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Research on predicting flow 
stress of 7075 aluminum alloy 
using machine learning models

Qiang Wen† , Zishen Cao† , Sida Yang† , Haoyu Tan, 
Fengzhan Zhou, Jiantao Yin, Tianhao Wang, Zhuo Qian* and 
Guoyou Gan

Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 
Kunming, China

Introduction: Accurate prediction of flow stress during the hot deformation of 
7075 aluminum alloy is essential yet challenging, as conventional constitutive 
models are often inaccurate and artificial neural network (ANN) approaches are 
computationally complex.
Methods: Hot compression experiments on as-rolled 7,075 aluminum alloy were 
carried out using a TA DIL805D thermal simulator over a temperature range of 
573–733 K and strain rates between 0.001 and 1.0 s-1. The resulting experimental 
data were subsequently used to train four machine learning models—decision 
tree, random forest, support vector machine, and XGBoost—for predicting 
the flow stress of annealed 7,075 aluminum alloy. Model performance was 
evaluated through residual analysis and several statistical indicators, including 
mean absolute error (MAE), mean squared error (MSE), average absolute relative 
error (AARE), correlation coefficient (R), and coefficient of determination (R2).
Results: The results demonstrate that, compared with previously reported 
artificial neural network (ANN) models, these four machine learning approaches 
achieve comparable predictive accuracy (up to 99.9%).
Discussion: While offering a simpler and more efficient model 
construction process.
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 1 Introduction

7,075 aluminum alloy is renowned for its high specific strength, excellent fracture 
toughness, and good corrosion resistance, making it one of the most widely used alloys in the 
7,000 series 00. These properties render it critical for manufacturing structural components 
in aerospace and automotive applications00. Hot deformation is essential for producing 
high-quality parts, with temperature, strain, and strain rate significantly influencing the 
process 00. Under various hot deformation conditions, micro structural mechanisms such 
as dynamic recovery, dynamic recrystallization, precipitation, and dissolution occur, which 
directly affect flow stress behavior00. Thus, understanding the hot deformation behavior of 
7,075 aluminum alloy is crucial for optimizing processing parameters to achieve improved 
micro structure and mechanical properties.

Conventional constitutive models, such as the strain-compensated Arrhenius model 
(SCAM) (Chen et al., 2015), have been commonly used to predict flow stress, yet they often 
exhibit limited accuracy (with AARE between 4.5% and 8.5%). Artificial Neural Networks
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(ANN) have emerged as a powerful alternative, capturing 
complex nonlinear relationships and achieving errors below 1% 
AARE (Gupta et al., 2019; Shokry et al., 2019; Li et al., 2019; 
Luo et al., 2021). However, ANN models (Zhu et al., 2020; 
Zhao et al., 2014; Sabokpa et al., 2012) require extensive architectural 
tuning and computational resources, limiting their practicality.

Although the modified Arrhenius model improves flow 
stress prediction accuracy compared to strain-insensitive models, 
it still exhibits notable deviations due to errors introduced 
by multiple linear regression during parameter identification 
(Wang et al., 2021; Zhang et al., 2018). Artificial Neural Networks 
(ANN) have emerged as a promising alternative, capable of 
capturing complex nonlinear relationships without recurring 
regression, often achieving prediction errors within 1% AARE 
(Li et al., 2020; Ma et al., 2023). However, ANN models suffer 
from significant drawbacks: their construction requires meticulous 
design of hidden layers and neuron counts, which lacks theoretical 
guidance and typically relies on exhaustive experimental tuning. 
Moreover, ANN models generally exhibit slow convergence, 
often requiring hundreds or thousands of iterations even for
simple problems.

Recent research has increasingly focused on hybrid and 
ensemble artificial intelligence (AI) models to overcome these 
limitations (Rezaei Ashtiani and Shahsavari, 2016; Rezaei Ashtiani 
and Shahsavari). For instance, Genetic Algorithm-optimized 
ANN (ANN-GA) and Grey Wolf Optimizer-enhanced Support 
Vector Regression (GWO-SVR) have demonstrated significant 
improvements in prediction accuracy and convergence speed 
(Guan et al., 2023; Chen et al., 2021; Guo et al., 2020). 
Ensemble methods such as Random Forest (RF) and Gradient 
Boosting Decision Tree (GBDT) enhance robustness and 
generalization through multi-learner integration (Dai et al., 2019; 
Zhang et al., 2021). Notably, hybrid approaches like GWO-RF 
and GWO-BPNN have shown superior performance in both 
interpolation and extrapolation contexts for high-temperature 
flow stress prediction (Yao and Bu, 2025). More recently, 
Physics-Informed Machine Learning (Liu et al., 2025) (PIML) 
has further advanced the field by embedding physical laws 
into learning processes, improving extrapolation capability and
interpretability.

Despite these advancements, relatively few studies have 
explored ensemble learning methods, such as random forest, for 
constitutive modeling. This study employs four machine learning 
models—Decision Tree (DT), Random Forest (RF), Support Vector 
Regression (SVR), and XGBoost—to predict the flow stress of as-
rolled 7,075 aluminum alloy. These models were selected as efficient 
alternatives to Artificial Neural Networks (ANN) due to their 
comparable predictive accuracy, simplified model construction, 
and reduced computational requirements. Compared to ANN 
models, which often entail complex architecture tuning and 
prolonged training, DT, RF, SVR, and XGBoost achieve similar 
performance (e.g., R2 ≈ 99.9%) while offering greater interpret 
ability, faster training, and minimal hyper parameter tuning. 
Model performance was evaluated using residual analysis, mean 
absolute error (MAE), mean absolute error (MSE), mean absolute 
relative error (AARE), correlation coefficient (R), and coefficient of 
determination (R2), confirming their suitability for modeling hot
deformation behavior. 

TABLE 1  Chemical composition (weight percentage) of annealed 7,075 
aluminum alloy (Yang et al., 2021).

Fe Si Cr Mn Ti Cu Mg Zn Al

0.20 0.07 0.21 0.06 0.02 1.54 2.68 5.76 Bal

2 Materials

Table 1 lists the chemical composition of the annealed 7,075 
aluminum alloy used in this study.

The diameter of the cylindrical samples was 10 mm and the 
height was 5.0 mm. The hot compression test is a material testing 
method used to evaluate the properties of materials at high 
temperatures and under different strain rates. The specific analysis 
is as follows: 

1. Experimental Equipment and Conditions: The experiment 
was carried out on a TADIL805D, which is a high-precision 
dilatometer used to measure the length change of materials 
during the heating or cooling process.

2. Temperature and Strain Rate: The experiment involved five 
different temperatures (460, 420, 380, 340, and 300K) and 
four different strain rates (1.0, 0.1, 0.01, and 0.001s−1). These 
conditions covered the range from room temperature to 
relatively high temperatures as well as deformation rates from 
fast to slow.

3. Heating and Soaking Process: The samples were heated from 
room temperature to the target temperature at a rate of 5K, 
and then held at the target temperature for 5 min to ensure 
temperature uniformity.

4. Compression and Cooling: The compression was stopped 
when the true strain reached 0.8, and then the samples were 
immediately cooled to room temperature at a rate of 50K/s to 
fix their micro structure.

5. Data Collection and Processing: Stress and strain data were 
obtained through a high-precision measurement system to 
ensure the accuracy and reliability of the data.

6. Data Analysis and Model Building: A total of 300 data 
points were systematically extracted from hot compression 
tests conducted under the thermal-mechanical conditions 
illustrated in the figure. These tests encompassed five 
temperature levels (573 K, 613 K, 653 K, 693 K, and 733 K) 
with a heating rate of 5 K/s, a 5-min isothermal holding at each 
target temperature, three strain rates (0.001 s−1, 0.01 s−1, and 
0.1 s−1) during deformation, and subsequent cooling to room 
temperature (RT) at 50 K/s. To ensure comprehensive coverage 
of deformation behavior, the data points were uniformly 
sampled across a strain range of 0–1.0 at 0.05 intervals, with 20 
points allocated to each combination of temperature and strain 
rate (5 temperatures × 3 strain rates × 20 points = 300 total 
points). For model development, the dataset was partitioned 
using stratified sampling into a training set (70%, 210 points) 
and a test set (30%, 90 points). This stratification preserved 
the proportional distribution of each temperature-strain rate 
subgroup in both sets (e.g., 14 training points and 6 test points 
per subgroup), ensuring balanced representation of the entire 
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parameter space. These data were utilized to build equations 
describing the material behavior.

7. Illustration of the Experimental Scheme: Figure 1 shows the 
detailed experimental scheme, including the steps of heating, 
soaking, compression, and cooling, as well as the selection and 
recording methods of data points.

When analyzing the stress-strain curves, the flow stress 
increased rapidly in the initial stage of deformation, indicating a 
strong work hardening phenomenon. The strain rate was found 
to have a pronounced effect on the flow stress of the material. 
Specifically: 1. Behavior at low strain rates: Under low strain rate 
conditions (such as 0.001 and 0.01s−1), the flow stress did not have 
an obvious peak but remained in a relatively stable flow state. This 
indicates that at slower deformation rates, the work hardening and 
dynamic softening processes are balanced, enabling the material to 
maintain stable plastic deformation. 2. Behavior at high strain rates: 
Under high strain rate conditions (such as 0.1 and 1.0s−1), the flow 
stress showed an obvious peak and then gradually decreased and 
finally stabilized. The appearance of this peak indicates that in the 
early stage of rapid deformation, work hardening dominates. As 
the deformation continues, dynamic softening mechanisms (such as 
dynamic recovery and rearrangement of dislocations) start to play a 
role, resulting in a stress decrease.

Influence of temperature on flow stress: As the deformation 
temperature increases, the flow stress level decreases. This is because 
high temperature provides more thermal energy, which promotes 
the movement and rearrangement of dislocations, thereby reducing 
the strength of the material. High temperature also leads to a 
decrease in the critical shear stress of the alloy, making the slip 
systems easier to activate and further promoting the dislocation 
slip and dynamic softening processes. Influence of strain rate on 
flow stress: An increase in strain rate will lead to an increase 
in flow stress. This is because a high strain rate means a faster 
deformation speed, reducing the time for the material to respond, 
and making the work hardening effect more significant. Under 
high strain rates, softening mechanisms (such as the annihilation 
and rearrangement of dislocations) do not have enough time to 
operate, resulting in more dislocations accumulated inside the 
material and an increase in flow stress. Non-linear relationship: The 
relationship between flow stress and temperature as well as strain 
rate is not a simple linear one. This is because the behavior of 
the material is affected by multiple complex mechanisms working 
together, including dislocation dynamics, grain boundary slip, phase 
transformation, etc. Under different temperature and strain rate 
conditions, the relative importance of these mechanisms will change, 
resulting in the change in flow stress showing complex non-linear 
characteristics.

3 Machine learning methods

Decision Tree (DT) is a supervised learning method that 
recursively partitions data into subsets using decision rules based 
on feature values, forming a tree structure where internal nodes 
represent features, branches represent feature values, and leaf 
nodes provide final predictions. Key steps include feature selection 
(using criteria such as information gain or Gini impurity), splitting 

FIGURE 1
Schematic diagram of the compression experiment (Yang et al., 2021).

the dataset, recursively building subtrees, and generating leaf 
nodes when stopping conditions—such as uniform class labels or 
maximum depth—are met.

Random Forest (RF) operates by constructing multiple decision 
trees, which are inherently non-linear models. It excels at capturing 
the complex, segmented relationships between temperature, strain, 
and stress without requiring prior transformation of the input data. 
By measuring the mean decrease in impurity, RF can quantitatively 
rank input features. This directly reveals the significance of 
the strain-temperature interaction term and other processing 
parameters, providing valuable physical insight into the dominant 
factors controlling flow stress. RF performs well on small to 
medium-sized datasets (e.g., 100–10,000 points) due to its ensemble 
averaging, which reduces variance. However, its training time can 
become computationally expensive for very large datasets.

Support Vector Regression (SVR) is a regression technique 
derived from support vector machines, designed to model complex 
relationships by fitting a function while maintaining a margin of 
tolerance (ε-insensitive band). SVR’s primary strength is handling 
non-linear relationships through the kernel trick. By employing a 
non-linear kernel, SVR can map the original input features into a 
higher-dimensional space where a linear separator can effectively 
model the highly non-linear flow stress behavior. A well-tuned 
RBF kernel can effectively model the coupled effect of strain and 
temperature without the need for manual feature engineering. SVR 
is particularly powerful for small to medium-sized datasets where its 
ability to find a global optimum and maximize margin helps prevent 
overfitting. Its performance can degrade with very large datasets 
(>10,000 samples) as training time scales sharply.

XGBoost (Extreme Gradient Boosting) is a scalable and efficient 
machine learning library based on gradient boosting, designed for 
fast and accurate modeling across large-scale datasets. It extends 
the traditional Gradient Boosting Decision Tree (GBDT) framework 
by incorporating regularization terms to control model complexity 
and reduce overfitting. Key innovations include the use of second-
order Taylor expansion to approximate the objective function, 
an approximate greedy algorithm for optimal splitting, and built-
in support for handling missing values. As a boosted tree-based 
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FIGURE 2
Structure of the BP-ANN model (Yang et al., 2021).

algorithm, XGBoost sequentially builds trees that correct the errors 
of previous ones. This makes it exceptionally powerful at learning 
complex non-linear patterns and subtle intricacies in the flow stress 
data that other models might miss, often leading to state-of-the-art 
prediction accuracy. Similar to RF.

For a Back Propagation Artificial Neural Network (BP–ANN) 
model used in (Yang et al., 2021), the selection of the number of 
network layers and the number of neurons is usually based on 
experience and practice, and there is no clear theoretical guidance. 
This is because the complexity and non - linear characteristics of 
neural networks make their behavior difficult to predict accurately. 
Generally speaking, the selection of the number of network layers 
depends on the complexity of the problem and the size of the data 
set. For simple problems and smaller data sets, fewer network layers 
are sufficient to achieve good performance. Compared with complex 
problems and large - scale data sets, deeper networks can provide 
better learning and representation capabilities. When choosing the 
number of neurons, it needs to be determined according to the 
complexity of the problem and the size of the data set. A smaller 
number of neurons may lead to under - fitting, and a larger number 
of neurons may lead to over - fitting. A common practice is to use 
methods such as cross - validation to select an appropriate number 
of neurons to achieve the best performance on the training and 
validation sets. Overall, the selection of the number of network 
layers and the number of neurons is a practical problem and needs to 
be adjusted and optimized in combination with the characteristics of 
the problem and experimental result. The architecture of the Back-
Propagation Artificial Neural Network (BP-ANN) model used in 
this study, which consists of an input layer, two hidden layers, and 
an output layer, is illustrated in Figure 2 (Yang et al., 2021).

4 Analysis and discussion

To evaluate the quality of the established models, This study 
utilized five major statistical metrics to assess (MAE, MSE, R, AARE, 
R2). MAE (Mean Absolute Error), which measures the average of 

TABLE 2  Error and correlation analysis of different models.

Metric MAE MSE R AARE R2

Model

SCAM (Yang et al., 
2021)

_ _ 0.9967 3.26% _

BP-ANN (Yang et al., 
2021)

_ _ 0.99998 0.18% _

DT 0.1810 0.1571 0.99993 0.24% 0.99986

RF 0.0988 0.0587 0.99997 0.17% 0.99995

SVR 0.0788 0.0109 0.99999 0.15% 0.99999

XGBoost 0.2171 0.2524 0.99990 0.31% 0.99978

the absolute errors between the predicted values and the actual 
values, indicates better model performance when it is closer to 
0. As an important indicator for evaluating the performance of 
regression models, MAE provides an intuitive way to understand the 
magnitude of prediction errors. The formula is as follows Equation 1:

MAE = 1
n

n

∑
i=1
|yi − ̂yi|,MAE ∈ [0,+∞) (1)

MSE (Mean Squared Error) is the mean of the sum of the 
squares of the errors at the corresponding points of the predicted 
data and the experimental data. It is also used to measure the gap 
between the predicted values and the true values. MSE is sensitive 
to outliers (because when the difference between an outlier and a 
normal value is relatively large, the error will be greater than 1, and 
the value will be further increased after taking the square). However, 
it can reflect the distribution of prediction errors. The formula is 
as follows Equation 2:
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FIGURE 3
(Continued).

MSE = 1
n

n

∑
i=1
(yi − ̂yi)

2,MSE ∈ [0,+∞) (2)

The correlation coefficient R, which measures the linear 
relationship between experimental and predicted values, is 
calculated as shown in Equation 3:

CorrelationCoefficientR =
∑N

1
(σi

exp−σexp)(σi
pre−σpre)

√∑N
1
(σi

exp−σexp)
2(σi

exp−σexp)
2

(3)

AARE (Average Relative Error) is a widely used statistical 
indicator, which is the average value of all individual relative 
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FIGURE 3
(Continued). Residuals and Correlation (R value) Analysis of Different Models (a) Decision Tress (b) Random Forest (c) Supported Vector Regression
(d) XGBoost.

errors and is used to evaluate the relative error level between 
experimental results and true values. It reflects the accuracy 
and stability of measurement data. The formula is as follows 
(Li et al., 2019) Equation 4:

AARE = 1
N

N

∑
i=1
|

σi
exp − σi

pre

σi
exp
| × 100% (4)

· σi
exp represents the experimental results, and σi

pre represents the 
results calculated according to the established constitutive model; 
σexp and σpre are the average values of σi

exp and σi
pre respectively. N is 

the total number.
R2  is a statistical indicator used to evaluate the fitting 

degree of a regression model. It represents the explanatory power 
of independent variables on dependent variables, that is, the 
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proportion of the variation of dependent variables that can be 
explained by independent variables. This coefficient can evaluate the 
strength of the linear relationship between two variables, and its 
value ranges from 0 to 1. When it is close to 1, it indicates that the 
model has a good fitting effect and has achieved the expected results. 
When it is close to 0, it indicates that the model has a poor fitting 
effect. The formula is as follows Equation 5.

R2 = 1−
∑n

i=1
(yi − ̂yi)

2

∑n
i=1
(yi − ̂y)

2
,R2 ∈ [0,1] (5)

Here, n represents the number of samples; yi represents the 
actual value; and yi

^ represents the predicted value.
All data were randomly shuffled and split into 80% training 

and 20% testing, following standard practice. Table 2 summarizes 
the performance results of the different models on the test dataset. 
As shown, all four models achieved prediction accuracy comparable 
to the BP-ANN reported in (Yang et al., 2021), despite being 
trained with relatively simple parameter settings rather than extensive 
hyperparameter tuning. Specifically, for DT, the maximum tree depth 
was set to 12; for RF, the number of estimators was set to 100 with a 
maximum depth of 9 for each tree; for SVR, we used the RBF kernel 
with kernel coefficient set to 20 and regularization parameter set to 
10,000; and for XGBoost, we used 100 estimators with a maximum 
depth of 9. Among these, SVR achieved better performance than the 
other three tree-based models. This advantage can be attributed to the 
maximum-margin principle of SVR, which fits a function within an 
ε-insensitive tube while maximizing the margin around the regression 
hyperplane. Consequently, SVR produces smooth and continuous 
functions that generalize well when the underlying relationship is 
smooth rather than discontinuous. In contrast, tree-based models 
partition the feature space into discrete regions, yielding piecewise-
constant predictions. This often introduces step-like artifacts and limits 
extrapolation beyond the training domain. 

It is noteworthy that XGBoost performed the worst among 
the four models in this study, despite the fact that it typically 
outperforms a single Decision Tree (DT) and often surpasses 
Random Forest (RF) in other applications. This discrepancy can be 
attributed to the lack of hyperparameter tuning in our experiments. 
In particular, parameters such as the learning rate, regularization 
strength, and subsampling ratios were not optimized. With the 
default learning rate (0.3) and relatively deep trees, boosting can 
easily overfit, especially when applied to small datasets. In contrast, 
RF is inherently more robust under default settings, as it reduces 
variance by averaging predictions across many uncorrelated trees. 
While XGBoost generally excels on large and complex datasets with 
strong nonlinear feature interactions, our dataset is relatively small 
(we employed the same dataset as that used in (Yang et al., 2021)). 
Under such conditions, RF or even a single DT may perform equally 
well, if not better. In small-sample regimes, the iterative corrections 
of boosting tend to chase noise rather than improve generalization.

The residual between the predicted and actual values is an 
important indicator for evaluating model accuracy. Figure 3 illustrates 
the residual distributions of the four different models. According 
to (Yang et al., 2021), the SCAM model exhibits residuals of 
approximately ±8 MPa, indicating a relatively large error between 
predictions and experimental values. In contrast, the BP-ANN 
model achieves residuals within ±1 MPa, reflecting much higher 

accuracy. In Figure 3, both the DT and RF models show residuals of 
about ±2 MPa, while the SVR model achieves residuals within ±1 MPa. 
The XGBoost model, however, yields residuals of approximately 
±4 MPa. These results highlight the performance differences among 
the models. Overall, the BP-ANN and SVR models demonstrated the 
best predictive performance, with the smallest residuals and highest 
accuracy, whereas the remaining three models also achieved relatively 
close and acceptable results. This suggests that methods capable of 
producing smooth functional approximations, such as SVR and ANN, 
are particularly well suited for modeling the stress–strain relationship, 
which is inherently continuous and smooth in nature. 

5 Conclusion

In this study, four machine learning models—Decision Tree, 
Random Forest, Support Vector Machine, and XGBoost—were 
employed to predict the flow stress of annealed 7,075 aluminum 
alloy. The predictive performance of these models was evaluated 
using residual analysis, mean absolute error (MAE), mean squared 
error (MSE), mean absolute relative error (AARE), the correlation 
coefficient (R), and the coefficient of determination (R2). The results 
demonstrate that all four models achieve a prediction accuracy 
comparable to previously reported artificial neural network (ANN) 
models (≈99.9%). Importantly, their model construction process 
is markedly simpler and more efficient, highlighting the practical 
advantages of these approaches for flow stress prediction. On the 
other hand, These models primarily capture statistical correlations 
between input features (strain, strain rate, temperature) and flow stress, 
but do not explicitly incorporate underlying physical mechanisms. 
As a result, while predictions may be numerically accurate within 
the training domain, the models provide limited mechanistic insight, 
reducing their scientific interpretability compared to physics-based 
constitutive equations. 
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