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With emerging research on the dynamics of extreme fire behavior, it is increasingly

important for wind models, used in operational fire prediction, to accurately capture areas

of complex flow across rugged terrain. Additionally, the emergence of ensemble and

stochastic modeling frameworks has led to the discussion of uncertainty in fire prediction.

To capture the uncertainty of modeled fire outputs, it is necessary to recast uncertain

inputs in probabilistic terms. WindNinja is the diagnostic wind model currently being

applied within a number of operational fire prediction frameworks across the world. For

computational efficiency, allowing for real-time or faster than real-time prediction, the

physical equations governing wind flow across a complex terrain are often simplified.

The model has a number of well documented limitations, for instance, it is known to

perform poorly on leeward slopes. First, this study is aimed at understanding these

limitations in a probabilistic context, by comparing individual deterministic predictions to

observed distributions of wind direction. Secondly, a novel application of the deterministic

WindNinja model is presented in this study which is shown to enable prediction of

wind direction distributions that capture some of the variability of complex wind flow.

Recasting wind fields in terms of probability distributions enables a better understanding

of variability across the landscape, and provides the probabilistic information required

to capture uncertainty through ensemble or stochastic fire modeling. The comparisons

detailed in this study indicate the potential for WindNinja to predict multi-modal wind

direction distributions that represent complex wind behaviors, including re-circulation

regions on leeward slopes. However, the limitations of using deterministic models within

probabilistic frameworks are also highlighted. To enhance fire prediction and to better

understand uncertainty, it is recommended that statistical approaches also be developed

to complement existing physics-based deterministic wind models.

Keywords: complex terrain, deterministic, ensemble models, probability distributions, uncertainty, von Mises,

wind modeling, WindNinja
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1. INTRODUCTION

The accurate prediction of wind fields across all types of
terrain is fundamental to capturing the range of possible
spreading patterns a fire can exhibit. Operational wind and fire
spread models are typically deterministic; a single collection
of input variables gives rise to a single and fixed prediction
value. However, wind fields and fire spread are driven by
a range of processes which can experience variations at
multiple scales, some of which cannot be fully captured within
operationally constrained models. This gives rise to uncertainty
in predicted fire behaviors. To address this uncertainty,
probabilistic modeling techniques have emerged in the field of
fire prediction.

Newly developed fire modeling frameworks allow for the
prediction of fire perimeters and characteristics with associated
probabilities, resulting in scenarios being analyzed in the
context of risk and likelihood. Cruz (2010) noted that ensemble
predictions would extend the interpretation of predicted
outcomes, not necessarily improving individual prediction
accuracy but providing more information to model end users.
Even in early fire modeling research, Kourtz (1972) indicated
potential improvements in the reliability of predictions by using
such techniques. More recently, it was demonstrated that the
ensemble-based decision support tool, FireDST, was able to
produce a probabilistic prediction that adequately covered the
actual extent of an observed fire, as such implying that it is
plausible to view the actual fire as a realization of the ensemble
distribution. This approach allowed for the provision of detailed
probabilistic information about exposure and potential losses
(French et al., 2013). Such information could be scrutinized by
emergency service managers to analyze the variety of potential
outcomes and impacts from a single event.

To construct probabilistic predictions, frameworks such as
SABRE (Twomey and Sturgess, 2016) and FireDST (French
et al., 2013, 2014) developed in Australia, and FSPro (Finney
et al., 2011) developing in the US, have considered such
ensemble-based probabilistic approaches to fire modeling

through variations of the input parameters using pre-determined
distribution structures. Probabilistic prediction of terrain-
modified wind fields is therefore vital to the accurate and

informative modeling of fire spread as a key model input but also
as a tool for identifying the varying likelihood of important fire
behaviors, which can arise as a consequence of complex wind-
terrain interaction (e.g., Sharples et al., 2012). The information
gleaned from probabilistic wind models can also help identify

parts of the landscape where three-way interactions between the
wind, the terrain and a fire can dominate fire propagation; these
are instances where coupled fire-atmosphere models may be
required to overcome the limitations of traditional surface-based

fire spread models.
However, the distribution structures used in current

operational fire prediction, such as the Uniform, Gaussian
or point distributions, may not be most representative of
the true variability of factors driving surface fire behavior. In
the context of fire spread prediction, wind fields have been
considered in probabilistic terms in only a limited number

of studies (e.g., Sharples et al., 2010). In contrast, the wind
energy and environmental sciences sectors have contributed
analyses that consistently show the variability of wind speed
and direction to be more complex, exhibiting features such as
skewness, multi-modality and non-stationarity (e.g., Carta et al.,
2008a,b; Erdem and Shi, 2011; Alegría et al., 2016; Lagona and
Picone, 2016). In addition, Quill (2017) highlighted that the
structure of wind direction distributions can vary considerably
through space.

For effective modeling of bushfire spread across complex
landscapes, input variables need to be modeled at all relevant
scales. Mesoscale Numerical Weather Prediction (NWP) systems
provide accurate real-time weather predictions over a range
of appropriate spatio-temporal scales but, with horizontal
resolutions from 3km up to 12km, these models do not
resolve winds at sufficient scales to capture detailed topographic
effects that can influence surface fire behavior. In particular,
Wagenbrenner et al. (2016) highlighted the limited ability of
broad-scale weather prediction to capture the variability of
wind fields across complex terrain and indicated the need for
downscaling models to better predict meteorological variables at
finer resolutions.

WindNinja is the primary down-scaling wind model for
bushfire prediction across numerous countries, including
Australia, Greece, Canada and the United States (Forthofer
et al., 2014a). In particular, WindNinja is operationally applied
within the Phoenix Rapidfire model utilized across Eastern
Australia (Tolhurst et al., 2008), as well as within FARSITE,
Behave and FlamMap, among others, which are routinely used
across the US1. WindNinja was originally developed due to
a lack of operational down-scaling wind models available or
widely used for bush-fire prediction (Forthofer, 2007) and,
due to its success, few alternatives have been developed. As
a deterministic diagnostic model, WindNinja is generally
preferred for operations, as opposed to prognostic approaches
using full computational fluid dynamics (CFD) models, due to
the computational constraints on producing useful, fine-scale
wind model outputs in real or near-real time (Forthofer et al.,
2014b). It has also been shown that full physical wind models
can be highly sensitive to input data such as surface roughness
or boundary layer conditions over complex terrain, where these
details are often not available in operational contexts (Lopes,
2003). However, due to the simplification of physical equations
needed to obtain this computational efficiency, WindNinja is
known to have significant limitations.

A number of evaluation studies throughout the development
of the WindNinja software have compared the mass-consistent
model to wind observations taken over complex terrain
(Forthofer et al., 2014b; Butler et al., 2015; Wagenbrenner et al.,
2016), as well as comparing fire spread prediction driven by the
WindNinja model to those driven by a full CFD wind model
(Forthofer et al., 2014a). Each of these studies has highlighted
the greatest limitations of the model on leeward slopes where
the complex nature of the flow field, including separation, can
cause unsteady flow. It was noted by Wagenbrenner et al. (2016)

1https://www.firelab.org/project/windninja
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that they were in fact to be expected since the versionWindNinja
2.5.2 was designed to account for only mass-conservation across
the landscape and did not take into consideration momentum
conservation which causes features such as re-circulation on
leeward slopes. Some of these issues were resolved by the addition
of a momentum solver in later versions of the model (to be
published), yet it is expected to have similar limitations on
leeward slopes as seen by Forthofer et al. (2014b).

The limitations of models such as WindNinja are well
documented and well understood. Forthofer et al. (2014b)
warned that users should be aware of model limitations and
interpret results cautiously where appropriate. The potential
consequences of not capturing particular wind features in the
context of fire modeling are significant, with characteristics
such as flow separation on leeward slopes linked to extreme
fire behaviors (Sharples et al., 2012; Simpson et al., 2013).
However, the known limitations of deterministic wind field
predictions have yet to be rigorously characterized for the
purposes of quantifying error propagation or uncertainty in
operational fire modeling.

In an investigation into the uncertainty of fire spread
predictions, Cruz and Alexander (2013) suggested that, across the
current global suite of fire models, percentage errors in the rates
of spread predictions range from 20% up to 40%. The authors
went as far as to say that “one could argue that perhaps the
only certainty about wild-land fire behavior prediction is that it
is extremely unlikely that a prediction will match the observed
fire behavior characteristics” (Cruz and Alexander, 2013, p. 20).
The main sources of uncertainty in fire rates of spread prediction
have been cited as a lack of model applicability, internal model
inaccuracy and input data errors (Albini, 1976; Alexander and
Cruz, 2013). Operational settings have also been suggested to
increase potential errors, particularly for data inputs, with greater
uncertainty in weather forecasts and fuel variability (Cruz and
Alexander, 2013).

There is currently limited literature quantifying uncertainty
in operational fire prediction frameworks. Cruz (2010) noted
that gaps in dealing with uncertainty exist in both literature
and operations, and commented, for example, that the lack
of confidence intervals for deterministic predictions leaves the
onus of uncertainty estimation solely with the decision makers.
Sensitivity analyses are one way to better understand the
propagation of errors through a modeling framework and their
impacts on final predicted outputs. One analysis of Phoenix
Rapidfire, used in the Australian environment, was conducted
by Penman et al. (2013) and concluded that fire weather (as
characterized by the McArthur Forest Fire Danger Index) had
the greatest influence on fire behavior, over suppression efforts
and fuel treatments. The Forest Fire Danger Index (FFDI)
is a function of temperature, relative humidity, wind speed,
fuel moisture and fuel availability (Noble et al., 1980) and is
classified into five categories. Penman et al. (2013) considered
the sensitivity of fire outcomes in terms of these five categories,
finding that increased FFDI led to reduced probability of
containment, increased fire size and increased distance traveled
by the fire. However, as far as the authors are aware, no detailed
analysis of the influence of individual input parameters, such as

wind speed, has been conducted. Although beyond the scope of
this study, this research looks to drive toward such analysis.

The focus of this research is to consider wind direction,
conditioned on wind speed, as an input variable to fire prediction.
Clear links have been shown between wind speed and fire
behavior through the traditional fire spread prediction models
using tools such as the FFDI with broad-scale wind direction
assumed to be the key driver of fire spread direction (Noble
et al., 1980). Yet new research into extreme fires suggests that
terrain-level wind direction can have significant impacts on
fire behavior, including the generation of vorticity-driven lateral
spread which can see fire propagate in directions perpendicular
to the prevailing wind (Simpson et al., 2013). However, such
behaviors are yet to be captured in traditional fire models.

Leading from the emergence of work in fire modeling, to
better understand bushfire prediction uncertainty with the use
of ensemble or stochastic modeling, this research reframes
wind prediction in probabilistic terms. The study then aims
to understand the capacity of the operational deterministic
wind model WindNinja to capture terrain-level variability of
wind fields. A novel application of the existing model is taken
to predict the distribution of wind directions observed over
complex terrain. By recasting wind fields in terms of probability
distributions, the limitations of current modeling techniques can
be quantified. Accurately modeled probability distributions of
wind characteristics can feed directly into the ensemble-based fire
modeling frameworks that are currently operational in Australia
but require further uncertainty analysis. While this analysis
remains beyond the scope of the present study, it is an important
area of further research in the field and will help facilitate more
informed decision making.

The remaining sections are organized as follows. Section 2
details the data collected and analyzed for this research, including
the framing of wind direction distributions. Section 3 outlines
the deterministic wind model WindNinja, using both mass-
consistent and mass-and-momentum consistent solvers, as well
as detailing the novel application of the model to predict wind
direction distributions. Section 4 describes the comparison of
wind model outputs with observed wind direction distributions,
followed by a discussion of the results in section 5. Finally, section
6 concludes the study.

2. OBSERVED DATA

2.1. Case Study Region
Wind observations were taken across Flea Creek Valley (FCV)
in the Brindabella National Park, approximately 40 km west of
Canberra, Australia (Figure 1) (Quill and Sharples, 2018). The
terrain across the broader region can be classified as rugged
(McRae and Sharples, 2013), with elevation across the study area
ranging from 767 m up to 1,077 m. The study area is dominated
by Eucalyptus forest, with canopies up to approximately 15
m. The valley was heavily affected by fire in 2003, when
atypical fire spread was observed in the region (McRae, 2004;
Sharples et al., 2010).

The Bureau of Meteorology (BoM) have permanent automatic
weather stations situated at Mount Ginini (approximately
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FIGURE 1 | Maps showing the locations of weather station sites. (A) Shows south-eastern Australia, (B) shows the broad topography surrounding the study region,

and (C) shows the location of the eleven weather stations F1–F11 across Flea Creek Valley.

20 km south) and Canberra Airport (approximately 40 km
east) which reflect the broad scale meteorology experienced
across the region. The synoptic patterns in the region are
dominated by high-pressure weather systems which produce
west-northwesterly (WNW) winds during the summer and
westerly winds throughout the winter. Flea Creek Valley runs
approximately North-South through the Brindabella Ranges, and
so is aligned approximately perpendicularly to the dominant
WNW prevailing wind direction.

Eleven Davis R© Vantage Pro 2 portable automatic weather
stations with Weatherlink R© data loggers connected to Raspberry
Pi R© microcomputers were used to collect data across Flea Creek
Valley. The stations were set approximately 300–500 m apart
along a 3–4 km East-West transect of the valley. The locations
of the stations (F1 to F11) are indicated in Figure 1, and Table 1

outlines the vegetation and topographic details of each site.
Topography was obtained through ArcGIS (ESRI, 2011) analysis
of the SRTM 90m Digital Elevation Model.

Each station recorded wind speed and wind direction at 5
meters above ground level using horizontal cup anemometers
and wind vanes. Wind speeds were recorded at an accuracy of

0.4 ms−1, while wind directions were recorded in 22.5◦ bins,
corresponding to the 16 points of the compass. Data associated
with very low wind speeds (below 0.4 ms−1) were excluded from
analysis. Data were collected at 1-min intervals from 10th July
to 15th December 2014. With a station sampling frequency of 3 s,
wind direction observations were recorded as the dominant wind
direction sampled over 1 min, while wind speed observations
were the average of wind speeds sampled over theminute.Table 2
details the number of non-zero observations taken for each wind
characteristic (speed and direction) over the study period at each
site across FCV.

Wind data at these spatial and temporal resolutions, collected
with these equipment, are limited to two-dimensional analysis of
wind fields at the terrain scale. Although finer resolution three-
dimensional data would allowmore detailed analysis of fine-scale
wind field movements, including the effects of the canopy and
turbulence behavior, these are not within the scope of this study.
The coarser resolution of this dataset allows for useful insights
into terrain-level wind fields, at spatial resolutions akin to those
predicted by operational down-scaling models like WindNinja,
i.e., 90 m spatial resolutions (which are limited by availability
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TABLE 1 | Topographic and vegetation details for each site across Flea Creek

Valley.

Elevation

(m)

Aspect

(◦)

Slope

(◦)

Vegetation

F1 1,077 280 5 Clear within 5 m of station. Brush up to 2 m,

with sparse canopy up to 15 m surrounding,

intermediate foliage throughout.

F2 1,019 130 8 Clear within 2–3 m of station. Thick brush up to

5 m, and 10–15 m canopy surrounding.

F3 984 118 16 Acacia up to 5 m surrounding. Higher canopy

cleared for powerlines.

F4 968 130 19 Clear within 3 m of station. Dense scrub up to 2

m, canopy up to 15 m with intermediate foliage

around 5 m. Clear on SE side, down slope.

F5 922 140 26 Clear within 10m of station, with dense forest

surrounding. Very steep slope covered in

moss/grasses.

F6 767 159 16 Top of knoll. Thick scrub to 1 m, sparse canopy

up to 10 m.

F7 771 254 15 Scrub to 1 m. Sapling growth to 2 m around

station. Sparse canopy overhead within 4 m.

F8 831 244 10 Scrub to 1 m. Sapling growth to 2 m around

station. Sparse canopy overhead within 4 m.

Nearby gully and stream approximately 10 m

away.

F9 879 381 12 Brush to 1 m. Canopy clear within 5 m. Medium

density canopy to 10–15 m surrounding.

F10 912 275 19 Low density scrub. Intermediate foliage at 5 m

surrounding station. Thicker trunks surrounding

station 3 m away.

F11 999 308 20 Dense scrub up to 1.5 m surrounding station.

Medium density canopy up to 12 m, with

intermediate foliage from 5 m.

TABLE 2 | Summary of sample sizes for observed non-zero (≥ 0.4 ms−1) wind

characteristics across Flea Creek Valley.

Wind speed Wind direction

F1 128,601 128,556

F2 32,812 32,768

F3 20,585 20,585

F4 47,440 47,396

F5 30,295 27,767

F6 61,492 61,456

F7 22,438 22,441

F8 21,740 21,709

F9 16,501 16,546

F10 42,098 42,142

F11 70,718 70,761

of topography data) for real-time fire modeling at, say, 10-min
intervals. An analysis, shown in later sections, also highlights
consistent wind behaviors captured by this dataset, providing
useful meteorological insights.

At 5 m above ground, the anemometers were located within
the vegetation canopy, with efforts made to ensure stations
were not directly impeded by vegetation, within a few meters

(Table 1). Modeled wind fields were predicted at 5 m above the
canopy and so cannot be directly compared due to the well-
known effects of canopies on wind fields (e.g., Finnigan, 2000;
Finnigan and Belcher, 2006; Belcher et al., 2012). In application
to bushfire modeling, predicted wind speeds from above the
canopy are transformed to within-canopy winds using wind
reduction factors (Andrews, 2012; Quill et al., 2016; Moon et al.,
2019). However, predicted wind directions undergo no such
transformation. Therefore, in the context of bushfire prediction,
wind directions modeled at 5 m above the canopy are equivalent
to wind directions predicted within the canopy and, on this basis,
are compared to those observed for this study.

Observed within-canopy wind directions across Flea Creek
Valley show consistent behaviors across the study period,
suggesting that winds beneath the canopy are structured in
relation to the prevailing winds above the canopy, rather than
dominated by canopy effects. Such wind field structures are
important to the driving of fires beneath and within canopies and
quantifying such behaviors (where they are not well modeled) is
an important step in understanding uncertainty propagation in
surface fire prediction.

2.2. Wind Observations
Figure 2 summarizes the winds observed over the collection
period at each site across FCV. Wind data collected from
the ridge top stations on both the western and eastern sides
of the valley (F1, F2, and F11) indicate the most frequently
observed westerly to north-westerly prevailing wind direction.
Less frequent easterly prevailing winds were also observed at F1.
On the western slopes of the valley (F3 and F4), the dominant
easterly wind direction indicates the prevalence of wind reversals
when these slopes were leeward to the westerly prevailing
winds. At F5, on this western slope, south-westerly winds are
experienced most frequently. The site is located on a steep south-
facing slope and winds are likely impacted by mechanical or
thermal flows driven by this sheer topography.

On the valley floor (F6 and F7), northerly and southerlymodes
(northeast and southwest at F6) suggest that channeling along
the valley axis may have dominated wind movement through
this region. On the eastern slope at F8, the wind speeds are very
low, leading to considerable variability in wind direction. Finally,
on the eastern slope (F9 and F10), south-westerly observations
indicate a southerly bias in the winds, most often observed when
this slope was windward to the WNW prevailing winds. Local
topographical features such as small-scale gullies running up the
side of Flea Creek Valley (see contours in Figure 1C) may also
cause a deviation from the prevailing wind direction.

To better understand the drivers behind observed wind
behaviors at each site, Figure 3 shows the average hourly wind
speed and the average hourly wind direction at times which
exemplify diurnal patterns, i.e., 03000 h, 0900 h, 1500 h, and
2100 h. Unfortunately, taking the mean of bimodal distributions
such as those observed at F1, F2, and F7 can cause issues
with such analysis. For instance, the northerly wind direction
shown at F1 at 0900 h and 2100 h is not strongly indicated
in Figure 2. These are in fact a result of significant intra-
hourly west to north-westerlies despitemore prominent easterlies
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FIGURE 2 | Observed wind roses for each site (A–K) F1 to F11, across Flea Creek Valley.

over-night. Similarly, the south-western ridge top station at
F2 shows SW winds in Figure 3, which result from averaging
the NW and SE modes indicated in Figure 2. These intra-
hour variations suggest no strong diurnal patterns, with
mechanical forcing a more likely explanation for the bimodal
wind directions.

Despite the northerly bias, average hourly wind directions at
the north-western ridge top station (F1) rotated from NE over-
night (0300 h) through to NW in the afternoon (1500 h). The
easterly shift in wind direction at F1 was echoed by a similar
regional wind direction change observed at Canberra Airport,
and was coupled with an increase in wind speed across the
valley. The higher afternoon wind speeds were predominantly
felt along the valley floor and on the west-facing (or windward)

slope. The leeward slope winds remained relatively low during
the afternoon period.

Despite the change in wind direction observed at F1, the
remaining stations showed stable wind directions throughout
Figure 3, corresponding to the unimodal distributions shown
in Figure 2. Each other station experienced consistent wind
directions throughout the night and day, suggesting that diurnal
effects had little impact on wind flow beneath the canopy across
the valley. Most prominently on the valley floor at F6, northerly
average flows agreed with the dominant northerly and north-
easterly modes shown in Figure 2. The average northerlies were
experienced throughout the day and night, with no southerly
hourly average wind direction shown across the 24 hour period.
The strong southerly mode shown by F7 in Figure 2 appears
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FIGURE 3 | Observed average hourly wind directions at each site across Flea Creek Valley, at (A) 0300 h, (B) 0900 h, (C) 1500 h, and (D) 2100 h.

to have been averaged out by consistent northerly winds. As
suggested above, this lack of a clear diurnal pattern in the
hourly averages suggests that channeling through the valley was
mechanically, rather than thermally, driven.

On the western slope of the valley, F3 and F4 experienced
consistent low speed easterly winds, directed up the slope of the
valley wall. The easterlies experienced at 1500 h are in contrast
with the westerlies observed at F1, indicating the existence of
a recirculation region within the canopy. These average hourly
wind directions concur with the wind roses in Figure 2 as well as
the analysis conducted by Sharples et al. (2010) which showed the
prevalence of lee-slope eddies across Flea Creek Valley.

Finally, on the eastern slopes (F8, F9, F10, and F11) consistent
average westerly winds were observed throughout the day and
night (Figure 3), in agreement with Figure 2. When easterlies
were experienced at F1 on the western ridge top at 0300 h,
westerlies were still recorded on the eastern slope. This identifies
a second recirculation region on the leeward west-facing slope
under easterly prevailing winds, i.e., the inverse to those shown
at F3 and F4 on the east-facing slope under westerly winds
at 1500 h.

2.3. Wind Direction Distributions
For input into ensemble-based fire prediction frameworks,
it is useful to recast wind observations in a probabilistic
context. To this end, the wind direction observations from
Flea Creek Valley are represented as frequency distributions

of all wind directions observed at each of the stations across
the valley transect over the study period. These distributions
provide a representation of the likelihood of each wind
direction being experienced. Such probabilistic representation
can be used to inform the construction of ensemble members
for fire modeling and help to better understand uncertainty
through the prediction process. Since wind speed and direction
cannot be considered independently, the impact of wind
speed on wind direction distributions is assessed using
three minimum speed thresholds observed at the ridge top
station F1; 0 ms−1 (capturing all observed winds), 2 ms−1

and 4 ms−1.
The western ridge top site, F1, was used as an indicator of

the prevailing wind conditions across the valley. In application
to real-time fire modeling, the use of a local wind reference point
is common place where observations are taken on the ground.
Utilizing a local reference point in this research therefore helps
to understand how such local observations relate to winds in
the local region. To verify the choice of F1 as the reference
station, comparison of data given by the BoM weather stations
at Mount Ginini and Canberra Airport showed observed surface
wind directions coincided with prevailing ones (Figure 4). Joint
wind direction distributions between the BoM wind direction
data and that from F1, indicate that dominant prevailing
westerlies occurring at both Mount Ginini and Canberra Airport
were experienced concurrently at F1, and similarly for the less
dominant easterly prevailing winds.
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FIGURE 4 | Joint wind direction distributions between F1 and (A) Mount Ginini and (B) Canberra Airport during the study period. Yellow coloring indicates higher

frequency of wind direction pairs observed. Dotted line indicates equal wind direction at the two sites.

3. METHODS

3.1. Conditional Wind Direction
The diagnostic wind model WindNinja was used to predict
wind speed and wind direction across Flea Creek Valley using
the SRTM 90 m digital elevation model, with the individual
run calibrated to give a west-northwesterly wind direction at
F1. Two solver options were used within the model; a mass
conserving solver (packaged within WindNinja 2.5.2, referred
to herein as the “native solver”), and a beta version of a mass
and momentum conserving solver (later modified and released
within WindNinja 3.0.0, referred to herein as the “momentum
solver”). The model was run over a 10.3 km × 10.5 km domain
with a vegetation choice of “Trees” and 1 ms−1 domain-average
wind speeds at 5 m above the vegetation layer. The selection
of “Trees” allows a surface roughness length of 1 m with zero-
plane displacement of 12 m (assuming a 15.4 m canopy height).
The vegetation layer is also assumed to be uniform across the
entire domain. Modeled wind directions were predicted to align
with observations of WNW (298◦) winds at F1 on the western
ridge top. For each location, the modeled wind direction from a
single model run was compared to the observed wind direction
distributions, conditional on aWNWwind being observed at F1.
Using a domain averaged wind speed of 1 ms−1, modeled wind
speeds at F1 were approximately 2 ms−1 using both solvers.

As discussed previously, the wind field prediction was defined
at 5 m above the vegetation layer, whereas wind observations
were taken at 5 m above the ground within the approximately
15-m-high vegetation layer. To account for this in fire modeling
applications, it is common to adjust wind speeds using wind
reduction factors (e.g., Andrews, 2012; Quill et al., 2016; Moon
et al., 2019), however wind directions are not transformed
beneath the canopy. Therefore, the wind directions predicted at
5 m above the canopy using WindNinja are taken to indicate
the predicted within-canopy wind directions used for operational
fire modeling.

To compare the deterministically predicted wind direction
to the observed conditional wind direction distribution, a

percentage agreement value was calculated for the predicted
wind direction segment. This was defined as the number of
observations in the predicted segment as a proportion of the total
observations for the time period.

3.2. Unconditional Wind Direction
Distributions
For ensemble-based modeling of fire spread, input variables
are varied around known distributions. For this purpose, it
is therefore desirable to predict the probability distributions
of wind speeds and directions. This study utilized a novel
application of the deterministic WindNinja model to predict the
distribution of wind direction at each location across Flea Creek
Valley. Modeled unconditional wind direction distributions were
constructed by running WindNinja with the momentum solver
in an ensemble-type framework using the following procedure.

1. Generate look-up table: WindNinja was used to generate
a wind direction look-up table for each site across the
valley, using F1 as the reference station. Since the model is
deterministic and the observations are discrete, it was only
necessary to run WindNinja 16 times, each time calibrated to
a different wind direction segment at F1. The look-up table
therefore provided the modeled wind directions at each site,
given the modeled wind direction at the reference station F1.

2. Model through time: Using the observed data at F1 as the
representative domain average wind direction, the look-up
table was cross-referenced to model wind direction at each
site throughout the observation period. The look-up table,
generated by the deterministic model, replaced the need to
model the entire wind field at each time point.

3. Construct frequency distributions: The modeled time
series were then used to construct modeled frequency
distributions of wind direction at each site. The modeled wind
direction distributions were compared to the unconditional
distributions of all observed wind directions at each station
site across the valley and throughout the study period.
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To compare the modeled and observed unconditional wind
direction distributions, both empirical and parametric measures
are used. Firstly, the proportions of time that the predictions
give a wind direction within the same wind direction sector,
within one sector (±22.5◦) and within two sectors (±45◦) are
calculated and analyzed. Secondly, the following 2-component
mixture of von Mises distributions (often considered the circular
equivalent to the Gaussian distribution) is fitted to the observed
and predicted wind direction data (θ , in radians) for each site
(Carta et al., 2008a);

f (θ; p,µ1, κ1,µ2, κ2) = p× g(θ;µ1, κ1)+ (1− p)× g(θ;µ2, κ2),
(1)

with

g(θ;µ, κ) =
1

2πI0(κ)
exp(κ cos(θ − µ)). (2)

The function I0(·) represents the modified Bessel function of the
first kind and zeroth order, defined as

I0(κ) =
1

2π

∫ 2π

0
exp(κ cos θ)dθ . (3)

The structures of the observed and predicted wind direction
distributions are compared using the estimated parameters; p, the
mixing proportions, µi, the mean direction of each component
and κi, the concentration parameter of each component.
Maximum likelihood estimation is used to fit the parameters of
Equation (1) in MATLAB (2016).

4. RESULTS

4.1. Deterministic Modeling of Conditional
Wind Direction
Output from the single runs of both deterministic models (native
solver and momentum solver) were analyzed in ArcGIS (ESRI,
2011) to generate the 5 meter predicted wind fields shown in
Figures 5, 6. Table 3 shows the wind speed and wind direction
outputs for each of the station sites. UsingWindNinja with native
solver (Figure 5), the predicted wind field was relatively smooth
across the valley, maintaining a dominantWNWdirection across
both the leeward and windward slopes, as highlighted in the
predictions given in Table 3. Wind speeds were highest across the
western and eastern ridge tops, with very low speeds predicted on
the valley floor.

Using the momentum solver (Figure 6), the domain-average
wind direction was shifted significantly northward to achieve
a WNW output at F1. This resulted in considerable northerly
channeling through the valley. In addition, the predicted wind
field using the momentum solver showed more spatial variation
across the valley. This variation was most prominent on the
leeward slope where, for instance, small lateral circulations were
shown around gully features near F2 and F5. Wind speeds were
again highest along the ridge tops, with the addition of some
variations around small topographical features. In particular,
wind speeds were shown to be much faster across the eastern
windward slope around F10 and F12, as well as around F2 on
the western ridge, than speeds modeled using the native solver.

Figure 7 shows the observed conditional wind direction
distributions for a prevailing wind speed threshold of 0 ms−1

and wind direction of WNW measured at F1. Predictions from

FIGURE 5 | WindNinja with native solver prediction over Flea Creek Valley, using domain-average wind speeds of 1 ms−1 and domain-average wind direction of 252◦.
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FIGURE 6 | WindNinja with momentum solver prediction over Flea Creek Valley, using domain-average wind speeds of 1 ms−1 and domain-average wind direction of

305◦.

Table 3 are shown in green for WindNinja with the native solver,
and red for WindNinja with the momentum solver. Table 4 gives
the proportion of the observed distributions that agree with each
model prediction for increasing wind speed thresholds observed
at F1. In general, the percentage agreements are low due to
the deterministic nature of the individual predictions, with the
individual model outputs not capable of capturing the variability
of the observed wind direction distributions.

The highest agreements for the deterministic predictions with
either solver (Table 4), were found on the ridge tops (F2 and
F11) and valley floor (F6 and F7) where the models predict the
dominant wind direction modes of the broader scale wind field.
On the western ridge top (F2), there is no difference between
the predictions from either model, whereas on the eastern ridge
top (F11) and valley floor (F6 and F7), the momentum solver
prediction shows a bias toward northerly winds. This bias has
little impact on the percentage agreements observed on the
valley floor, but the agreement values between observation and
prediction at F11 are much lower for the momentum solver than
for the native solver at all wind speed thresholds, i.e., 2.5% at T =
0 ms−1 as opposed to 15.6% for the native solver.

The highest individual deterministic agreement values were
found at F2; with a wind speed threshold of 2 ms−1, the
percentage agreement reaches above 20% for both solvers.
This agreement reduces at F2 as the wind speed threshold
increases. Similar decreases in percentage agreement between
model predictions and observations as wind speeds increase are
shown across nearly all of the sites for both model versions.

On the western wall of the valley, leeward to the WNW
prevailing winds, neither model predicts the easterly winds

TABLE 3 | Wind direction (◦, compass point) and wind speed (ms−1) predictions

using WindNinja with native solver and momentum solver for each site across Flea

Creek Valley.

Native solver Momentum solver

Direction Speed Direction Speed

F1 298 WNW 1.99 298 WNW 2.28

F2 299 WNW 1.94 303 WNW 2.08

F3 298 WNW 1.25 316 NW 0.86

F4 298 WNW 1.25 317 NW 0.96

F5 312 NW 0.93 48 NE 0.07

F6 322 NW 0.60 9 N 0.97

F7 331 NNW 0.55 359 N 1.13

F8 309 WNW 0.54 344 NNW 1.16

F9 300 WNW 0.58 341 NW 1.28

F10 300 WNW 0.60 335 NNW 1.48

F11 297 WNW 1.03 313 NW 1.91

observed when applied as a single deterministic run. As seen in
Figures 5, 6, the model with either solver predicts predominantly
westerly flows across the entire valley when the prevailing
winds are WNW. The observations at F3 and F4 clearly show
dominant easterly modes at these stations (Figure 7), suggesting
the existence of recirculation within the vegetation on the leeward
slope. The discrepancies between predictions and observations
result in extremely low agreement percentages of 3.2% or less for
the native solver, and 3.7% or less for the momentum solver. This
percentage agreements dropped to below 1% and 1.5% for the
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FIGURE 7 | Observed wind direction distribution at sites (A–K) F1 to F11, across Flea Creek Valley, conditional on a WNW wind observed at F1. Predicted wind

directions using WindNinja with native solver are indicated in green, and with momentum solver are indicated in red.

native and momentum solvers, respectively, as prevailing wind
speeds increased.

Finally, on the eastern slope (F8, F9, and F10) single agreement
percentages shown in Table 4 were larger than those shown for
the western slope. The momentum solver predicts a considerable
northerly bias to the flow through the valley, and this appears
to have the greatest impact on the eastern slope. Therefore, the
native solver performs better than the momentum solver at all
three sites for all wind speed thresholds. In particular, at F9 the
native solver predicts a WNW direction which captures the edge
of the mode shown in Figure 7, while the momentum solver
misses the mode by predicting a NW direction, resulting in
agreement values of less than 3% as opposed to values up to
20% given by the native solver. This dramatic difference may
in part be due to the discretization of wind direction, i.e., the
binning of observations, which results in a significant difference
in observations between two adjacent bins.

4.2. Modeling Unconditional Wind Direction
Distributions
Figure 8 shows the observed unconditional wind direction
distributions for each site across Flea Creek Valley (with a
wind speed threshold of 0 ms−1), as well as the predicted

wind direction distributions produced using the probabilistic
application of WindNinja with momentum solver. Table 5 shows
the proportion of time that WindNinja, with the momentum
solver, predicted the same wind direction as observed, or within
one or two compass sectors (i.e.,±22.5◦ or±45◦). On the western
and eastern ridge tops (F1 and F11, respectively), the predictions
captured the dominant modal structures observed at the stations.
In particular, at F1 the model captured the dominant WNW
prevailing wind directions and the secondary easterly prevailing
wind direction. At F11, although a bimodal distribution was
predicted, the modes were concentrated, covering only a single
wind direction bin.

For each site, the model generally predicts at least one mode
coincident with the observed dominant wind direction shown
in Figure 8. At F3 and F4, in contrast to the deterministic
predictions, the predicted distributions pick up the wind reversal
modes, i.e., the dominant easterly modes, with a relatively high
prediction overlap of 60% within ±45◦ (Table 5). Similarly, at
F9 and F10, the dominant westerly modes are better predicted
than by the deterministic model. Through the valley floor (F6
and F7), the model indicates strong bimodal structures to the
wind direction distributions which are somewhat evident in the
observations but obscured by considerable variation.
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TABLE 4 | Proportion of agreement between predicted wind direction (as compass point) and observed wind direction distribution at each site across Flea Creek Valley,

conditional on observing a wind direction of WNW at F1.

Native solver Momentum solver

Pred. 0 ms−1 2 ms−1 4 ms−1 Pred. 0 ms−1 2 ms−1 4 ms−1

F1 WNW – – – WNW – – –

F2 WNW 0.19 0.21 0.16 WNW 0.19 0.21 0.16

F3 WNW 0.03 0.02 0.02 NW 0.02 0.01 0.01

F4 WNW 0.02 0.01 0.01 NW 0.04 0.02 0.01

F5 NW 0.02 0.01 0.00 NE 0.07 0.05 0.01

F6 NW 0.09 0.06 0.05 N 0.09 0.07 0.08

F7 NNW 0.13 0.12 0.09 N 0.18 0.16 0.09

F8 WNW 0.05 0.04 0.01 NNW 0.04 0.04 0.00

F9 WNW 0.20 0.18 0.15 NW 0.03 0.01 0.02

F10 WNW 0.06 0.08 0.06 NNW 0.03 0.03 0.04

F11 WNW 0.16 0.17 0.18 NW 0.03 0.03 0.10

Three observed minimum wind speed thresholds, T, are used; 0 ms−1, 2 ms−1, and 4 ms−1.

FIGURE 8 | Observed (blue) and predicted (red, using momentum solver) unconditional wind direction distributions at sites (A–K) F1 to F11, across Flea Creek Valley.

Dotted lines indicate fitted 2-component mixture von Mises distributions with parameters given in Table 6.

Table 5 clearly shows the model to be accurate at the western
ridge top (F1), with consistent wind direction predictions within
one sector of the observations. At the remaining ridge top

stations (F2 and F11), as well as on the western slope (F3 and
F4) and on the eastern slope (F9), the model predicted wind
directions within the same compass quadrant as those observed
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(i.e., within±45◦) over 50% of the time. As seen in the predicted
distributions in Figure 8, these sites show the greatest similarity
between the observed and predicted wind direction distributions.

The proportions of overlap between observed and predicted
wind directions shown in Table 5 are lowest at locations across
the valley where greater variation was observed (F5, F6, F7, F8,
and F10). Table 5 shows an overlap within ±45◦ of 47% for
F6, where a strong bimodal distribution was predicted, while
a secondary wind direction mode was not strongly observed.
The lowest overlap proportions are shown at F5, with only 17%
overlap within two compass sectors. From the distribution shown
in Figure 8, it is clear that the model did not capture the structure
of the observed wind direction distribution.

Table 6 shows the maximum likelihood estimates for
parameters of the 2-component mixture von Mises model
used to fit the observed and predicted wind direction

TABLE 5 | Proportional overlap between predictions and observations at 1-min

time steps.

Same sector Within one sector Within two sectors

F1 0.74 1.00 1.00

F2 0.12 0.39 0.55

F3 0.18 0.42 0.60

F4 0.15 0.42 0.60

F5 0.03 0.10 0.17

F6 0.13 0.34 0.47

F7 0.07 0.20 0.32

F8 0.05 0.16 0.29

F9 0.15 0.40 0.30

F10 0.07 0.23 0.41

F11 0.13 0.41 0.63

“Overlap” is taken to be a prediction of wind direction in the same compass sector, within

one sector (i.e., ±22.5◦) or within two sectors (i.e., ±45◦).

distributions. In general, the predicted distributions show modes
with considerably higher concentration parameters, showing
the models inability to capture the observed variability in
wind direction. However, many location parameters were well
predicted, with mismatched location estimates potentially due
to small-scale topography or high variability which were
unable to be resolved by the deterministic model, i.e., F2,
F5, and F8.

For stations with clearly observed and predicted bimodal
distributions, the 2-component mixture von Mises parameter
estimates give similar location parameters, i.e., F1, F7, F9, F10,
and F11. However, for other distributions (both observed and
predicted) the 2-component mixture may not be the most
appropriate fit. For example, F3 and F4 appear to show unimodal
distributions, and so the estimated bimodal parameters either
show an extremely unbalanced mix (i.e., predicted mixture at
F4 gives κ1 = 24.07 and κ2 = 0.00), or modes at close
locations (i.e., predicted mixture at F3 gives µ1 = 1.55 and
µ2 = 6.28). For stations with very high observed variability such
as F8, the predicted and observed parameter estimates were very
poorly aligned; firstly, the location parameter for the observed
distribution had limited meaning with such low concentration
parameters, and secondly the predicted distribution had far
greater concentrations than observed.

5. DISCUSSION

5.1. Deterministic Modeling
In general, the best agreement between the individual
deterministic predictions and the conditional wind direction
distributions occurred on the ridges and valley floor. These
areas can be thought to represent broader scale terrain features,
while the valley sides represent areas where more complex
physical features dominate wind flows, such as the recirculation
regions on leeward slopes caused by flow separation over ridges.
As discussed in the introduction, the modeling framework
behind the WindNinja software simplifies some of the physical

TABLE 6 | Estimated parameters for a 2-component mixture von Mises model fit to the observed and predicted wind direction distributions across Flea Creek Valley.

Observed Predicted

p µ1 κ1 µ2 κ2 p µ1 κ1 µ2 κ2

F1 0.45 1.64 3.66 5.07 10.96 0.46 1.50 4.00 5.07 40.11

F2 0.52 3.19 2.42 5.28 8.65 0.32 1.53 4.32 4.83 9.98

F3 0.76 1.18 2.97 3.87 1.40 0.61 1.55 5.10 6.28 9.34

F4 0.58 1.28 5.41 2.75 0.22 0.70 1.61 24.07 0.01 0.00

F5 0.57 2.82 0.34 3.55 3.25 0.73 1.78 1.40 6.03 100.00

F6 0.33 0.83 5.67 5.55 0.30 0.63 1.74 0.66 5.88 6.00

F7 0.31 3.26 3.61 5.99 1.73 0.36 3.06 18.00 5.83 2.06

F8 0.72 3.23 0.34 5.09 1.02 0.36 0.65 99.81 4.69 2.36

F9 0.16 0.49 3.26 4.38 2.17 0.43 6.28 0.56 4.87 21.68

F10 0.00 3.50 1.30 4.08 1.40 0.25 1.47 1.25 4.83 3.91

F11 0.11 1.32 1.34 4.79 2.49 0.37 1.18 2.48 5.10 99.45

p denotes the mixing proportion, µi denotes the locations parameters (in radians) and κi denotes the concentration parameter for the respective modes.
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equations governing such flows to enable operational use, and
thus is known to be limited in such areas (Forthofer et al.,
2014b). The results of the deterministic application in this study
further confirm this, but add probabilistic information to these
limitations, finding that percentage agreements at individual
sites can be extremely low.

With the addition of the momentum solver, WindNinja was
able to better capture some topographic impacts on wind flow
across the valley, including recirculation within gullies and on
leeward slopes, and larger-scale channeling along the valley floor.
With a comparison of only a select few individual sites, the
ability of the momentum solver to capture some of these more
complex flows is not shown with the analysis presented here.
For example, on the leeward slope, recirculation is not predicted
within the pixel overlapping the two observation sites, yet it
is observed elsewhere on this slope in Figure 2. The discrete
nature of the observed wind direction (22.5

◦
sectors) may also

contribute to some of the low percentage agreement values seen
throughout this analysis. Through estimation of distributions
in the ensemble-style analysis, some of these discrepancies may
be smoothed.

Other broad-scale flows shown by the deterministic
momentum solver prediction, such as the strong northerly
bias on the eastern slopes, was not observed in the data. This
northerly-skewed prediction by the momentum solver was due
to the adaptation of input parameters to optimize the model
run but led to lower performance on the windward slope—
reducing percentage agreements from 20% with the native
solver down to only 3%. In the context of fire, this significant
difference between predicted and observed wind direction may
cause considerable difference between predicted and observed
fire spread.

Across the valley, it is shown that as observed wind speed
thresholds increase, the percentage agreement between the
individual predictions and observed conditional wind direction
distributions decreases. This decrease is to be expected since
analysis [not shown here, but also highlighted by Sharples
et al. (2010)] indicates that the variance of dominant modes
decreases as wind speed thresholds increase, resulting in a lower
percentage agreement if the model does not accurately predict
the key mode. Due to the relatively low wind speeds experienced
throughout the study period the highest wind speed thresholds
also have smaller sample sizes to construct the distributions
for comparison, thus somewhat reducing the reliability of
subsequent conclusions. Further model runs with higher
domain-averaged wind speed, larger simulation domains and
higher model resolution might also indicate different predicted
behaviors across the region. However, it was found that increased
wind speeds under the native solver had little impact on predicted
wind direction.

The lack of a diurnal pattern at F3 and F4, as shown
in Figure 3, and the persistence of lee-slope easterly modes
under higher wind speed conditions suggests that they are
due to recirculation eddies driven by flow separation over the
leeward slope rather than upslope thermal winds. Analysis of
the timing of similar easterly modes experienced in the same
location across the valley by Sharples et al. (2010) also showed

limited diurnal patterns, suggesting that this recirculation region
is in fact an area of persistent lee-slope eddies within the
vegetation layer. Another possibility is that the easterly modes
could be due to pressure-driven recirculation under the canopy
but given the agreement between these results and those of
Sharples et al. (2010), which were obtained in the absence of an
intact canopy, flow separation is likely the main driver. While
WindNinja with either solver is not intended to predict within
canopy flows, with no mechanism for wind direction adjustment,
these eddies are consequently often not captured within fire
modeling frameworks.

5.2. Modeling Wind Direction Distributions
The ensemble-style application of WindNinja, using wind
libraries, allows for a prediction of the full distribution of wind
direction at each point across the valley. This probabilistic
representation of wind predictions is better suited to emerging
ensemble-style fire modeling frameworks, where uncertainty
can be quantified and analyzed. In general, the ensemble-style
application of WindNinja with momentum solver predicted
coincidental modes for wind direction distributions across the
valley. However, the modeled data shows considerably lower
variation than the observed.

The limited predicted variation is to be expected due to
the deterministic nature of the model, with simplified physical
equations. Equally, the model predicts above canopy winds while
observations were taken beneath the canopy, thus influenced
by additional turbulence. Despite this, the within canopy winds
showed distinct structures which evidence the existence of
consistent wind behaviors such as beneath canopy recirculation
zones. Due to the lack in predicted variability, the model
was least effective at the most variable sites, where wind
speeds were low. In areas where wind directions were highly
variable, overlap percentages (to within an entire compass
quadrant) could be as low as 17%, and estimated location
and concentration parameters were poorly aligned. However,
it should be noted, that at some sites, the estimation of a 2-
component mixture distribution may be inappropriate, leading
to misalignment between observation and prediction estimates.
A more flexible modeling approach may be required, where
the number of mixture components is also a parameter to
be estimated.

The high variation in the wind directions observed at the
valley floor sites, reduces the efficacy of the prediction, but the
variation itself may also be induced by local features affecting the
wind field which are not adequately resolved by the model. For
instance, F6 is located on top of a knoll at the bottom of the valley
which may induce localized flows or eddies which cannot be
represented at the resolution used to predict the wind field. This is
again evident at F8 on the eastern slope; observed wind directions
are almost uniform around the compass, whereas the model
predicts an approximately bimodal distribution representative of
mechanical valley winds.

Indeed, there are clearly other factors that influence
the variability of wind directions (and wind speeds), aside
from the prevailing wind direction. It is this heterogeneity
in variation across the landscape (particularly in relation
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to deterministic predictions) that requires further study
to understand how to best account for these factors in
deterministic models (yet maintain computational efficiency).
Probabilistic approaches may help to fill such gaps with
efficient statistical wind models that can inherently capture
heterogeneity in relationships between influencing factors across
spatial domains.

6. CONCLUSION

In the pursuit of accurate fire spread prediction, the accuracy
of model inputs must be considered. In emerging bushfire
research, the accuracy of outputs is being framed in terms of
uncertainty, with an increasing focus on ensemble methods and
probabilistic representations. Traditional deterministic models
must now be complemented with probabilistic information
informed by empirical data. This study shows a stark comparison
between the application of a diagnostic wind model using the
traditional approach and a novel ensemble-style application.
The demonstrated ability of this novel method in capturing
observed wind field variability highlights a significant advance
in modeling input variables (not limited to wind fields) and
forms an understanding of the uncertainty in ensemble-based
bushfire prediction.

The application of WindNinja with both native and
momentum solvers is limited by its deterministic nature, leading
to small agreement percentages between single predictions and
observed wind direction distributions. As previously noted in
the literature (Forthofer et al., 2014a,b; Butler et al., 2015;
Wagenbrenner et al., 2016), the models perform poorly on the
leeward slopes, with observations representative of recirculation
regions not captured at the study sites. However, some areas
of recirculation were predicted by the momentum solver in
other areas of the leeward slope. It has been shown in the
literature that lee-slope eddies can create necessary conditions
for dangerous and extreme fire behavior (Sharples et al., 2012;
Simpson et al., 2013), and the inability of a single model run to
identify such wind behaviors can lead to the misrepresentation of
fire spread and behavior across the landscape. Individual model
runs can be extremely sensitive to the set of input variables,
including domain-averaged wind direction as well as the size
and resolution of the domain. Fire managers are encouraged
to better understand this sensitivity by running multiple
wind input scenarios, however, very limited formal sensitivity
analysis exists within the literature. Quantifying the effects of
probabilistic prediction of input variables, including wind speed
and direction, is an ongoing focus of further research in wildland
fire prediction.

The novel ensemble-style application of WindNinja with the
momentum solver resulted in the modeling of wind direction
distributions which were able to capture some of the key
structures of wind flow observed across the valley. Bimodal
distributions were predicted at a number of sites where the
deterministic application of the model was only able to predict
a single outcome. In particular, predicted distributions were able

to capture observed leeward slope recirculation which would lead
to a strengthened ability of fire models to identify regions prone
to extreme and erratic fire behavior. Although distributional
predictions were able to model key wind direction modes at each
site, the predictions lacked considerable variability compared to
observed distributions.

There is always room for improvement to better capture
underlying physical processes, but dynamic downscaling models
can still be limited by resolution. Mechanisms existing at finer
scales will continue to contribute uncertainty to model outputs.
From this study, it is clear that an ensemble-style application
of WindNinja shows differing levels of accuracy across the
landscape, where different physical processes may dominate
wind flow. To address some of these gaps, physical processes
can be modeled using probabilistic approaches. While statistical
approaches have their own limitations, such as relying upon
previous system behaviors (including outliers), they are able
to capture some of the variability of wind and fire spread
across the landscape, which is not resolved by current physical
models and can be better suited to emerging ensemble-based fire
prediction frameworks. Probabilistic models not only provide
more informative inputs for bushfire prediction but can also
be used to identify areas where different driving forces may
have varying impacts on fire behavior, such as significant
terrain effects or fire-atmosphere coupling. In additional further
research, sensitivity analysis of fire modeling frameworks is
required to understand the quantitative effects of capturing
(or not capturing) the true variability of wind fields over
complex terrain. Using such analysis alongside ensemble-based
or probabilistic modeling approaches will allow for formal and
quantitative assessments of uncertainty in operational fire spread
and behavior predictions.

DATA AVAILABILITY

The dataset analyzed for this study can be found in the University
of Adelaide Figshare repository: Flea Creek Valley Data, Jul to
Dec 2014 (Quill and Sharples, 2018), accessed via https://doi.org/
10.25909/5c13258d1407a.

AUTHOR CONTRIBUTIONS

RQ, JS, and LS conceived and designed the initial study, with
further development provided by NW and JF. RQ coordinated
the study. RQ and JS undertook data collection. RQ and NW
conducted the analysis and modeling, with JS, LS, and JF
providing critical comments. RQ drafted themanuscript. JS, NW,
LS, and JF provided revisions of the manuscript. All authors read
and approved the final manuscript.

FUNDING

RQ acknowledges the financial support of UNSW Canberra and
the Bushfire and Natural Hazards Cooperative Research Centre
(BNHCRC; Ref: RG142924) in conducting this research.

Frontiers in Mechanical Engineering | www.frontiersin.org 15 February 2019 | Volume 5 | Article 5

https://doi.org/10.25909/5c13258d1407a
https://doi.org/10.25909/5c13258d1407a
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Quill et al. Modeling Wind Direction Distributions

REFERENCES

Albini, F. A. (1976). Estimating Wildfire Behavior and Effects. General Technical

Report Int-30. Report, USDA Forest Service, Intermountain Forest and Range

Experiment Station, Ogden, UT.

Alegría, A., Bevilacqua, M., and Porcu, E. (2016). Likelihood-based inference for

multivariate space-time wrapped-Gaussian fields. J. Stat. Comput. Simulat. 86,

2583–2597. doi: 10.1080/00949655.2016.1162309

Alexander, M. E., and Cruz, M. G. (2013). Limitations on the accuracy of model

predictions of wildland fire behaviour: a state-of-the-knowledge overview. For.

Chronic. 89, 372–383. doi: 10.5558/tfc2013-067

Andrews, P. L. (2012). Modeling Wind Adjustment Factor and Midflame

Wind Speed for Rothermel’s Surface Fire Spread Model. United States

Department of Agriculture/Forest Service, Rocky Mountain Research Station.

doi: 10.2737/RMRS-GTR-266

Belcher, S. E., Harman, I. N., and Finnigan, J. J. (2012). The wind in the willows:

flows in forest canopies in complex terrain.Annu. Rev. FluidMech. 44, 479–504.

doi: 10.1146/annurev-fluid-120710-101036

Butler, B. W., Wagenbrenner, N. S., Forthofer, J. M., Lamb, B. K., Shannon, K. S.,

Finn, D., et al. (2015). High-resolution observations of the near-surface wind

fields over an isolated mountain and in a steep river canyon. Atmospher. Chem.

Phys. 15, 3785–3801. doi: 10.5194/acp-15-3785-2015

Carta, J. A., Bueno, C., and Ramírez, P. (2008a). Statistical modelling of

directional wind speeds using mixtures of von Mises distributions: case

study. Energy Convers. Manage. 49, 897–907. doi: 10.1016/j.enconman.2007.

10.017

Carta, J. A., Ramírez, P., and Bueno, C. (2008b). A joint probability

density function of wind speed and direction for wind energy analysis.

Energy Convers. Manage. 49, 1309–1320. doi: 10.1016/j.enconman.2008.

01.010

Cruz, M. G. (2010). Monte carlo-based ensemble method for prediction of

grassland fire spread. Int. J. Wildl. Fire 19, 521–530. doi: 10.1071/WF08195

Cruz, M. G., and Alexander, M. E. (2013). Uncertainty associated with model

predictions of surface and crown fire rates of spread. Environ. Modell. Softw.

47, 16–28. doi: 10.1016/j.envsoft.2013.04.004

Erdem, E., and Shi, J. (2011). Comparison of bivariate distribution construction

approaches for analysing wind speed and direction data. Wind Energy 14,

27–41. doi: 10.1002/we.400

ESRI (2011). ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems

Research Institute.

Finney, M. A., Grenfell, I. C., McHugh, C. W., Seli, R. C., Trethewey, D., Stratton,

R. D., et al. (2011). A method for ensemble wildland fire simulation. Environ.

Model. Assess. 16, 153–167. doi: 10.1007/s10666-010-9241-3

Finnigan, J. (2000). Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32,

519–571. doi: 10.1146/annurev.fluid.32.1.519

Finnigan, J. J., and Belcher, S. E. (2006). Flow over a hill covered with a plant

canopy. Q. J. R. Meteorol. Soc. 130, 1–29. doi: 10.1256/qj.02.177

Forthofer, J. M. (2007). Modelling Wind in Complex Terrain for Use in Fire

Spread Prediction. Thesis, Department of Forest, Rangeland and Watershed

Stewardship, Colorado State University.

Forthofer, J. M., Butler, B. W., McHugh, C. W., Finney, M. A., Bradshaw, L. S.,

Stratton, R. D., et al. (2014a). A comparison of three approaches for simulating

fine-scale surface winds in support of wildland fire management. Part II. an

exploratory study of the effect of simulated winds on fire growth simulations.

Int. J. Wildl. Fire 23, 982–994. doi: 10.1071/WF12090

Forthofer, J. M., Butler, B. W., and Wagenbrenner, N. S. (2014b). A comparison

of three approaches for simulating fine-scale surface winds in support of

wildland fire management. Part I. Model formulation and comparison against

measurements. Int. J. Wildl. Fire 23, 969–981. doi: 10.1071/WF12089

French, I., Cechet, B., Yang, T., and Sanabria, A. (2013). “FireDST: fire impact

and risk evaluation decision support tool-model description,” inMODSIM2013,

20th International Congress on Modelling and Simulation, eds J. Piantadosi, R.

S. Anderssen, and J. Boland (Adelaide, SA: Modelling and Simulation Society

of Australia and New Zealand Inc.).

French, I. A., Duff, T. J., Cechet, R. P., Tolhurst, K. G., Kepert, J. D., and Meyer,

M. (2014). “FireDST: a simulation system for short-term ensemble modelling

of bushfire spread and exposure,” in Advances in Forest Fire Research, ed D. X.

Viegas (Coimbra: Imprensa da Universidade de Coimbra), 1147–1158.

Kourtz, P. (1972). Probability makes fire danger index more reliable. Fire Control

Notes 33, 11–12.

Lagona, F., and Picone, M. (2016). Model-based segmentation of

spatial cylindrical data. J. Stat. Comput. Simulat. 86, 2598–2610.

doi: 10.1080/00949655.2015.1122791

Lopes, A. M. G. (2003). WindStation: a software for the simulation of

atmospheric flows over complex topography. Environ. Model. Softw. 18, 81–96.

doi: 10.1016/S1364-8152(02)00024-5

MATLAB (2016). R2016b. Natick, MA: The MathWorks, Inc.

McRae, R. H. D. (2004). “Breath of the dragon–observations of the January 2003

ACT bushfires,” in Proceedings of Bushfire 2004 (Adelaide, SA).

McRae, R. H. D., and Sharples, J. J. (2013). “A process model for forecasting

conditions conducive to blow-up fire events,” in MODSIM2013, 20th

International Congress on Modelling and Simulations, eds J. Piantadosi, R. S.

Anderssen, and J. Boland (Adelaide, SA: Modelling and Simulation Society of

Australia and New Zealand), 2506–2512.

Moon, K., Duff, T. J., and Tolhurst, K. G. (2019). Sub-canopy forest winds:

understanding wind profiles for fire behaviour simulation. Fire Saf. J.

doi: 10.1016/j.firesaf.2016.02.005. [Epubh ahead of print].

Noble, I. R., Gill, A. M., and Bary, G. A. V. (1980). McArthur’s fire-

danger meters expressed as equations. Aust. J. Ecol. 5, 201–203.

doi: 10.1111/j.1442-9993.1980.tb01243.x

Penman, T. D., Collins, L., Price, O. F., Bradstock, R. A., Metcalf, S., and Chong,

D. M. O. (2013). Examining the relative effects of fire weather, suppression and

fuel treatment on fire behaviour - a simulation study. J. Environ. Manage. 131,

325–333. doi: 10.1016/j.jenvman.2013.10.007

Quill, R. (2017). Statistical Characterisation of Wind Fields Over Complex

Terrain With Applications in Bushfire Modelling. Thesis, School of Physical,

Environmental and Mathematical Sciences, UNSW Canberra.

Quill, R., Moon, K., Sharples, J. J., Sidhu, L. A., Duff, T. J., and Tolhurst, K. G.

(2016). “Wind speed reduction induced by post-fire vegetation regrowth,” in

Research Forum at the Bushfire and Natural Hazards CRC & AFAC Conference,

ed M. Rumsewicz (Brisbane, QLD: Bushfire and Natural Hazards CRC),

15–29.

Quill, R., and Sharples, J. J. (2018). Flea Creek Valley Data, Jul to Dec 2014. Figshare.

doi: 10.25909/5c13258d1407a

Sharples, J. J., McRae, R. H. D., and Weber, R. O. (2010). Wind characteristics

over complex terrain with implications for bushfire risk management. Environ.

Model. Softw. 25, 1099–1120. doi: 10.1016/j.envsoft.2010.03.016

Sharples, J. J., McRae, R. H. D., and Wilkes, S. R. (2012). Wind–terrain effects on

the propagation of wildfires in rugged terrain: fire channelling. Int. J. Wildl. Fire

21, 282–296. doi: 10.1071/WF10055

Simpson, C. C., Sharples, J. J., Evans, J. P., and McCabe, M. F. (2013). Large eddy

simulation of atypical wildland fire spread on leeward slopes. Int. J. Wildl. Fire

22, 599–614. doi: 10.1071/WF12072

Tolhurst, K. G., Shields, B. and Chong, D. (2008). Phoenix: development and

applications of a bushfire risk management tool. Austral. J. Emerg. Manage. 23,

47–54.

Twomey, B., and Sturgess, A. (2016). “Simulation analysis-based risk evaluation

(SABRE) fire: operational stochastic fire spread decision support capability in

the Queensland Fire and Emergency Service,” in Proceedings of AFAC 2016

(Brisbane, QLD).

Wagenbrenner, N. S., Forthofer, J. M., Lamb, B. K., Shannon, K. S., and Butler,

B. W. (2016). Downscaling surface wind predictions from numerical weather

prediction models in complex terrain with WindNinja. Atmos. Chem. Phys.

Discuss. 2016, 1–32. doi: 10.5194/acp-2015-761

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Quill, Sharples, Wagenbrenner, Sidhu and Forthofer. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Mechanical Engineering | www.frontiersin.org 16 February 2019 | Volume 5 | Article 5

https://doi.org/10.1080/00949655.2016.1162309
https://doi.org/10.5558/tfc2013-067
https://doi.org/10.2737/RMRS-GTR-266
https://doi.org/10.1146/annurev-fluid-120710-101036
https://doi.org/10.5194/acp-15-3785-2015
https://doi.org/10.1016/j.enconman.2007.10.017
https://doi.org/10.1016/j.enconman.2008.01.010
https://doi.org/10.1071/WF08195
https://doi.org/10.1016/j.envsoft.2013.04.004
https://doi.org/10.1002/we.400
https://doi.org/10.1007/s10666-010-9241-3
https://doi.org/10.1146/annurev.fluid.32.1.519
https://doi.org/10.1256/qj.02.177
https://doi.org/10.1071/WF12090
https://doi.org/10.1071/WF12089
https://doi.org/10.1080/00949655.2015.1122791
https://doi.org/10.1016/S1364-8152(02)00024-5
https://doi.org/10.1016/j.firesaf.2016.02.005
https://doi.org/10.1111/j.1442-9993.1980.tb01243.x
https://doi.org/10.1016/j.jenvman.2013.10.007
https://doi.org/10.25909/5c13258d1407a
https://doi.org/10.1016/j.envsoft.2010.03.016
https://doi.org/10.1071/WF10055
https://doi.org/10.1071/WF12072
https://doi.org/10.5194/acp-2015-761
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles

	Modeling Wind Direction Distributions Using a Diagnostic Model in the Context of Probabilistic Fire Spread Prediction
	1. Introduction
	2. Observed Data
	2.1. Case Study Region
	2.2. Wind Observations
	2.3. Wind Direction Distributions

	3. Methods
	3.1. Conditional Wind Direction
	3.2. Unconditional Wind Direction Distributions

	4. Results
	4.1. Deterministic Modeling of Conditional Wind Direction
	4.2. Modeling Unconditional Wind Direction Distributions

	5. Discussion
	5.1. Deterministic Modeling
	5.2. Modeling Wind Direction Distributions

	6. Conclusion
	Data Availability
	Author Contributions
	Funding
	References


