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Faculty of Materials Science and Engineering, Kunming University of Science and Technology,
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Introduction: Accurate prediction of flow stress during the hot deformation of
7075 aluminum alloy is essential yet challenging, as conventional constitutive
models are often inaccurate and artificial neural network (ANN) approaches are
computationally complex.

Methods: Hot compression experiments on as-rolled 7,075 aluminum alloy were
carried out using a TA DIL805D thermal simulator over a temperature range of
573-733 K and strain rates between 0.001 and 1.0 s™. The resulting experimental
data were subsequently used to train four machine learning models—decision
tree, random forest, support vector machine, and XGBoost—for predicting
the flow stress of annealed 7,075 aluminum alloy. Model performance was
evaluated through residual analysis and several statistical indicators, including
mean absolute error (MAE), mean squared error (MSE), average absolute relative
error (AARE), correlation coefficient (R), and coefficient of determination (R?).
Results: The results demonstrate that, compared with previously reported
artificial neural network (ANN) models, these four machine learning approaches
achieve comparable predictive accuracy (up to 99.9%).

Discussion: While offering a simpler and more efficient model
construction process.

7075 aluminum alloy, decision tree, random forest, support vector machine, XG boost

1 Introduction

7,075 aluminum alloy is renowned for its high specific strength, excellent fracture
toughness, and good corrosion resistance, making it one of the most widely used alloys in the
7,000 series °°. These properties render it critical for manufacturing structural components
in aerospace and automotive applications®. Hot deformation is essential for producing
high-quality parts, with temperature, strain, and strain rate significantly influencing the
process ®°. Under various hot deformation conditions, micro structural mechanisms such
as dynamic recovery, dynamic recrystallization, precipitation, and dissolution occur, which
directly affect flow stress behavior®. Thus, understanding the hot deformation behavior of
7,075 aluminum alloy is crucial for optimizing processing parameters to achieve improved
micro structure and mechanical properties.

Conventional constitutive models, such as the strain-compensated Arrhenius model
(SCAM) (Chen et al,, 2015), have been commonly used to predict flow stress, yet they often
exhibit limited accuracy (with AARE between 4.5% and 8.5%). Artificial Neural Networks
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(ANN) have emerged as a powerful alternative, capturing
complex nonlinear relationships and achieving errors below 1%
AARE (Gupta et al, 2019; Shokry et al., 2019; Li et al., 2019;
Luo et al, 2021). However, ANN models (Zhu et al., 2020;
Zhao etal., 2014; Sabokpa et al., 2012) require extensive architectural
tuning and computational resources, limiting their practicality.

Although the modified Arrhenius model improves flow
stress prediction accuracy compared to strain-insensitive models,
it still exhibits notable deviations due to errors introduced
by multiple linear regression during parameter identification
(Wang et al., 2021; Zhang et al., 2018). Artificial Neural Networks
(ANN) have emerged as a promising alternative, capable of
capturing complex nonlinear relationships without recurring
regression, often achieving prediction errors within 1% AARE
(Li et al,, 2020; Ma et al., 2023). However, ANN models suffer
from significant drawbacks: their construction requires meticulous
design of hidden layers and neuron counts, which lacks theoretical
guidance and typically relies on exhaustive experimental tuning.
Moreover, ANN models generally exhibit slow convergence,
often requiring hundreds or thousands of iterations even for
simple problems.

Recent research has increasingly focused on hybrid and
ensemble artificial intelligence (AI) models to overcome these
limitations (Rezaei Ashtiani and Shahsavari, 2016; Rezaei Ashtiani
and Shahsavari). For instance, Genetic Algorithm-optimized
ANN (ANN-GA) and Grey Wolf Optimizer-enhanced Support
Vector Regression (GWO-SVR) have demonstrated significant
improvements in prediction accuracy and convergence speed
(Guan et al, 2023; Chen et al, 2021; Guo et al, 2020).
Ensemble methods such as Random Forest (RF) and Gradient
Boosting Decision Tree (GBDT) enhance robustness and
generalization through multi-learner integration (Dai et al., 2019;
Zhang et al, 2021). Notably, hybrid approaches like GWO-RF
and GWO-BPNN have shown superior performance in both
interpolation and extrapolation contexts for high-temperature
flow stress prediction (Yao and Bu, 2025). More recently,
Physics-Informed Machine Learning (Liu et al, 2025) (PIML)
has further advanced the field by embedding physical laws
into learning processes, improving extrapolation capability and
interpretability.

Despite these advancements, relatively few studies have
explored ensemble learning methods, such as random forest, for
constitutive modeling. This study employs four machine learning
models—Decision Tree (DT), Random Forest (RF), Support Vector
Regression (SVR), and XGBoost—to predict the flow stress of as-
rolled 7,075 aluminum alloy. These models were selected as efficient
alternatives to Artificial Neural Networks (ANN) due to their
comparable predictive accuracy, simplified model construction,
and reduced computational requirements. Compared to ANN
models, which often entail complex architecture tuning and
prolonged training, DT, RE, SVR, and XGBoost achieve similar
performance (e.g, R*> = 99.9%) while offering greater interpret
ability, faster training, and minimal hyper parameter tuning.
Model performance was evaluated using residual analysis, mean
absolute error (MAE), mean absolute error (MSE), mean absolute
relative error (AARE), correlation coefhicient (R), and coefficient of
determination (R?), confirming their suitability for modeling hot
deformation behavior.
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TABLE 1 Chemical composition (weight percentage) of annealed 7,075
aluminum alloy (Yang et al., 2021).

C

0.20 0.07 0.21 0.06 0.02 1.54 2.68 5.76 Bal

2 Materials

Table 1 lists the chemical composition of the annealed 7,075
aluminum alloy used in this study.

The diameter of the cylindrical samples was 10 mm and the
height was 5.0 mm. The hot compression test is a material testing
method used to evaluate the properties of materials at high
temperatures and under different strain rates. The specific analysis
is as follows:

1. Experimental Equipment and Conditions: The experiment
was carried out on a TADIL805D, which is a high-precision
dilatometer used to measure the length change of materials
during the heating or cooling process.

2. Temperature and Strain Rate: The experiment involved five
different temperatures (460, 420, 380, 340, and 300K) and
four different strain rates (1.0, 0.1, 0.01, and 0.001s7"). These
conditions covered the range from room temperature to
relatively high temperatures as well as deformation rates from
fast to slow.

3. Heating and Soaking Process: The samples were heated from
room temperature to the target temperature at a rate of 5K,
and then held at the target temperature for 5 min to ensure
temperature uniformity.

4. Compression and Cooling: The compression was stopped
when the true strain reached 0.8, and then the samples were
immediately cooled to room temperature at a rate of 50K/s to
fix their micro structure.

5. Data Collection and Processing: Stress and strain data were
obtained through a high-precision measurement system to
ensure the accuracy and reliability of the data.

6. Data Analysis and Model Building: A total of 300 data
points were systematically extracted from hot compression
tests conducted under the thermal-mechanical conditions
illustrated in the figure. These tests encompassed five
temperature levels (573 K, 613 K, 653 K, 693 K, and 733 K)
with a heating rate of 5 K/s, a 5-min isothermal holding at each
target temperature, three strain rates (0.001 s71,0.01s7!, and
0.157!) during deformation, and subsequent cooling to room
temperature (RT) at 50 K/s. To ensure comprehensive coverage
of deformation behavior, the data points were uniformly
sampled across a strain range of 0-1.0 at 0.05 intervals, with 20
points allocated to each combination of temperature and strain
rate (5 temperatures x 3 strain rates x 20 points = 300 total
points). For model development, the dataset was partitioned
using stratified sampling into a training set (70%, 210 points)
and a test set (30%, 90 points). This stratification preserved
the proportional distribution of each temperature-strain rate
subgroup in both sets (e.g., 14 training points and 6 test points
per subgroup), ensuring balanced representation of the entire
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parameter space. These data were utilized to build equations
describing the material behavior.

lustration of the Experimental Scheme: Figure 1 shows the
detailed experimental scheme, including the steps of heating,
soaking, compression, and cooling, as well as the selection and
recording methods of data points.

When analyzing the stress-strain curves, the flow stress
increased rapidly in the initial stage of deformation, indicating a
strong work hardening phenomenon. The strain rate was found
to have a pronounced effect on the flow stress of the material.
Specifically: 1. Behavior at low strain rates: Under low strain rate
conditions (such as 0.001 and 0.01s7}), the flow stress did not have
an obvious peak but remained in a relatively stable flow state. This
indicates that at slower deformation rates, the work hardening and
dynamic softening processes are balanced, enabling the material to
maintain stable plastic deformation. 2. Behavior at high strain rates:
Under high strain rate conditions (such as 0.1 and 1.0s™"), the flow
stress showed an obvious peak and then gradually decreased and
finally stabilized. The appearance of this peak indicates that in the
early stage of rapid deformation, work hardening dominates. As
the deformation continues, dynamic softening mechanisms (such as
dynamic recovery and rearrangement of dislocations) start to play a
role, resulting in a stress decrease.

Influence of temperature on flow stress: As the deformation
temperature increases, the flow stress level decreases. This is because
high temperature provides more thermal energy, which promotes
the movement and rearrangement of dislocations, thereby reducing
the strength of the material. High temperature also leads to a
decrease in the critical shear stress of the alloy, making the slip
systems easier to activate and further promoting the dislocation
slip and dynamic softening processes. Influence of strain rate on
flow stress: An increase in strain rate will lead to an increase
in flow stress. This is because a high strain rate means a faster
deformation speed, reducing the time for the material to respond,
and making the work hardening effect more significant. Under
high strain rates, softening mechanisms (such as the annihilation
and rearrangement of dislocations) do not have enough time to
operate, resulting in more dislocations accumulated inside the
material and an increase in flow stress. Non-linear relationship: The
relationship between flow stress and temperature as well as strain
rate is not a simple linear one. This is because the behavior of
the material is affected by multiple complex mechanisms working
together, including dislocation dynamics, grain boundary slip, phase
transformation, etc. Under different temperature and strain rate
conditions, the relative importance of these mechanisms will change,
resulting in the change in flow stress showing complex non-linear
characteristics.

3 Machine learning methods

Decision Tree (DT) is a supervised learning method that
recursively partitions data into subsets using decision rules based
on feature values, forming a tree structure where internal nodes
represent features, branches represent feature values, and leaf
nodes provide final predictions. Key steps include feature selection
(using criteria such as information gain or Gini impurity), splitting
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FIGURE 1
Schematic diagram of the compression experiment (Yang et al., 2021).

the dataset, recursively building subtrees, and generating leaf
nodes when stopping conditions—such as uniform class labels or
maximum depth—are met.

Random Forest (RF) operates by constructing multiple decision
trees, which are inherently non-linear models. It excels at capturing
the complex, segmented relationships between temperature, strain,
and stress without requiring prior transformation of the input data.
By measuring the mean decrease in impurity, RF can quantitatively
rank input features. This directly reveals the significance of
the strain-temperature interaction term and other processing
parameters, providing valuable physical insight into the dominant
factors controlling flow stress. RF performs well on small to
medium-sized datasets (e.g., 100-10,000 points) due to its ensemble
averaging, which reduces variance. However, its training time can
become computationally expensive for very large datasets.

Support Vector Regression (SVR) is a regression technique
derived from support vector machines, designed to model complex
relationships by fitting a function while maintaining a margin of
tolerance (e-insensitive band). SVR’s primary strength is handling
non-linear relationships through the kernel trick. By employing a
non-linear kernel, SVR can map the original input features into a
higher-dimensional space where a linear separator can effectively
model the highly non-linear flow stress behavior. A well-tuned
RBF kernel can effectively model the coupled effect of strain and
temperature without the need for manual feature engineering. SVR
is particularly powerful for small to medium-sized datasets where its
ability to find a global optimum and maximize margin helps prevent
overfitting. Its performance can degrade with very large datasets
(>10,000 samples) as training time scales sharply.

XGBoost (Extreme Gradient Boosting) is a scalable and efficient
machine learning library based on gradient boosting, designed for
fast and accurate modeling across large-scale datasets. It extends
the traditional Gradient Boosting Decision Tree (GBDT) framework
by incorporating regularization terms to control model complexity
and reduce overfitting. Key innovations include the use of second-
order Taylor expansion to approximate the objective function,
an approximate greedy algorithm for optimal splitting, and built-
in support for handling missing values. As a boosted tree-based
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input layer
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FIGURE 2
Structure of the BP-ANN model (Yang et al., 2021).

output layer

hidden layer 2

algorithm, XGBoost sequentially builds trees that correct the errors
of previous ones. This makes it exceptionally powerful at learning
complex non-linear patterns and subtle intricacies in the flow stress
data that other models might miss, often leading to state-of-the-art
prediction accuracy. Similar to RE.

For a Back Propagation Artificial Neural Network (BP-ANN)
model used in (Yang et al., 2021), the selection of the number of
network layers and the number of neurons is usually based on
experience and practice, and there is no clear theoretical guidance.
This is because the complexity and non - linear characteristics of
neural networks make their behavior difficult to predict accurately.
Generally speaking, the selection of the number of network layers
depends on the complexity of the problem and the size of the data
set. For simple problems and smaller data sets, fewer network layers
are sufficient to achieve good performance. Compared with complex
problems and large - scale data sets, deeper networks can provide
better learning and representation capabilities. When choosing the
number of neurons, it needs to be determined according to the
complexity of the problem and the size of the data set. A smaller
number of neurons may lead to under - fitting, and a larger number
of neurons may lead to over - fitting. A common practice is to use
methods such as cross - validation to select an appropriate number
of neurons to achieve the best performance on the training and
validation sets. Overall, the selection of the number of network
layers and the number of neurons is a practical problem and needs to
be adjusted and optimized in combination with the characteristics of
the problem and experimental result. The architecture of the Back-
Propagation Artificial Neural Network (BP-ANN) model used in
this study, which consists of an input layer, two hidden layers, and
an output layer, is illustrated in Figure 2 (Yang et al., 2021).

4 Analysis and discussion

To evaluate the quality of the established models, This study
utilized five major statistical metrics to assess (MAE, MSE, R, AARE,
R?). MAE (Mean Absolute Error), which measures the average of
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TABLE 2 Error and correlation analysis of different models.

Metric MAE | MSE R
Model
SCAM (Yang et al., _ _ 0.9967 3.26% _
2021)
BP-ANN (Yang et al., _ _ 0.99998 0.18% _
2021)
DT 0.1810 0.1571 0.99993 0.24% 0.99986
RF 0.0988 0.0587 0.99997 0.17% 0.99995
SVR 0.0788 0.0109 0.99999 0.15% 0.99999
XGBoost 0.2171 0.2524 0.99990 0.31% 0.99978

the absolute errors between the predicted values and the actual
values, indicates better model performance when it is closer to
0. As an important indicator for evaluating the performance of
regression models, MAE provides an intuitive way to understand the
magnitude of prediction errors. The formula is as follows Equation 1:

n
MAE= %Z 1y, - 7, MAE € [0, +c0) (1)

i=1
MSE (Mean Squared Error) is the mean of the sum of the
squares of the errors at the corresponding points of the predicted
data and the experimental data. It is also used to measure the gap
between the predicted values and the true values. MSE is sensitive
to outliers (because when the difference between an outlier and a
normal value is relatively large, the error will be greater than 1, and
the value will be further increased after taking the square). However,
it can reflect the distribution of prediction errors. The formula is

as follows Equation 2:
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FIGURE 3
(Continued).
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relationship between experimental and predicted values, is
calculated as shown in Equation 3:
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AARE (Average Relative Error) is a widely used statistical

indicator, which is the average value of all individual relative
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(d) XGBoost.
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errors and is used to evaluate the relative error level between
experimental results and true values. It reflects the accuracy
and stability of measurement data. The formula is as follows
(Lietal,, 2019) Equation 4:

olexp_o-;)re

x 100%

N
1
AARE = — (4)
v

exp
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. a“;xp represents the experimental results, and ,,,, represents the

results calculated according to the established constitutive model;
O,y and 0,
the total number.

and ¢’

are the average values of o’ ore

exp respectively. N is

R® is a statistical indicator used to evaluate the fitting

degree of a regression model. It represents the explanatory power
of independent variables on dependent variables, that is, the
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proportion of the variation of dependent variables that can be
explained by independent variables. This coefficient can evaluate the
strength of the linear relationship between two variables, and its
value ranges from 0 to 1. When it is close to 1, it indicates that the
model has a good fitting effect and has achieved the expected results.
When it is close to 0, it indicates that the model has a poor fitting
effect. The formula is as follows Equation 5.

2 _1_ Z:lzl(yi_)?i)z
R YR

Here, n represents the number of samples; y, represents the

R%* € [0,1] (5)

actual value; and y," represents the predicted value.

All data were randomly shuffled and split into 80% training
and 20% testing, following standard practice. Table 2 summarizes
the performance results of the different models on the test dataset.
As shown, all four models achieved prediction accuracy comparable
to the BP-ANN reported in (Yang et al, 2021), despite being
trained with relatively simple parameter settings rather than extensive
hyperparameter tuning. Specifically, for DT, the maximum tree depth
was set to 12; for RE, the number of estimators was set to 100 with a
maximum depth of 9 for each tree; for SVR, we used the RBF kernel
with kernel coeflicient set to 20 and regularization parameter set to
10,000; and for XGBoost, we used 100 estimators with a maximum
depth of 9. Among these, SVR achieved better performance than the
other three tree-based models. This advantage can be attributed to the
maximum-margin principle of SVR, which fits a function within an
e-insensitive tube while maximizing the margin around the regression
hyperplane. Consequently, SVR produces smooth and continuous
functions that generalize well when the underlying relationship is
smooth rather than discontinuous. In contrast, tree-based models
partition the feature space into discrete regions, yielding piecewise-
constant predictions. This often introduces step-like artifacts and limits
extrapolation beyond the training domain.

It is noteworthy that XGBoost performed the worst among
the four models in this study, despite the fact that it typically
outperforms a single Decision Tree (DT) and often surpasses
Random Forest (RF) in other applications. This discrepancy can be
attributed to the lack of hyperparameter tuning in our experiments.
In particular, parameters such as the learning rate, regularization
strength, and subsampling ratios were not optimized. With the
default learning rate (0.3) and relatively deep trees, boosting can
easily overfit, especially when applied to small datasets. In contrast,
RF is inherently more robust under default settings, as it reduces
variance by averaging predictions across many uncorrelated trees.
While XGBoost generally excels on large and complex datasets with
strong nonlinear feature interactions, our dataset is relatively small
(we employed the same dataset as that used in (Yang et al., 2021)).
Under such conditions, RF or even a single DT may perform equally
well, if not better. In small-sample regimes, the iterative corrections
of boosting tend to chase noise rather than improve generalization.

The residual between the predicted and actual values is an
important indicator for evaluating model accuracy. Figure 3 illustrates
the residual distributions of the four different models. According
to (Yang et al, 2021), the SCAM model exhibits residuals of
approximately +8 MPa, indicating a relatively large error between
predictions and experimental values. In contrast, the BP-ANN
model achieves residuals within +1 MPa, reflecting much higher
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accuracy. In Figure 3, both the DT and RF models show residuals of
about +2 MPa, while the SVR model achieves residuals within +1 MPa.
The XGBoost model, however, yields residuals of approximately
+4 MPa. These results highlight the performance differences among
the models. Overall, the BP-ANN and SVR models demonstrated the
best predictive performance, with the smallest residuals and highest
accuracy, whereas the remaining three models also achieved relatively
close and acceptable results. This suggests that methods capable of
producing smooth functional approximations, such as SVR and ANN,
are particularly well suited for modeling the stress—strain relationship,
which is inherently continuous and smooth in nature.

5 Conclusion

In this study, four machine learning models—Decision Tree,
Random Forest, Support Vector Machine, and XGBoost—were
employed to predict the flow stress of annealed 7,075 aluminum
alloy. The predictive performance of these models was evaluated
using residual analysis, mean absolute error (MAE), mean squared
error (MSE), mean absolute relative error (AARE), the correlation
coefficient (R), and the coefficient of determination (R?). The results
demonstrate that all four models achieve a prediction accuracy
comparable to previously reported artificial neural network (ANN)
models (=99.9%). Importantly, their model construction process
is markedly simpler and more efficient, highlighting the practical
advantages of these approaches for flow stress prediction. On the
other hand, These models primarily capture statistical correlations
between input features (strain, strain rate, temperature) and flow stress,
but do not explicitly incorporate underlying physical mechanisms.
As a result, while predictions may be numerically accurate within
the training domain, the models provide limited mechanistic insight,
reducing their scientific interpretability compared to physics-based
constitutive equations.
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