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In metamaterial science, local resonance and hybridization are key phenomena strongly 
influencing the dispersion properties; the metasurface discussed in this article created 
by a cluster of resonators, subwavelength rods, atop an elastic surface being an exem-
plar with these features. On this metasurface, band-gaps, slow or fast waves, negative 
refraction, and dynamic anisotropy can all be observed by exploring frequencies and 
wavenumbers from the Floquet–Bloch problem and by using the Brillouin zone. These 
extreme characteristics, when appropriately engineered, can be used to design and 
control the propagation of elastic waves along the metasurface. For the exemplar we 
consider, two parameters are easily tuned: rod height and cluster periodicity. The height 
is directly related to the band-gap frequency and, hence, to the slow and fast waves, 
while the periodicity is related to the appearance of dynamic anisotropy. Playing with 
these two parameters generates a gallery of metasurface designs to control the prop-
agation of both flexural waves in plates and surface Rayleigh waves for half-spaces. 
Scalability with respect to the frequency and wavelength of the governing physical laws 
allows the application of these concepts in very different fields and over a wide range of 
lengthscales.

Keywords: vibrations, metamaterials, finite element analysis, elasticity, Bloch theory, ultrasonics, anisotropy

1. inTrODUcTiOn

Recent years have witnessed the increasing popularity of metamaterial concepts, based on the 
so-called local resonance phenomenon, to control the propagation of electromagnetic (Pendry 
et  al., 1999; Smith et  al., 2004b; Ramakrishna and Grzegorczyk, 2008; Werner, 2016), acoustic, 
and elastic (Liu et al., 2000; Craster and Guenneau, 2012) waves in artificially engineered media. 
Initially, attention focused on the existence of subwavelength band-gaps generated by the resona-
tors (Pendry et al., 1998; Movchan and Guenneau, 2004; Achaoui et al., 2011; Lemoult et al., 2011; 
Colombi et al., 2014), and resulting frequency-dependent effective material parameters for negative 
refraction and focusing effects (Pendry, 2000; Smith et al., 2000; Yang et al., 2002; Li and Chan, 
2004), and now consideration is transitioning to methods for achieving more complete forms of 
wave control by encompassing tailored graded designs to obtain spatially varying refraction index 
(Pendry et al., 2006), wide band-gaps and mode conversion. In the fields of photonics and acoustics, 
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this transition has already taken place and new graded designs 
allow for the tailored control of the propagation of light (Kadic 
et  al., 2011; Maradudin, 2011), micro-waves (Schurig et  al., 
2006), water waves (Farhat et  al., 2008), and sound (Cummer 
and Schurig, 2007; Zhang et  al., 2011; Romero-Garcia et  al., 
2013; Chen et al., 2014). Elastodynamic media have, in contrast 
to acoustic and electromagnetic systems, additional complexity 
such as supporting both compressional and shear wave speeds 
that differ and which mode converts at interfaces (Craster and 
Guenneau, 2012). On the one hand, this makes elastic metama-
terials complex to model and require the use of computational 
elastodynamic techniques (Colombi et al., 2016b), on the other 
hand, it offers new control possibilities not achievable in the elec-
tromagnetic or acoustic cases. Wave control has implications in 
several disciplines and the discoveries of metasurface science are 
currently being translated into several applications. If we limit 
our discussion to elastic metamaterials, potential applications 
could be implemented at any lengthscale. On the large scale, 
seismic metamaterials have become very popular (Brûlé et al., 
2014; Finocchio et  al., 2014; Dertimanis et  al., 2016; Miniaci 
et al., 2016; Achaoui et al., 2017). At smaller scale, in mechanical 
engineering, applications based on wave redirection and pro-
tection are currently being explored (Colombi, 2016; Colombi 
et al., 2017) to reduce vibrations in high precision manufactur-
ing and in laboratories for high precision measurements (e.g., 
interferometry) or in the field of ultrasonic sensing to amplify 
signal to noise ratio. In the field of acoustic imaging, the tailored 
control of hypersound (elastic waves at GHz frequencies), used 
for cell or other nano-compound imaging or energy conversion 
and harvesting (Davis and Hussein, 2014; Della Picca et  al., 
2016), is emerging as one of the most promising applications 
of energy trapping and signal enhancement through metama-
terials. Furthermore, at this small scale, novel nanofabrication 
techniques deliver the tailoring possibilities required for graded 
devices (e.g., Alonso-Redondo et al., 2015; Rey et al., 2016).

Among the possible resonant metasurface designs for elastic 
waves proposed in recent years (e.g., Baravelli and Ruzzene, 
2013; Miniaci et al., 2015; Lee et al., 2016; Matlack et al., 2016; 
Galich et  al., 2017; Tallarico et  al., 2017), the one made of a 
cluster of rods (the resonators) (Pennec et  al., 2008; Wu et  al., 
2008; Achaoui et al., 2011; Colombi et al., 2016c) on an elastic 
substrate has revealed superior characteristics and versatility of 
use in particular toward the fabrication of graded design. The 
physics of this metasurface is well described through a Fano-like 
resonance (Miroshnichenko et al., 2010). A single rod attached 
to an elastic surface couples with the motion of both the A0 mode 
in a plate or the Rayleigh wave on a thick elastic substrate (half-
space). This coupling is particularly strong at the longitudinal 
resonance frequencies of the rod. At this point, the eigenvalues 
of the equation describing the motion of the substrate and the 
rod are perturbed by the resonance and become complex lead-
ing to the formation of a band-gap (Landau and Lifshitz, 1965; 
Perkins and Mote, 1986). When the resonators are arranged on 
a subwavelength cluster (i.e., with λ, the wavelength >> than the 
resonator spacing), as in the metasurface discussed here, the 
resonance of each rod acts constructively enlarging the band-gap 
until, approximately, the rod’s anti-resonance (Rupin et al., 2014; 

Colombi et  al., 2016c). Thus, the resulting band-gap is broad 
and subwavelength. Because the resonance frequency of the rod 
drives the band-gap position, a spatially graded metasurface is 
simply obtained by varying the length of the rods, which directly 
underpins the resonance frequency. Thus, the length of the rod 
appears to be the key parameter for the metasurface tunability, 
although the periodicity and distribution of the rods cannot be 
ignored as they also influence the dispersion curves leading to 
zone characterized by dynamic anisotropy and negative refrac-
tion (Kaina et al., 2015). These effects are important as they may 
be used to generate highly collimated waves or for subwavelength 
imaging. Our purpose in this work is to complement the research 
on local resonance and slow and fast waves, with the study of the 
dynamic anisotropy effect (Colquitt et al., 2011) when the rods 
are periodically arranged on the elastic surface.

In fact, it has been recently realized that many novel features 
of hyperbolic metamaterials such as superlensing and enhanced 
spontaneous emission (Poddubny et al., 2013) could be achieved 
thanks to dynamic anisotropy in photonic (Ceresoli et al., 2016) 
and phononic crystals (Colquitt et al., 2011; Antonakakis et al., 
2014b). For instance, the high-frequency homogenization theory 
(Craster et  al., 2010) establishes a correspondence between 
anomalous features of dispersion curves on band diagrams with 
effective tensors in governing wave equations: flat band and 
inflection (or saddle) points lead to extremely anisotropic and 
indefinite effective tensors, respectively, that change the nature of 
the wave equations (elliptic partial differential equations can turn 
parabolic or hyperbolic depending upon effective tensors). This 
makes analysis of dynamic anisotropy a potentially impactful 
work.

The first half of the article is dedicated to the review of the state 
of the art on the control of flexural and Rayleigh waves with rods 
on an elastic substrate. This part will collect the major achieve-
ments and milestones obtained by our research group in the past 
3 years. In the second part, we will present another characteristic 
of this metasurface analyzing the 2D dispersion curves and the 
effect of dynamic anisotropy in the subwavelength regime. The 
results (Figures 1 and 2) are presented using state of the art 2D or 
3D time domain spectral element simulations (SPECFEM2D/3D, 
for an extensive introduction (Komatitsch and Martin, 2007; 
Peter et al., 2011; Rietmann et al., 2012)), while dispersion curves 
have been computed analytically for 1D cells (Figure 1), or via 
COMSOL Multiphysics for 2D elementary cells (Figures 3 and 4).

2. earlY resUlTs: PlaTe Vs. inFiniTe 
halF-sPace MeTaMaTerial

We start by recalling results obtained with a metamaterial, intro-
duced in 2014, made from a thin elastic plate and a cluster of 
closely spaced resonators (see model in Figure 1A) both made 
of aluminum. At that time, despite the limited knowledge of 
the metasurface dispersion properties, the cluster of resonators 
immediately showed surprising phenomena such as the presence, 
in the Fourier spectra, of large subwavelength band-gaps (Rupin 
et al., 2014) affecting the propagation of the A0 mode in the thin 
plate in the kHz range. Around the same time, Colombi et  al. 
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FigUre 1 | (a) The metamaterial discussed in this article is made of a plate and a cluster of closely spaced rods in the same material. It is characterized by a hybrid 
dispersion curve (blue line), very different from the A0 mode (red line) that propagates in a reference pristine plate excited by a vertical force. The plate and the rods 
are made of aluminum. The inset shows the fundamental longitudinal mode shape that generates the hybrid curve and the band-gap (shaded region). In this 
formulation, flexural modes are neglected and the colorcode represents the vertical displacement. (B) Same as (a) but for the second type of metamaterial 
discussed here: a 2D elastic half-space where rods are attached to the top surface creating a band-gap for Rayleigh waves. Contrarily to the plate case, the 
reference half-space is characterized by non-dispersive Rayleigh (red), S-wave (green), and P-wave (gray) dispersion curves.
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(2014) demonstrated that by exploiting the stop band, waves can 
be trapped in a very subwavelength cavity and that energy could 
be tunneled through the metasurface by inserting a defect, with 
an approach reminiscent of phononic crystal applications. These 
early attempts to compute the dispersion curves of the metasur-
face for a given rod size and spacing were based on array methods 
that projected the time series recorded from either experiment or 
numerical simulation on the frequency wavenumber plane (f − k 
plane). These preliminary results confirmed the resonant nature 
of the band-gap and uncovered another striking characteristic 
of the metamaterial: the nearly flat branches occurring at edges 
of the Brillouin zone before and after the band-gap. These flat 
branches represent, for high wavenumbers, very slow modes. 
Conversely for k approaching the origin, these modes travel 
very fast. The analytical calculation of the dispersion properties 
by Williams et al. (2015) (e.g., the plot in Figure 1A), means we 
can now fully harness the power of this metasurface and use the 
concept of fast and slow modes to fully control the propagation 
of waves in a plate (Colombi, 2016). For completeness, we report 
that similar dispersion curves could be computed using the plate 

with sprung masses developed in Xiao et al. (2012) and Torrent 
et al. (2013). Before showing the effects of the tailored wave con-
trol, we continue our digression into the important applications 
of elastic resonators on an elastic surface. It has been known since 
Khelif et al. (2012) that short pillars (or other type of resonators 
(Boechler et  al., 2013)) on an elastic half-space can alter the 
dispersion curves by introducing Bragg and resonant band-gaps 
for Rayleigh waves. However, the use of longitudinally elongated 
resonators, such as the rods shown in Figure 1B, allow for a much 
clearer separation of the longitudinal mode (responsible for the 
band-gap) from other flexural resonances that will be discussed 
in the last section of this article. This has the twofold advantage of 
pushing the band-gap to the subwavelength scale, simultaneously 
increasing its breadth, and also simplifying the analytical descrip-
tion of the metamaterial. From an analytical point of view, the thin 
elastic plate metasurface can still be treated as a scalar problem as 
one can use Kirchhoff ’s plate theory coupled with a longitudinal 
wave equation for the rod. In an elastic half-space, this is no longer 
possible and the full elastic equation must be used to describe 
its physics. With this concept in mind, Colquitt et  al. (2017)  
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FigUre 2 | Examples of control achieved through this resonant metamaterial for different types of waves (Flexural or Rayleigh) and lengthscale. Colorcode 
represents the vertical displacement calculated from time domain numerical simulations. (a) Band-gaps can stop the propagation of flexural and Rayleigh waves 
leaving desired regions free of vibrations. (B,c) Elastic energy can be guided or focused with gradient index lenses. (D) Rayleigh wave band-gap created by the 
constant height resonators. (e) Waves can be spatially segregated depending on the frequency and strongly amplified. (F) Rayleigh waves can be converted to 
S-waves and redirected in the bulk. The aspect ratio of the rods and the height gradient are not in scale to better present the concept.
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constructed an analytical formulation for the dispersion curve 
of a 1D array of resonators on the half-space considering only 
the longitudinal modes of the rods. From visual inspection of 
the plot in Figure  1B, besides the obvious lack of dispersion 
for body and Rayleigh waves in the half-space (by contrast, the 
A0 mode in Figure 1A is strongly dispersive) and the different 
frequency and size of the model (meters and kHz for the plate and 
centimeters and MHz for the half-space), a similar hybridization 
mechanism (Miroshnichenko et al., 2010) creates the band-gap 
in both systems. However, in the half-space, the maximum speed 
of the system is bounded by the shear S-wave line. These obser-
vations are consistent with the physical interpretation that the 
vertical component of the elliptically polarized Rayleigh waves, 
usually traveling slower than the shear wave, couples with the 
longitudinal motion of the resonator. The presence of these band-
gaps have inspired the development of seismic metamaterials for 
Rayleigh waves (Colombi et al., 2016c) where the close relation-
ship between shear S- and Rayleigh waves in the half-space lead 
to unexpected wave phenomena in the metamaterial. As chiefly 

demonstrated in Colombi et al. (2016a) and Colquitt et al. (2017), 
the resonance creates a hybrid branch bridging the Rayleigh line 
with the S-wave line. Through a graded resonators design (e.g., 
decreasing or increasing rod’s height), the conversion becomes 
ultra-broadband, a key requirement for practical engineering 
applications.

3. gallerY OF cOnTrOl POssiBiliTies 
achieVeD BY TUning The rOD lengTh

The rich physics encoded within the hybrid dispersion curves 
that we have just described for the plate and half-space cases can 
be translated into extraordinary wave propagation phenomena. 
Furthermore, scalability is one of the strong characteristics of 
metamaterials which makes them applicable in different wave 
realms and lengthscales. With the following examples, we 
demonstrate that applications for the two different settings and 
lengthscale introduced in Figures 1A,B, namely the elastic plate 
and the half-space. This choice is made to remain coherent with 
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A B

FigUre 3 | (a) Complete dispersion curves for an infinitely periodic 2D layout of rods on an elastic plate. The size of the unit-cell and the irreducible Brillouin zone 
(Γ − M − X − Γ) is given at the top. The colorcode superimposed on the dispersion curves represents the motion polarization of the rod. The bare-plate reference A0 
has been relocated in the same crystallographic direction as Figure 1a. Snapshots from frequency domain numerical simulation clarify the modal deformation 
associated with each resonance. (B) Same as (a) but for the half-space. Here, the propagative zone is bounded by the S-wave (green) maximum velocity 
(analogous of the so-called light-line in plasmonics).
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our previous laboratory and numerical studies on these structures 
(Rupin et al., 2014; Colombi et al., 2017). The description starts 
from Figure 2A, snapshots extracted from a numerical simula-
tion (Colombi et al., 2014) show the band-gap created by a small 
cluster of resonators located on top of a thin elastic plate. The field 
has been filtered inside the band-gap at a frequency between 2 
and 3 kHz (6-mm-thick plate and 60-cm-long rods, both made 
of aluminum). The band-gap frequency f directly depends on the 
resonator length h and, therefore, can be easily tuned by selecting 
longer or shorter rods using the well known formula:

 
f

h
E

= ,
1

4 ρ  
(1)

where E its Young’s modulus and ρ its density. This formula is valid 
when the substrate is sufficiently stiff, for seismic metamaterials, 
where the resonator might be supported by a soft sediment layer, 
the contribution of the substrate must be taken into account when 
calculating the resonance frequency (Colombi et al., 2016c).

In Figures 2B,C, we exploit the effective wave velocity (slow 
waves) that is locally achieved in the metamaterial. In these 
figures, we show two types of the so-called graded index lenses 
(Sarbort and Tyc, 2012) well known for their capacity to focus and 
re-route waves without aberration and reflection. These lenses 
are characterized by a radially varying velocity profile decreasing 
from the outside to the inside. By considering 4-kHz flexural 
waves, h varies approximately between 60 and 80  cm while in 
Figure 2B while between 60 and 90 cm for the case in Figure 2C 

(full details as well as refraction, velocity, and height profiles 
for these and other lenses are available in Colombi (2016)). In 
practice, such a material is very difficult to fabricate unless one 
uses layers of different material (Torrent et al., 2014) or a graded 
thickness profile for the plate case (Dubois et al., 2013; Climente 
et  al., 2014). For the half-space, this is clearly not possible. By 
using the slow modes of the flat branch occurring before the 
band-gap (see dispersion curves in Figures 1A,B), these veloc-
ity gradients can be achieved by tailoring the resonator height 
distribution to the velocity profile required by the lens. This step 
is better achieved using the analytical form of the dispersion 
curve as shown in Colombi (2016) derived using the theory from 
Williams et al. (2015). Although only the results for the plate have 
been currently published (Colombi, 2016), the same method can 
be applied to Rayleigh waves too with the theory developed by 
Colquitt et al. (2017).

In the remaining three figures, the description moves to the 
control of Rayleigh waves. Unlike the plate case where the physics 
can be captured in the plane, here it is important to describe the 
whole wavefield inside the half-space. For this reason, 2D simula-
tions in the P − SV plane (plane strain) are now shown. Technical 
details on how these simulations have been implemented can be 
found in previous studies (Peter et al., 2011; Colombi et al., 2015, 
2016a). As already anticipated in Figure  1B, the first snapshot 
shows the band-gap (here the field is filtered between 0.35 and 
0.4 MHz) produced by an array of resonators of constant height. 
In Figure 2E, we show the well-known phenomena of rainbow 
trapping (Tsakmakidis et al., 2007; Romero-Garcia et al., 2013; 
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FigUre 4 | (a) A zoomed section around the first longitudinal resonance of the dispersion curves in Figure 3a reveals the strong dynamic anisotropy of this region. 
(B) The isofrequency contours in the ky = (− π/d, π/d) and ky = (− π/d, π/d) space show the hyperbolic behavior of the system around the inflection point.  
(c) Snapshot taken from a time domain numerical simulation with the source located at the center of a cluster of rods. The field has been filtered in the band point 
by the arrow in the dispersion curve plot. The colorscale represents the vertical component of the displacement field. To ease the visualization of the anisotropic 
pattern, the plate is represented from the backside and a transparency filter is applied outside the metamaterial to show both the rods and the field in the bare plate. 
(D–F) Same as (a–c) but for the rods cluster on a half-space. In this case, we only show the vertical displacement field on the top surface. While the actual shape 
and dimension of the numerical model is sketched with thin black lines.
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Zhu et  al., 2013) for elastic waves (Colombi et  al., 2016a). The 
combined graded and resonant structure allows the incoming 
Rayleigh waves to be slowed down selectively at different propa-
gation distances inside the metasurface, and eventually to be 
trapped in a subwavelength area. The trapping process culminates 
with a strong signal amplification followed by a reflection (in a 
lossless media) (Colombi et al., 2017). As for the lens case, this 
effect is completely due to the slow branch occurring below the 
band-gap. The graded array of resonators (resonant metawedge) 
enhances this effect and makes this device completely broadband 
(inversely proportional to the height). Note that, compared to 
the band-gap described in Figure  2D, here the Rayleigh wave 
remains confined to the surface while a broadband band-gap is 
produced after the wedge; for clarity of presentation, we have 
used a monochromatic source of Rayleigh waves at 0.5  MHz 
(Colquitt et al., 2017). When the wedge orientation is reversed, 
as in Figure 2F, the surprising phenomenon of modal conversion 
is obtained and the graded profile enhances the conversion on a 
large frequency band; in the previous section, this was already 
anticipated from the analysis of the dispersion curves. An alterna-
tive but straightforward description of trapping and conversion 
can be derived by plotting the dispersion curves as a function 

of the resonator length versus frequency as demonstrated in 
Colombi et al. (2016a). The control possibilities emerging from 
this discussion suggest tremendous potential for applications of 
these metamaterials toward vibration reduction and enhanced 
sensing. In this section, we have not specified yet whether these 
phenomena depend, or not, on the periodicity of the resonator 
distribution in the metamaterial. Because local resonance is at the 
origin of the effects presented, so far the answer is no for all of 
them. However, in the next section, we will explore the important 
implications of periodicity.

4. PeriODiciTY, DYnaMic anisOTrOPY, 
anD hYPerBOlic BehaViOr

The height of the rods is not the only parameter available in terms 
of design of the metasurface. Solid-state physics informs us that 
the lattice periodicity and spacing also matter as that generates, 
in particular, Bragg-type scattering. Dynamic anisotropy, which 
is anisotropy observed in the wavefield, which changes as fre-
quency varies, is a common feature in phononic crystals with 
the most extreme situation being that where the wave energy is 
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confined to “rays” with the field taking a cross-like form. Despite 
this, it has only marginally been associated with subwavelength 
metamaterials (Kaina et al., 2015; Maznev et al., 2015) with most 
work carried out in the context of phononic crystals. This sec-
tion explores how anisotropy is obtained with this metasurface 
design. We introduce in Figures 3A,B the dispersion curves for a 
2D array of resonators, respectively, on a plate and on an infinite 
elastic support (half-space). The analysis is carried out inside the 
well-known irreducible Brillouin zone defined on the wavevector 
plane k = (kx, Ky) by the three points of coordinates: Γ = (0, 0), 
M = (π/d, π/d), and X = (π/d, 0) where d is the pitch of the array 
of resonators. Given the complexity of the 3D problem, the model 
is solved numerically and includes all the admissible modes of 
the unit cell, not only, as previously done, the elongation of the 
rods. The resulting dispersion curves are characterized by several 
resonances that make it hard to distinguish the longitudinal one. 
To aid interpretation we plot, along with the curve, the ratio 
between the vertical value and the longitudinal value of the 
eigenfunction measured at the top of the resonator (where for all 
modes, the displacement reach a maximum (Ewins, 2000)). High 
values mean that the motion is vertically polarized, conversely 
low value means that motion is horizontal; this interpretation 
is further confirmed associating with each resonance its modal 
deformation.

The size of the unit cell in Figure 3A is chosen to be similar 
to the cluster configuration in our previous work (Colombi et al., 
2014; Rupin et al., 2014), where we have used a 6 mm plate and 
60 cm rods both made of aluminum. The eigenvalue analysis is 
done using COMSOL and we make use of the built-in Bloch–
Floquet boundary conditions to mimic an infinite 2D array of 
rods that are 3-cm-spaced. The bare plate dispersion curve 
is shown in red for the Γ-X direction that is equal to the con-
figuration in Figure 1A (although without flexural resonances). 
Thanks to the colorcode used, the longitudinal modes are clearly 
identified in the dispersion curves. Given the lattice size, the 
first longitudinal mode is very subwavelength ~λ/8. While the 
zoomed detail around this resonance is shown in Figure 4, we can 
already distinguish the change in curvature that is responsible 
for the dynamic anisotropy behavior. The other flat branches are 
mainly flexural modes (except for some breathing mode of the 
resonator). These are all double modes because the resonator is 
free to move in both directions. In Figure 3B, we repeat the same 
analysis for the half-space. The dimensions of the unit cell are 
similar to those for the plate although the spacing is slightly larger 
to improve the visualization of the anisotropy in Figure 4B. A 
technical detail is that, to mimic the infinite character of the half-
space, we have applied an absorbing boundary at the lower side 
of the computational cell (see COMSOL Structural Mechanics 
Module documentation). The physics of the wave propagation in 
the half-space differs from the plate case mainly because of the 
lack of dispersion (see the straight dispersion curves for the bare 
half-space) and the higher speed of the waves. In this configura-
tion however, the longitudinal resonance is only slightly subwave-
length ~λ/3. Clearly, by using a longer resonator, the band-gap 
can be pushed to a much lower frequency but the curvature of 
the longitudinal resonance is then shrunk down to a fraction of 
the Hertz, making the visualization of the anisotropy practically 

impossible as the effect is so sensitive that small numerical or 
manufacturing variations would spoil the expected result.

We now focus on the anisotropic behavior by zooming in to 
frequencies close to the longitudinal modes. A detailed view of 
the first mode of the plate is depicted in Figure 4A. We can clearly 
appreciate the slope change that occurs before the resonance. A 
spectral element simulation in the time domain shows a snapshot 
of the wavefield filtered around the inflection point of the mode. 
An array of 20 × 20 resonators, spaced and sized according to 
Figure 3A, is placed at the center of the plate. Because the plate 
boundaries are reflecting, to improve the visualization despite the 
reverberations, we have smoothed the square array removing the 
corner. The cluster is in fact octagonal. The shape and size of the 
plate are identical to the one used in Rupin et al. (2014), so this 
phenomenon could be easily verified experimentally. The source 
is located in the middle of the array and, in our case, it is broad-
band Gaussian pulse. The cross-shaped anisotropic profile, as well 
as the strong contrast between the wavelength inside and outside 
the plate, is clearly visible, and reminiscent of wave patterns in 
negatively refracting and hyperbolic metamaterials.

Using the same modeling technique, dynamic anisotropy 
also characterizes the half-space and it is indeed visible in the 
numerical results of Figure  4B. The half-space is simulated 
applying perfectly matched layers on the side and on the bot-
tom surface. The snapshot show the vertical component of the 
displacement filtered at the inflection point. As for the case of the 
plate, a similar cross is visible. However, here we observe a strong 
spatial attenuation of the field due to the fact that waves are free 
to propagate or scatter downward, while in the plate they were 
guided (e.g., Figure 2D).

At this stage, we note that there is a vast literature on elec-
tromagnetic hyperbolic metamaterials, which were theorized by 
David Smith and David Schurig almost 15 years ago in the context 
of negatively refracting media described by electric permittivity 
and magnetic permeability tensors with eigenvalues of opposite 
signs (Smith and Schurig, 2003; Smith et al., 2004a). These media 
originally thought of as an anisotropic extension of John Pendry’s 
perfect lens (Pendry, 2000; Luo et  al., 2002) take their name 
from the topology of the isofrequency surface. In an isotropic 
homogeneous medium (e.g., vacuum in electromagnetics and 
air in acoustics), the linear dispersion and isotropic behavior 
of transversely propagating (electromagnetic or sound) waves 
implies a circular isofrequency contour given by the dispersion 
equation k k cx y

2 2 2 2+ = /ω  with k = (kx, ky) the wavevector, ω the 
angular wave frequency, and c the wavespeed of light or sound 
waves. In a transversely anisotropic effective medium, one has 
T k T k cyy x xx y

2 2 2 2+ = /ω , where Txx and Tyy are entries of the (inverse 
of) effective tensor of permittivity or mass density, shear or 
Young’s moduli, etc. depending on the wave equation. It is well 
known that the circular isofrequency contour of vacuum distorts 
to an ellipse for the anisotropic case. However, when we have 
extreme anisotropy such that TxxTyy < 0 the isofrequency contour 
opens into an open hyperbole. In electromagnetics, such a phe-
nomenon requires the metamaterial to behave like a metal in one 
direction (along which waves are evanescent) and a dielectric in 
the other and similarly, in acoustics and platonics. A hallmark of 
hyperbolic media is an X-shape wave pattern for emission of a 
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source located therein (Poddubny et al., 2013), reminiscent of the 
hyperboles arising from the dispersion relations. Note, of course, 
that if both entries of the effective tensor are negative, this means 
that waves are evanescent in all directions, what corresponds to a 
metal in electromagnetics.

In the case of structured Kirchhoff–Love plates, one can apply 
the method of high-frequency homogenization in the vicinity of the 
inflection point indicated in Figure 4A to obtain a homogenized 
partial differential equation describing the effective behavior of 
the plate in the neighborhood of such resonances. Remarkably, 
although the governing equation for Kirchhoff–Love plates involves 
the fourth-order biharmonic operator (Graff, 1975), it was shown 
in Antonakakis and Craster (2012) and Antonakakis et al. (2014b) 
that the effective partial differential equation describing the long-
scale behavior of the structured plate near such resonances is of the 
form T k T k cyy x xx y

2 2 2 2+ = /ω , where TxxTyy < 0. The fact that the effec-
tive rigidity tensor is diagonal and negative-definite results in the 
structured plate being strongly anisotropic in the dynamic regime 
and Lamb waves propagate through the plate as if propagating in a 
hyperbolic medium, as discussed above.

Even more remarkably, for the case of linear elasticity, it was 
shown in Antonakakis et al. (2014a) that one can use the method of 
high-frequency homogenization to obtain effective partial differ-
ential equations of precisely the same form as above for Kirchhoff–
Love plates; this, together with the fact that similar features exist in 
Figure 4B, corresponding to an inflection point on the dispersion 
curves for Rayleigh waves propagating on structured half-spaces, 
suggests that analogous effects may be obtained for surface waves 
traveling over suitably structured elastic half-spaces.

5. FUTUre PersPecTiVes

Devices based on exploiting band-gap phenomena, as seismic 
shields using ideas from Bragg-scattering (Brûlé et  al., 2014; 
Miniaci et  al., 2016) or zero-frequency stop-bands (Achaoui 
et  al., 2017), are gaining in popularity. At this large scale, an 
important analogy may exist between the metamaterial discussed 
here and clusters of high-rise buildings in urban areas. During 
an earthquake, the combined effects of building–soil interactions 
(Wong and Trifunac, 1975) and site–city effects (Guéguen et al., 
2002) may lead to buildings acting as local resonators spatially 
modifying the distribution of the ground motion intensity. Given 
the nuisance of ground vibration, and the importance of elastic 
wave control, for the urban environment, this will be an area of 
growing importance; the additional degrees of freedom, control 
over sub-wavelength behavior, and the broadband features that 
can be utilized using the resonant sub-wavelength structures 
discussed herein make them very attractive alternatives. At 
smaller scale, one moves toward the manipulation of mechani-
cal waves in vibrating structures, again it is the long wave and 
low-frequency waves that one often wants to control and, again, 
these are precisely the waves that are targeted by sub-wavelength 
resonator array devices. The ability to spatially segregate waves 
by frequency, the field enhancement, and potential to mode 
convert surface to bulk waves, Figures 2D–F, are all phenomena 
with practical importance. Similarly, the ability to control surface 
waves to create concentrators and surface lenses, and the ability 

to redirect waves, using sub-wavelength arrays, Figures 2A–C, 
are powerful examples to draw upon for devices. The combined 
features of a flat band and a change of curvature near the inflec-
tion point in Figure 4 mean that we are in a position to achieve 
effective parameters with eigenvalues of opposite sign exhibiting 
very different absolute values. So one can imagine controlling 
Rayleigh waves that would undergo simultaneously positive and 
negative refraction on the subwavelength scale, and this could 
lead to cloaking devices analogous to hyperbolic cloaks in electro-
magnetics (Kim et al., 2015). At the geophysics scale, applications 
of hyperbolic cloaks for Rayleigh waves are in seismic protection. 
It has been also suggested that one can achieve black hole effects 
(Krylov, 2014) in hyperbolic metamaterials (Smolyaninov et al., 
2012), and this would have interesting applications in energy 
harvesting for Rayleigh waves propagating through arrays of 
rods at critical frequencies. Regardless of the application, these 
advanced control concepts exploiting slow waves will be better 
studied also considering losses and non-linearity in the propaga-
tion (e.g., Krushynska et al., 2016; Schwan et al., 2017).

Given the relative youth of metamaterials, as a field, and the 
very recent translation of metamaterial concepts to elastic plate, 
and elastic bulk, media, there are undoubtedly many phenomena 
that will translate across from the more mature optical metama-
terial field. Metasurfaces have become popular in optics as they 
can be created to combine the vision of sub-wavelength wave 
manipulation, with the design, fabrication, and size advantages 
associated with surface excitation. These powerful concepts, and 
the degree of control available, are driving progress in optics 
toward flat optical lenses and devices (Yu and Capasso, 2014); 
the elastic analogs of these optical metasurfaces are those we 
describe here and we anticipate similar progress in the design of 
mechanical devices.
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