providing the scientific basis
for developing effective mitigation strategies such as composition
optimization or protective coatings for higher temperature applications.

4 Discussion

The catastrophic failure at 700 °C underscores the vulnerability
of uncoated Q275. Recent studies demonstrate that nitride
coatings reduce steel oxidation by 60% at 700 °C by suppressing
vacancy clustering (Wang R. et al., 2025), while microarc oxidation
(MAO) on alloys improves insulation but faces challenges in
steel adhesion (Liang et al, 2024). Our observed 35% porosity
in FeO (Figure 3¢) aligns with studies linking pore connectivity to
spallation, suggesting that pore-blocking coatings (e.g., aluminizing)
are critical for Q275 above 600 °C (Zhu et al., 2018).

Mn segregation (3.2 wt.%) at 600 °C elevates the activation barrier
by 5 kJ/mol (Figure 4D), consistent with DFT calculations showing
Mn?* distortion energy in FeO lattices (Peng et al., 2017). Carbon
retention (8.9 at%) inhibits local oxidation at 500 °C (point-scan
data, Figure 1B), but its rapid depletion at 700 °C (complete within
0.5h) eliminates this effect, supporting the temperature-dependent
carbon role model (Zhong and Webler, 2024; Subramanian et al,
2024). The 8.2 kJ/mol deviation from pure FeO theory quantitatively
reconciles with these synergistic effects: 5 kJ/mol from Mn-induced
lattice distortion and 3.2 kJ/mol from carbon retention.

5 Conclusion

This study clarifies the oxidation

behavior of Q275, a medium-carbon steel with practical

high-temperature

applications in moderate elevated-temperature environments. Key
findings include:

1. At 500°C, a dense FeO scale provides limited protection
(0.38 mg/cm2 mass gain over 1,000 h), with carbon retention
in Fe;C microzones slowing local oxidation.

2. Mn segregation at 600 °C induces lamellar oxide growth
and microcracks, accelerating mass gain to 2.1 mg/cm? over
1,000 h and marking the onset of degradation.
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3. At 700 °C, porous FeO (35% porosity) and Fe,O; needles
cause catastrophic spallation, exceeding failure thresholds
(>10 mg/cm?) within 100 h.

The activation energy (104.2 kJ/mol) confirms cation vacancy
diffusion as rate-limiting, with Mn and carbon contributing
8.2 KkJ/mol to the energy barrier—quantifying their role in
modifying kinetics.

These results establish 600 °C as the critical limit for uncoated
Q275, providing data essential for applications where this steel is
exposed to transient high temperatures.
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