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In this paper, sorghum and reed, light stem structures in nature, are selected as 
biomimetic prototypes. According to their mechanical stability characteristics-
the porous structure at the node feature and the porous feature in the outer 
skin, the biomimetic optimization design, simulation and experimental research 
on the traditional hexagonal structure and hexagonal honeycomb structure are 
carried out. The results show that the performance of combined honeycomb 
structure is the best, and its specific energy absorption is 22.82% higher than 
that of the traditional hexagonal structure.
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 1 Introduction

Energy absorption devices are widely used in automobiles, ships, airplanes, railway 
trains and other fields, and are the main components to dissipate the impact kinetic energy 
in the event of collision and other emergencies (Xiang et al., 2020; Ngoc et al., 2020). In the 
event of a traffic accident resulting in a collision, the energy absorption device can protect 
these machinery from serious damage when subjected to the impact load, minimizing the 
injury of human. These energy absorbing devices can disperse kinetic energy in a variety 
of ways, such as friction, fracture, pressure, plastic bending and cyclic plastic deformation 
(Nian et al., 2019). Metal thin-walled tube is the most widely used energy absorbing element 
at present. The research shows that, after reasonable design, single thin-walled tube structure 
has controllable failure mode, relatively stable compression load, and is an excellent buffer 
energy absorbing element (Lu et al., 2019). However, with the increase of lightweight and the 
improvement of safety requirements, the optimization of energy absorption performance 
of metal thin-walled tubes also faces theoretical, methodological and technical challenges. 
How to design lightweight, efficient and good crash-absorbing thin-wall structure has 
practical significance for protecting people’s life and property safety, energy saving and 
environmental protection. Honeycomb structure has the best performance in lightweight 
among energy absorbing structures (Liu et al., 2016; Jiang et al., 2016; Han et al., 2016).

Inspired by a variety of biological structures in nature, bionic structures have 
significantly improved energy absorption capacity compared with traditional structures.
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Therefore, in recent years, the use of biomimetic methods to 
design new lightweight structures with excellent energy absorption 
capacity is increasing. In nature, various plants and animals provide 
many low-density, high-strength, high-energy absorbing structures, 
providing inspiration for human design of better performance 
of energy absorbing structures (Ngoc et al., 2020; Fischer et al., 
2010; Seidel et al., 2010; Bührig-Polacze et al., 2016; Ha et al., 
2018; Kitchener, 1988; Li et al., 2011; Mckittrick et al., 2010; Ngoc 
and Lu, 2020). Recently, there has been many researches focus 
on the honeycomb structure. Lin et al. (2021) designed a novel 
honeycomb structures with twisted feature manufactured by laser 
powder bed fusion (LPBF), which inspired by the honeycomb 
of bee. Results revealed that the structure with 0.75 mm wall 
thickness and 3 unit cells along each side showed the highest 
specific energy absorption ability. Zhang et al. (2020) proposed a 
bio-inspired re-entrant arc-shaped honeycomb (RAH) model. Due 
to the introduction of re-entrant arc-shaped structures, the dynamic 
response curves of bio-inspired RAHs have better crushing load 
uniformity than conventional re-entrant honeycombs. Lightweight 
auxetic reentrant honeycombs (ARH) with negative Poisson’s ratio 
(NPR) are very promising for crashworthiness applications due to 
high specific-strength and energy-absorption (EA). To dig up the 
potential of ARH, a bio-inspired self-similar “concentric auxetic 
reentrant honeycomb (CARH)” is proposed by Jiang et al. (2020). 
There is a harvest that the bio-inspired CARHs show higher 
plateau stress and EA than the traditional ARH. Inspired by 
the microstructure of pomelo peel, Zhang et al. (2019) proposed 
a novel hierarchical honeycomb and investigated the crushing 
resistance along with energy absorption capabilities. The simulations 
reveal that the deformation modes of bio-inspired honeycomb are 
governed by the geometric parameter-equivalent thickness. The 
bio-inspired honeycomb exhibit a novel perspective mechanical 
properties of natural cellular materials. There are other bionic 
honeycomb structures that exhibit excellent mechanical properties, 
such as bamboo (Hu et al., 2019; Song et al., 2020), beetle elytron 
(Chen et al., 2019; Du and Hao, 2018), horseshoe (Yang et al., 2018), 
turtle shell (Yinghan et al., 2017), ladybeetle (Xiang and Du, 2017), 
horn (Zhou et al., 2022; Fuller and Donahue, 2021) and so on.

In nature, there are many stable stems with stable structure 
and mechanical properties, such as bamboo, reed, sorghum and 
cattail stems, whose slenderness ratio can reach 1/100–1/270. At the 
same time, its slender structure ensures that it will not be damaged 
by loads in nature, which is difficult for conventional structures 
to achieve. In most of these slender stem plants, there are nodal 
features, which can enhance stem bending strength, radial extrusion 
and shear resistance. For these slender stem plants with node, they 
can be roughly divided into hollow structure and solid structure. 
Hollow structure has hollow structure inside. The solid stem differs 
from the hollow stem in that it has a distinct inner core and a 
continuous tubular outer sheath distributed outwards from the light 
foam-shaped center.

Typical straw structure is one of the best mechanical properties 
in nature. Research shows that straw has higher shear and 
compression resistance than other stem plants, especially its lodging 
strength depends on its bending strength (Igathinathane et al., 
2010; Al-Zube et al., 2018; Gao et al., 2003). Compared with thin-
walled structures, they have many similarities in structure, function 
and load form, which can provide inspiration and reference for 

FIGURE 1
Bionic prototype: (a) Sorghum straw; (b) Reed straw.

lightweight and crashworthiness design of thin-walled structures. 
Sorghum straw is a compound filling structure. The dermal tissue 
on the wall of the stem and tube is highly dense, mainly composed 
of small and dense fibrous bundles. The inner medullary core is 
foam porous structure and its function is similar to that of foam 
core (Robertson et al., 2015). The characteristics of periodic nodes 
along the growth direction of stem also enhanced stem resistance to 
deformation (Shah et al., 2017; Vinayagar and Senthil Kumar, 2017). 
Sorghum stalk is round in cross section and oval in cut, forming 
reinforcing ring structure similar to double ring groove. Within the 
stem, there are large vascular bundles (used to transport water and 
nutrients) and foamy matrix tissue between them. The interaction 
between vascular bundles and foam matrix can not only provide 
stronger support for the stem, but also effectively reduce the mass 
of the structure. Another common slender-to-stalk stalk is the reed. 
Phragmites australis is a monocotyledonous plant belonging to the 
Gramineae family (Han et al., 1999). Reed rod is usually slender 
member, mainly used to bear external load and dead weight. The 
structure presents a gradual structure from inside to outside, and 
its elongation and gradient characteristics play an important role in 
the stability and bearing capacity of the structure (Sun and Liang, 
1999; Chen et al., 2016). Therefore, this paper chooses two kinds 
of straw with nodes in nature sorghum (solid) and reed (hollow) 
as biomimetic prototypes to carry out biomimetic lightweight 
research on honeycomb energy-absorbing structures, as shown in
Figure 1.

2 Bionic design of honeycomb 
structure

For the two kinds of straw stalk structures, the mechanical 
properties of light weight and high strength are directly related to the 
macro and micro structural characteristics. As straw is of high fiber 
structure, the integrity of section structure cannot be guaranteed 
by ordinary cutting tools. Therefore, after the sample was frozen 
in liquid nitrogen for 5 h, the straw was cut horizontally with a 
sharp blade. Zeiss Scanning electron microscope (SEM, ModelevO-
18, Germany) was used. SEM main parameters: the experimental 
magnification range is 13–50000 times; the minimum resolution is 
3.0 nm; the type of instrument is tungsten filament. The transverse 
and longitudinal typical structural characteristics of each part of the 
stalk of the two kinds of straw obtained are shown in Figures 2a–e.
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FIGURE 2
Characteristics of microcellular structure of straw (SEM View). (a) Crystal cell boundary line structure of longitudinal cross section at reed node. (b)
Microstructure of vascular bundle at reed node. (c) Microstructure of outer sheath wall of Phragmites australis. (d) Microstructure of Large Vascular 
bundle structure of Sorghum. (e) Microstructure of small vascular bundle of sorghum straw.

2.1 Bionic design of cell edge of 
honeycomb

According to the electron microscope of reed straw, the 
porous structure of reed in axial and longitudinal sections 
is similar to the honeycomb structure. The crystal cells at 
the node feature are more dense, as shown in Figure 2a. The 
boundary morphology of the crystal cells is similar to the 
sideline structure of sinusoidal curve. As can be seen from the 
measurement, the curve structure can be expressed as shown in
Equation 1:

y = sin(3.24∗ x+ π/2) + 21. (1)

where x is the transverse width of the curve and y is the longitudinal 
height of the curve.

Based on the principle of engineering bionics, bionic 
sinusoids are applied to the edge lines of hexagonal thin-
walled structure, honeycomb structure (hexagonal), honeycomb 
structure (quadrilateral) and quadrilateral thin-walled structure. 
At the same time, for comparative analysis, establish the 
corresponding linear thin-wall and honeycomb structure, 
as shown in Figures 3a–d, the wall thickness of all structures 

is 0.5 mm, and they are named as: Hexagon Tube with Bionic 
Corrugated (HTBC), the Hexagon Honeycomb Tube with Bionic 
Corrugated-7 (HHTBC-7), Hexagon Honeycomb Tube with Bionic 
Corrugated (HHTBC), Square Tube with Bionic Corrugated 
(STBC) (STBC), Hexagon Tube (HT), Hexagon Honeycomb 
Tube-7 (HHT-7), Hexagon Honeycomb Tube (HHT), Square
Tube (ST).

2.2 Bionic design of honeycomb cell 
compound structure

In the stem structure of reed, there are nodal features similar 
to bamboo nodal structure. Similar to bamboo nodule structure, 
the nodule structure on phragmites communis also enhanced its 
stem structure, which was inevitably related to its microstructure. 
Combined with the observation of microstructure, it is found that 
there is a special combined structure at the node as shown in 
Figure 2b. In the porous structure of nodes, there are compound 
structures with special links of pentagons and circles, which are 
widely distributed in the parts of nodes. Through measurement 
statistics, it is found that the ratio of the outer circle to the 
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FIGURE 3
Bionic design of honeycomb structure: (a) HTBC; (b) HHTBC-7; (c) HHTBC; (d) STBC; (e) HTPC-1; (f) HTPC-2; (g) HTPC-3; (h) OHT; (i) OHTBR; (j) HST;
(k) HSHT; (l) CT; (m) CTBH; (n) CHT; (o) CHTBH; (p) HBVT-257; (q) HUT/HBVT-555; (r) HBVT-752.

circle of the pentagon is R1:R2, which is nearly 5:1. Based on 
this, this paper proposed three kinds of bionic composite cell 
honeycomb structures, which were named as: Honeycomb Tube 
with Pentagon and Circular-1, 2, 3 (HTPC-1,2,3), as shown in
Figures 3e–g.

2.3 Bionic design of honeycomb cell 
stiffener rib

When reed stem structure is subjected to transverse load, 
its stem wall plays the main bearing role. In the observation of 
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TABLE 1  Dimensions and mass parameters of those honeycomb structures and energy absorption characteristics under axial impact load.

No. Sample Thickness/mm Mass/g EA/J SEA/J/g Fmax/kN Fmean/kN CFE/%

1 HT 1.52 44.26 891.25 20.14 25.06 17.825

2 HTBC 0.72 44.29 364.86 8.24 25.91 7.2972

3 HHT-7 0.81 44.31 1274.67 28.77 30.81 25.4934

4 HHTBC-7 0.61 44.40 1100.76 24.79 32.82 22.0152

5 HHT 0.51 44.28 1294.77 29.24 29.46 25.8954

6 HHTBC 0.34 44.38 1157.32 26.08 20.16 23.1464

7 ST 1.28 44.24 693.858 15.68 21.63 13.87716

8 STBC 0.82 44.25 522.401 11.81 29.09 10.44802

9 HTPC-1 0.45 44.27 1593.38 35.99 29.52 31.8676

10 HTPC-2 0.43 44.70 1196.78 26.77 29.70 23.9356

11 HTPC-3 0.44 44.62 1826.39 40.93 30.13 36.5278

12 OHT 0.39 44.66 1397.5 31.29 28.30 27.95

13 OHTBR 0.45 44.15 1459.85 33.07 27.38 29.197

14 HST 0.42 44.71 1215.82 27.19 20.03 24.3164

15 HSHT 1.81 44.39 1525.74 34.28 30.56 30.5148

16 CT 1.65 44.78 1053.49 23.53 27.69 21.0698

17 CTBH 1.75 44.55 820.196 18.41 24.02 16.40392

18 CHT 0.39 44.30 1411.81 31.87 25.37 28.2362

19 CHTBH 0.43 44.41 1065.09 23.98 21.14 21.3018

20 HBVT-257 0.25/0.5/0.75 53.73 2376.98 37.02 47.40 47.5396

21 HBVT-555 0.51 44.28 1294.77 29.24 34.55 25.8954

22 HBVT-752 0.75/0.5/0.25 34.83 978.51 28.23 20.42 19.5702

the microstructure, we found that there were regular octagonal 
structures on the tube wall, and the octagonal nodes were connected 
by the cell wall structure. In this paper, it is simplified into the 
honeycomb structure as shown in Figure 2c, and the octagonal cell 
structure is used as the basic cell unit, and the octagonal cell is 
connected with the reinforcement ribs, and it is named as: Octagonal 
Honeycomb Tube (OHT) and Octagonal Honeycomb Tube with 
Bionic Ribs (OHTBR), as shown in Figures 3h,i. 

2.4 Self-similar bionic design of 
honeycomb cell

For sorghum straw, the inner stem is porous and composed of 
vascular bundle and foam matrix. The vascular bundle distribution 
was more dense at the feature of sorghum node, and there 

was a specific morphology. The internal vascular bundle showed 
hierarchical self-similarity through SEM observation and analysis, 
as shown in Figure 2d. The cell structure around the vascular 
bundle is usually centered on a larger cell structure, radiating 
and showing some similarity. Therefore, to simplify the analysis, 
we designed the following two levels of self-similar thin-wall and 
honeycomb structures, as shown in Figures 3j,k, and named them 
as: Hierarchical Self-similar Tube (HST), Hierarchical Self-similar 
Honeycomb Tube (HSHT). 

2.5 Cellular bionic porous design

In the longitudinal fiber structure of sorghum straw, such a 
structure also exists, with a large number of small holes distributed 
on the wall of the tube. The existence of such a hole structure 
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FIGURE 4
Finite element simulation analysis model (example: radial gradient 
variable-wall thickness honeycomb structure).

FIGURE 5
Stress-strain curve of AA6061-T6.

is conducive to the full transport of water to each part of the 
stem. On the other hand, it may also be an optimal design 
for weight reduction, as shown in Figure 2e. Based on this, the 
following bionic porous structure is proposed and named as: 
Circular Tube (CT), Circular Tube with Bionic Holes (CTBH), 
Circular Honeycomb Tube (CHT), Circular Honeycomb Tube with 
Bionic Holes (CHTBH), as shown in Figures 3l–o. 

2.6 Cellular gradient bionic design

In addition, the porous structure of the above two kinds of stems 
has a common point, which is the gradient change trend. There is a 
gradient change in both the size of cell structure and the thickness 
of cell. Based on this, this paper proposes a bionic radial honeycomb 
structure with variable wall thickness, as shown in Figures 3p–r. 
They are divided into two types, namely, the inner wall thickness 
gradually decreasing from the inside out and from the outside, 
and the honeycomb structure with equal wall thickness which 

is named as: Honeycomb Bionic Variable Thickness (HBVT-257), 
Honeycomb-Uniform Thickness (HUT/HBVT-555), Honeycomb 
Bionic Variable Thickness (HBVT - 752).

In order to facilitate comparative analysis and transverse 
comparison of the energy absorption characteristics of each 
honeycomb structure, the total mass of each honeycomb structure 
is controlled to be the same in this paper. Table 1 shows the energy 
absorption characteristics of each honeycomb structure parameter 
and axial impact load. 

3 FEA analysis

3.1 FE model

The nonlinear finite element software LS-DYNA was used 
for simulation analysis. Figure 4 shows the finite element model 
of the axial impact honeycomb structure. Both the ground and 
impact surfaces are rigid structures, so they are regarded as 
rigid bodies. The “face to face” contact algorithm with a friction 
coefficient of 0.3 was used to simulate the contact between rigid 
wall and honeycomb specimen. The “automatic single surface” 
contact method is adopted to regulate the honeycomb structure 
itself to avoid the mutual penetration of bending in the process 
of bending failure. For comparative analysis, the compression 
distance of all honeycomb structures was set to 80% of the 
sample height. The material used in this paper is AA6061-T6 
aluminum alloy, and its mechanical properties are calibrated 
by standard tensile test: density 2700 kg/m3, Poisson’s ratio 0.3, 
young’s modulus 70 GPa, as shown in Figure 5. The constitutive 
model of the thin-walled tube was simulated by USING MAT_
24 in LS-DYNA software. Since the aluminum alloy is a strain 
rate insensitive material, the strain rate effect is not considered
(Zhang et al., 2023). 

3.2 Energy absorption index

Energy absorption (EA) (Jahromi and Hatami, 2017; 
Mohammadiha et al., 2015; Xu et al., 2017), obtained by 
integrating the load-displacement curve during the loading process, 
mathematically, as shown in Equation 2:

EA = ∫
x

0
F(x)dx. (2)

The higher the energy absorption (EA), the better the 
crashworthiness. To account for the effect of mass, specific 
energy absorption (SEA) (Reuter and Tröster, 2017) is defined 
as shown in Equation 3:

SEA = EA
m
=
∫

x

0
F(x)dx

m
. (3)

For the energy-absorbing structure, the higher the SEA is, the 
better the capability of the energy absorption.

The crushing force efficiency (CFE) (Song et al., 2021; Song et al., 
2018) is another criteria in relation to structural deformation 
stability, which can be given as shown in Equations 4, 5:

CFE =
Fmean

Fmax
× 100%. (4)
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FIGURE 6
Force-displacement curves of each energy absorbing structure under axial impact.
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Fmean =
EA
s
. (5)

where Fmean is the mean loading force, Fmax is the maximum loading 
force, and s is the compression distance.

3.3 Results and analysis

Figure 6 shows the load-displacement curves of the bionic 
honeycomb structure, and Figure 7 shows the deformation and 
stress cloud of the honeycomb structure under axial impact load.

As can be seen from Figure 6a, HT and ST are easy to undergo 
large buckling and deformation due to their monocellular structure, 
so their load curves fluctuate greatly. The overall performance 
is bottom-up folding deformation, and the folding radius of 
buckling deformation is large (as shown in Figure 7). However, 
the load curves of HHT and HHT-7 conventional hexagonal 
honeycomb poly cellular structures are relatively stable, and their 
deformation is also a bottom-up progressive folding deformation. 
However, due to the characteristics of poly cellular structures, 
the folding radius is small and the stress distribution is uniform. 
For the corrugated structure with bionic optimization design, 
its deformation and buckling are unstable under axial impact, 
especially for the monocellular bionic bellows structure, which is 
prone to instability when large deformation occurs, resulting in 
failure deformation in the middle part (HTBC, HHTBC-7, HHTBC, 
and STBC in Figure 7). Therefore, it’s load-bearing and energy 
absorption characteristics are poor. The deformation and load curve 
of the bionic poly cellular bellow tube wall structure is different from 
that of the single-cell structure, but the bionic design scheme is not 
a beneficial design method.

Figure 6b shows the comparison of load curves between 
combined honeycomb structure HTPC-1, 2,3, and traditional 
hexagonal honeycomb structure HHT. It can be seen from the figure 
that the load curves of HTPC-1 and HTPC-3 are slightly higher than 
that of the traditional hexagonal honeycomb structure HHT, while 
the load curve of HTPC-2 fluctuates greatly. Combined with the 
deformation and stress cloud in Figure 7, it can be seen that HTPC-
2 has a large deformation with central shrinkage in the middle and 
late deformation, resulting in the overall collapse of the honeycomb 
structure, which reduces its bearing capacity and energy absorption 
effect. In contrast, HTPC-1,3 have undergone progressive folding 
deformation centering on a single crystal cell. The difference is that 
the late deformation of HTPC-1 and HTPC-3 is stable from top to 
bottom, while the deformation of HTPC-1 also occurs at the bottom, 
resulting in the disorder of the deformation order. However, the 
overall loading and energy absorption effect of the two is better than 
that of the traditional hexagonal honeycomb structure HHT.

Figure 6c is the compression load-displacement curves of the 
OHT and OHTBR honeycomb structure. It can be seen that the load 
peak of both is slightly lower than that of traditional honeycomb 
structure HHT, and the fluctuation amplitude is also slightly less 
than that of HHT, especially for the OHT. Compared with OHT 
and OHTBR, it can be seen that the load curve of the bionic 
stiffened rib has been improved to a certain extent, and the stress 
distribution in the deformation process is more uniform. Especially, 
the stress distribution in the third stress cloud diagram of OHTBR 

FIGURE 7
Axial compression deformation and stress cloud of honeycomb 
structure.

(as shown in Figure 7) is significantly more uniform than that of 
OHT, which means that the stress distribution and deformation of 
OHT are more stable.

The self-similar structure is a research hotspot in recent 
years. The comparison structures proposed in this paper are 
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FIGURE 8
Energy absorption index of each structure under axial impact: SEA, EA, PF and CFE.

FIGURE 9
3D printed honeycomb structure. (a) HBVT-555. (b) HTPC-3. (c) OHT. (d) OHTBR. (e) HSHT. (f) HBVT-257.

FIGURE 10
Part of the 3D printed honeycomb structure deformation process.

hexagonal self-similar structure HST and hexagonal self-similar 
honeycomb tube-HSHT. Comparing HSHT and HHT with the same 
configuration, the self-similar structure has more wall structures, 
so its bearing capacity is obviously higher. At the same time, when 
more tube walls are subjected to impact load, there will be the 

interaction between tube walls. Therefore, the compression folding 
radius is relatively small, so the load fluctuation is also small, 
that is, the load fluctuation is smaller (Figure 6d). Because of this, 
the multi-layer structure of HST makes its deformation not top-
down, but simultaneous deformation of the middle and lower parts, 
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TABLE 2  Axial compression energy absorption characteristics of 
each sample.

No Sample Mass/g EA/J SEA/J/g

1 HBVT-555 64 1609.60 25.15

2 HBVT-257 75 2124.00 28.32

3 HBVT-752 105 2573.55 24.51

4 HTPC-3 85 2625.65 30.89

5 OHT 77 1973.51 25.63

6 OHTBR 108 1995.92 27.74

7 HSHT 125 3478.75 27.83

which affects its deformation stability. At the same time, the multi-
layer structure makes it larger in mass. For HSHT, the honeycomb 
structure itself has certain deformation stability, and its deformation 
stability is increased during the self-similar design of crystal cells (as 
shown in HSHT in Figure 7).

Figure 6e shows the load curves of CTBH and CHTBH and 
their corresponding thin-walled tubes under impact. It can be seen 
from the Figure that the bearing capacity of the structure decreases 
significantly after the bionic hole structure is introduced into the 
tube wall. At the same time, the load fluctuation is smaller than 
that of the corresponding intact wall structure. Through calculation, 
it is found that although the bearing capacity decreases, the whole 
mass is greatly reduced due to the bionic hole, so the specific energy 
absorption of the whole is improved. Therefore, this design scheme 
has a certain application value in the scenarios requiring weight 
reduction and peak load reduction.

Figure 6f is the comparison diagram of the compressive load-
displacement curve of the honeycomb structure with radial gradient 
variable wall thickness. It can be seen from the Figure that the 
larger the outer wall thickness is, the stronger its carrying capacity 
will be, but at the same time, the peak value of its load and the 
overall mass will also greatly increase. In terms of stress distribution 
and deformation stability, the deformation of gradient structure is 
relatively more stable and the stress distribution is more uniform, 
especially HBVT-257 whose wall thickness gradually decreases from 
inside to outside, as shown in Figure 7.

By comprehensive comparison of the above structures and their 
bionic design samples, the evaluation indexes of crashworthiness 
and energy absorption in Figure 8 can be obtained through 
calculation. The red dotted line in the figure shows the traditional 
hexagonal honeycomb structure as a horizontal comparison. The 
analysis shows that the performance of the biomimetic design 
HTPC-1, HTPC-3, OHT, CHT, HSHT, and HBVT257 is better 
than that of the traditional hexagonal honeycomb structure. Among 
them, HTPC-3, HSHT, and HHT-257 have the best performance, 
and their energy absorption is increased by 41.06%, 17.84%, 83.59% 
compared with HHT, and 39.98%, 17.24%, 26.61% compared with 
HHT. In consideration of peak load and crushing force efficiency, 
we selected HTPC-3, HSHT, OHT, OHTBR, and HHT-257 as the 

objects of the next part of the experiment to study the optimal 
solutions of these bionic designs from the experimental perspective. 

4 Experimental study

4.1 Processing and manufacturing

In order to verify the effectiveness of the bionic design, the bionic 
honeycomb structure with excellent performance in the simulation 
analysis was verified. Due to its complex structure, the 3D printer 
model used in this paper is EOSINT M280 (metal 3D printer) to 
print and process part of the honeycomb structure. This printer uses 
direct metal powder laser sintering technology to build parts layer 
by layer by melting fine metal powder with the laser beam. It can 
support the creation of extremely complex geometric components 
such as free-form surfaces, deep grooves, and 3D cooling channels, 
and can carry out CAD interface, STL, and other formats conversion. 
The samples in this paper are saved as an STL files in CATIA 
and imported into a 3D printing system. The molding size of the 
printer is 250 × 250 × 325 mm, the precision is 20–80 μm, and the 
consumable material is AA6061-T6 aluminum alloy metal powder. 
The pattern of 3D samples are shown in Figure 9. 

4.2 Results and analysis

As the wall thickness in the simulation analysis is analyzed 
according to the standard honeycomb structure (wall thickness 
0.02–0.08 mm), the actual 3D printing accuracy is at least 0.8 mm. 
At the same time, the phenomenon of material fracture is not 
considered in the simulation analysis, but in the real experiment, 
due to the thick wall and small size, the phenomenon of 
fracture occurred. Therefore, the verification test only makes a 
transverse comparison and does not compare and analyze with 
simulation results. Figure 10 shows the compression test process 
of some samples. Due to the thickness and material problems of 
the processed materials, most of the materials were crushed and 
fractured without significant buckling and folding.

According to the actual deformation interval, the energy 
absorption of the first 30% deformation area was calculated and its 
axial compression energy absorption characteristics were obtained, 
as shown in Table 2. According to the table, the energy absorption 
capacity of the combined honeycomb structure HTPC-3 is the 
most excellent, which is 22.82% higher than that of the common 
hexagonal honeycomb structure HBVT-555. 

5 Conclusion

In this paper, according to two kinds of straw microcell 
and chamber structure characteristics, cellular energy absorption 
structure of the cell for the bionic optimization design, a total 
of 6 class 22 kinds of the honeycomb structure is put forward, 
including cell wall corrugated type bionic design, modular cell 
design, reinforcement plate structure, self-similar structure and 
porous structure of cell wall and gradient structure of variable 
wall thickness. Among them, HTPC-3 (combined honeycomb
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structure), HSHT (self-similar honeycomb structure), and HBCT-
257 (radial gradient variable wall thickness honeycomb structure) 
have the best performance, and their energy absorption is 
41.06%, 17.84%, and 83.59% higher than that of HHT (traditional 
hexagonal honeycomb decoupling unit), respectively. Compared 
with HHT (traditional hexagon honeycomb decoupling unit), 
the specific energy absorption is increased by 39.98%, 17.24%, 
and 26.61% respectively. Through verification test analysis, the 
HTPC-3 structure (combined honeycomb structure) has the 
best design performance, and its specific energy absorption 
is 22.82% higher than that of the traditional honeycomb 
structure. The conclusion of this study can provide a new idea 
and reference for the optimization design of the honeycomb
structure.
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