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In the present work, we analyze a device for measuring the dynamic response of rubber

in sliding contact. The principle of the device is to measure excited oscillations of a

mechanical system with a sliding contact between a rubber roller and a rigid surface.

Depending on the contact properties, varying oscillation amplitudes are measured. The

goal is to determine dynamic response properties of rubber from oscillating tests. For

this sake, an analytical model is introduced in which the contact problem and system

dynamics are considered in detail. Analytical and numerical results obtained for this model

are compared with some experimental data and discussed both on a qualitative and

quantitative level.
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INTRODUCTION

Elastomers such as rubber are of great importance in many technical applications, particularly
where large frictional forces occur (Saccomandi and Ogden, 2004; Popov, 2017). Tires,
transportation rollers, shoe soles, seals, contact materials of buttons and keys on small electronic
devices, or viscoelastic vibration dampers in structures and machines (Jones, 2001; Rao, 2003)
are only a few examples. High industrial demands require a profound knowledge of the material
properties of elastomers used in these components. An accurate, yet rapid and simple acquisition of
these material parameters is often desired. Especially difficult is accurate determination of dynamic
response in frictional contacts, which is important for analyzing stability of sliding contacts (Braun
et al., 2009; Nakano andMaegawa, 2009; Amundsen et al., 2012). An efficient acquisition ofmaterial
properties and determination of dynamic response of rubber is the goal of the measuring device we
study in this paper.

The principle of the device is to measure excited oscillations of a mechanical system with a
sliding contact between a rubber roller and a rigid surface. Depending on the contact properties,
varying oscillation amplitudes are measured. By introducing an analytical model for the contact
between the rubber roller and the rigid oscillator, material and dynamic response properties that
we seek can be extracted from the experimental data. With such a procedure, the quality of the
results will depend to a large extent on how efficiently and accurately one can model the contact.

Elastomers exhibit a time-dependent behavior generally characterized by a large spectrum
of relaxation times, which adds complexity to the already multi-scalar properties of
the contacting surfaces, which makes the numerical modeling a challenge (Kürschner
et al., 2015). Many of these difficulties can be overcome with the application of the
method of dimensionality reduction (Popov and Heß, 2015) with which we can map
the given three-dimensional contact problem to an equivalent contact problem of
a transformed indentation profile with a one-dimensional viscoelastic foundation of
independent rheological elements, for details see Benad (2018); Popov et al. (2018). In order
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to obtain a first qualitative and quantitative understanding of
the measuring device, we begin in the present investigation with
a simplified model of only one of these rheological elements
consisting of a single spring and a single damper to model the
contact. In this approach, we follow the recent works of Popov
(2016), Mao et al. (2017) and Benad et al. (2018) in which the
influence of oscillations on friction is investigated. It will be
shown that many characteristic features of the system studied
in the present paper show already with such a simplified one-
element model. This paves the way for more detailed studies in
the future.

The parts of this work are organized as follows: First, we
describe the chosen analytical model of the system. We then
discuss two limiting cases for the motion of the system and
present the analytical solutions for these cases. Afterwards, we
turn from the limiting cases to the arbitrary motion of the
system which is investigated numerically. The results are first
discussed on a qualitative level and then compared with the data
obtained from a measuring device. We conclude with a summary
and a brief outlook in which we address open questions, which
are recommended for investigation in future works using more
detailed models.

INVESTIGATED SYSTEM

Analytical Model
Figure 1 is the analytical model showing a mechanism for
measuring dynamic response of rubber in sliding contact. The
rubber roller with the radius R contacts with the arc-shaped rigid
surface of a rigid arm at the normal load W and rotates about
the “rotational axis” with the peripheral velocity V. The rigid arm
is supported by a torsional spring (torsional spring constant: K0

and torsional damping coefficient: C0), which allows the rigid
arm to oscillate about the “torsional axis.” The moment of inertia
of the rigid arm about the torsional axis is J. The distance between
the torsional axis and the contact point is b, which is identical to
the curvature radius of the rigid surface. The rigid arm is pinched
by two translational springs (translational spring constant: k0 and
translational damping coefficient: c0) at the distance a from the
torsional shaft. One of the translational springs is supported by an
actuator (denoted by PZT) mounted to the base, while the other
is supported directly by the base under a certain preload. When
the actuator provides the harmonic displacement excitation

u (t) = u0 sinωt (1)

wemeasure the steady-state response of the angular displacement
of the rigid arm

θ (t) = α sin (ωt + ϕ) + θ0 (2)

where t is the time, u0 is the amplitude, ω is the angular
frequency, α is the angular amplitude, ϕ is the phase shift, and
θ0 is the static angular displacement.

Equation of Motion
The equation of motion of the rigid arm is written as

Jθ̈ +
(

C0 + 2a2c0
)

θ̇ +
(

K0 + 2a2k0
)

θ = ak0u+ ac0u̇+ bF (3)

FIGURE 1 | Investigated system: scheme of the measuring system for

dynamic response of rubber in sliding contact.

where (·) is the time derivative and F is the tangential force
acting on the rigid arm due to the rubber roller. By using the
following notations

K = K0 + 2a2k0 (4)

C = C0 + 2a2c0 (5)

Γ = au0

√

k0
2 + (c0ω)2 (6)

ϕ0 = tan−1

(

c0ω

k0

)

(7)

the equation of motion can be rewritten as

Jθ̈ + Cθ̇ + Kθ = Γ sin (ωt + ϕ0) + bF (8)

Note that the phase shift ϕ0 is coming from the viscoelastic
properties of the two translational springs (i.e., k0 and c0), not
from the viscoelastic properties of the contact.

Limiting Cases
Case I: No Contact
First, let us consider the situation of “no contact” (i.e.,W = 0 and
V = 0). Since the rubber roller does not contact with the rigid
surface, the tangential force vanishes (i.e., F = 0). Then we obtain
the steady-state response Equation (2) with α and ϕ

α =
(

Γ
K

)

√

(

1− Ω2
)2 + (2ζΩ)2

(9)

ϕ = − tan−1

(

2ζΩ
(

1− Ω2
)

)

+ ϕ0 (10)
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respectively, where the dimensionless excitation frequencyΩ and
the dimensionless damping ratio ζ are given by

Ω =
ω
√

K
J

(11)

ζ =
C

(

2
√
JK
) (12)

respectively.

Case II: Static Contact
Secondly, let us consider the situation of “stationary contact” (i.e.,
W > 0 andV = 0). With no slippage at the contact, the tangential
force is given by

F = −bkcθ − bccθ̇ (13)

where kc and cc are the tangential contact stiffness and the
tangential contact damping, respectively. Then we obtain the
angular amplitude and the phase shift in the same forms as
Equations (9), (10), where Ω and ζ are given by

� =
ω

√

(K+b2kc)
J

(14)

ζ =
(

C + b2cc
)

(

2
√

J
(

K + b2kc
)

) (15)

respectively.

Case III: Fully Slipping Contact
Thirdly, let us consider the situation of “fully slipping contact”
(i.e., W > 0 and V > 0). With considering the frictional force
with the constant friction coefficient µ, the tangential force at the
contact is given by

|F| = µW (16)

This merely shifts the equilibrium position of the oscillator, but
does not influence its frequency and damping (Nakano, 2006).
Thus, both remain the same as the case of “no contact” and are
given by Equations (11, 12).

Arbitrary Case
To examine the arbitrary motion of the system, the equation
of motion Equation (8) can be easily solved numerically using
the Euler time integration procedure. Therein, the calculation
scheme for the contact force is the following: In each time step
of the dynamic simulation, it is first assumed that the immediate
contact between the contact spring and the oscillator is sticking.
Thus, the change of the tangential contact force is equal to

∆F =
(

kc
(

V − bθ̇
)

− ccbθ̈
)

∆t if |F| < µW (stick) (17)

This is valid as long as the absolute value of the tangential
force remains smaller than the normal force multiplied with the
coefficient of friction. If this condition is violated in the given

time step, then the tangential force is set to the normal force times
the coefficient of friction with the appropriate sign:

F = sign
(

V − bθ̇
)

µW (slip) (18)

The above equations describe unambiguously the procedure for
determining the tangential force in each time step. We will
now turn to a qualitative discussion of the simulation results.
Thereafter, the simulation results will be compared to some
experimental data.

TRANSITION BETWEEN STICKING AND
SLIPPING REGIMES

In the previous section, we identified essentially two limiting
cases for themotion of the system. For one of them, the velocity of
the roller V is zero (Case II: static contact), while for the other, it
is very high (Case III: fully slipping contact). It is clear that when
the roller starts rotating, there will be some transition between
the two regimes. Some features of this transition are relatively
simple and robust, which can be discussed on the qualitative
level. We will now illustrate these qualitative features with the
numerical results.

Consider first the dependency of the velocity amplitude of the
rigid arm on the excitation frequency. This is shown in Figure 2

for both the case of static contact with no slip (right resonance
curve, displayed with a blue broken line) and the case of sliding
contact with no stick (upper left resonance curve, displayed with
a red broken line). If the peripheral velocity of the roller is larger
than the velocity amplitude of the rigid arm, then the roller
will continuously slide on the rigid arm surface with a relative
velocity, which keeps changing its absolute value but not the sign.
Therefore, the force of friction will remain constant at any time.
This will introduce some static displacement but will not affect
the resonance curve. Thus, if the rotation velocity of the roller
is larger than the maximum velocity amplitude, the roller does
not influence the oscillations and they occur exactly as in the
non-contact mode. This is similar to the effects which are seen
in the active control of friction by oscillations, where there is also
a critical velocity, after which there is no influence of oscillations
by the force of friction (Popov, 2016).

Let us now consider the case when the roller velocity is smaller
than the maximum oscillation velocity. Consider some particular
roller velocity, as shown for instance with the horizontal green
broken line in Figure 2 and denoted by V. This line has two
intersection points with the resonance curve for the velocity
amplitude at the frequencies f 1 and f 2. For all frequencies smaller
than f 1 or larger than f 2 the roller velocity is larger than the
velocity amplitude. This means that in these two regions, the
contact with the roller does not influence the resonance curve.
Between f 1 and f 2, partial stick occurs, and the resonance curve
differs from that without the contact. For the chosen roller
velocity, the corresponding dependency is shown with the green
bold curve.

Accordingly, we can identify three stages during the decrease
of the roller velocity: (1) At very high sliding velocities, the
contact with the roller does not influence the resonance curve. (2)
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FIGURE 2 | Dependencies of velocity amplitude of rigid arm on excitation

frequency for different rubber roller velocities; blue broken line: case II (static

contact); red broken line: case III (fully slipping contact). Decrease of sliding

velocity (starting from the complete sliding – left high peak) leads first to a

decrease of the resonant peak (with practically unchanged resonant

frequency) followed by a relatively quick shift of the frequency toward the value

corresponding to the stationary contact. For each particular sliding velocity V

the curve under the horizontal line at the level of sliding velocity (between

frequencies f1 and f2) remains unchanged compared to the case of complete

sliding.

When the roller velocity touches the maximum of the resonance
curve, first only the top of the curve becomes “cut”—without
significantly changing the resonance frequency. (3) Further
decrease of the roller velocity leads to a shift of the maximum of
the resonance curve to the right; finally, it tends toward the case
of static contact.

Note that in Figure 2, the shape of the resonance curve below
the level of the roller velocity V remains unchanged compared
with the limiting case III (fully slipping contact). Therefore, the
resonance curve below the roller velocity level does not depend
on the friction coefficient, which only determines the static shift
of the oscillator. Between the frequencies f 1 and f 2, the shape
of the resonance curve is changed, and it could depend on the
friction coefficient. However, most surprisingly, the results of
the numerical simulation of the investigated model show that
there is no such dependence. Figure 3 illustrates this somewhat
counter-intuitive feature. In addition to the resonance curves
for the two limiting cases (broken lines), it shows six additional
resonance curves (black solid lines), all obtained for the same
exemplary sliding velocity of the roller, which is low enough so
as to allow an excitation frequency band in which partial stick
occurs. Different finite values for the friction coefficient were used
to obtain these six additional resonance curves. Not only do all six
curves coincide in the frequency region of continuous sliding, but
also in the middle frequency band, in which the resonance curves
differ from the continuous sliding case due to the periods of stick.

FIGURE 3 | Dependencies of the amplification factor (ratio of rigid arm

amplitude to excitation amplitude) on excitation frequency for six different

friction coefficients in the range from 0.1 to 1.0; blue broken line: case II (static

contact); red broken line: case III (fully slipping contact).

COMPARISON WITH EXPERIMENTAL
DATA

Figure 4 is a photograph of the apparatus developed for
measuring dynamic response of rubber in sliding contact, which
embodies the model shown in Figure 1. The rubber roller was
made of styrene-butadiene rubber with Young’s modulus of 15
MPa. As the counter surface of the rubber roller, an abrasive
paper with an arithmetic roughness of 4.3µm was affixed to the
curved surface of the rigid arm. The specifications of the system
were as follows: the moment of inertia J = 5.0 × 10−3 kgm2,
the torsional spring constant K0 = 9.9 × 102 Nm, the torsional
damping coefficient C0 = 4.3 × 10−1 Nms, the translational
spring constant k0 = 1.6 × 104 N/m, the translational damping
coefficient c0 = 1.2 × 101 Ns/m, the length a = 30mm, and
the length b = 60mm. The amplitude and frequency of the
PZT actuator were u0 = 2.5µm, and ω/2π = 50 to 100Hz,
respectively. The normal load was W = 20N and the peripheral
velocity of the rubber roller was V = 20 mm/s. Note that the
normal load was applied by pulling a coil spring with a low
stiffness to minimize the variation of its value.

Let us now compare the analytical and numerical results with
some experimental data on resonance curves. As in the previous
sections, we first examine the limiting cases (i.e., case I: no
contact, case II: static contact, and case III: fully slipping contact).
It is shown in Figure 5 that the theoretical results for cases I and
II are in very good agreement with the experimental data for no
contact (W = 0N and V = 0 mm/s) and the static contact (W =
20N and V = 0 mm/s), respectively, where the contact stiffness
and contact damping are kc = 8.9× 104 N/m and cc = 26 Ns/m,
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FIGURE 4 | Apparatus developed for measuring dynamic response of rubber in sliding contact.

FIGURE 5 | Resonance curves showing frequency response of angular

amplitude; black line: theoretical results for case I (no contact) and case III (fully

slipping contact); blue line: theoretical result for case II (static contact) at W =
20N; the blue line is barely visible due to excellent fitting; black symbols:

experimental data at W = 0N and V = 0 mm/s; blue symbols: experimental

data at W = 20N and V = 0 mm/s.

respectively, which were determined by fitting experimental data
to the theoretical solution Equation (9) with Equations (14), (15).
The above values of kc and cc have been used for all simulations
in contact: static contact, intermittent slip and full slip.

We now turn again to the transition between the limiting
cases. From our theoretical results, we expect the resonance

FIGURE 6 | Resonance curves showing frequency response of angular

amplitude; black line: theoretical results for case I (no contact) or case III (fully

slipping contact); blue line: theoretical result for case II (static contact) at W =
20N; red lines: numerical results for arbitrary case at W = 20N and V = 0.1 to

0.5 mm/s; red symbols: experimental data at W = 20N and V = 20 mm/s.

amplitude to be lowered and the resonance frequency to be
shifted to the right for the case of partial stick, when compared
to limiting case I/III (no contact/fully slipping contact). This
is confirmed with the experimental data, as can be seen in
Figure 6. One can further observe from the graph that the
experimental resonance curve differs substantially from the
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resonance curve for case I/III in a certain frequency range around
its resonance frequency, while for higher or lower frequencies
the resonance curves still coincide. This is a characteristic
feature in the transition phase which was also observed and
described in detail in the previous section. On a qualitative
level, however, a significant discrepancy of the roller velocities
is evident comparing the experimental data of the transition
with the corresponding numerical results. In order to obtain a
similar resonance frequency and maximum amplitude, the roller
velocity in the numerical simulation would have to be smaller by
an approximate factor of 0.01 than in the experimental setup. A
velocity of V = 20 mm/s as it is shown in Figure 6 would fully
comply with the slipping case in the framework of the simplified
model. And yet, in the experimental data, we clearly observe a
tendency which we would expect only at much lower velocities.
At this stage, this leaves an open question which will have to be
investigated further in future works. It is expected that a more
detailedmodel for the contact will yieldmore accurate simulation
results and provide insight on why the simplified model chosen
in this work leads to the discrepancies in the transition curve.

CONCLUSION

In this work, we analyzed a measuring device whose basic
principle lies in measuring excited oscillations of a mechanical
system with a sliding contact between a rubber roller and a rigid
surface, which is expected to lead to the extraction of material
properties of rubber. In order to obtain a first qualitative and
quantitative understanding of the device, we introduced a simple
model of the system. Therein, the contact between the rubber
roller and the rigid oscillator was modeled with one rheological
element consisting of a single spring and a single damper. It
was shown that many characteristic features of the system show
already with such a simplified one-element model.

Essentially two limiting cases of the system were identified:
The static contact, where the rotation velocity of the roller is zero,
and the case of continuous sliding, where the velocity of the roller
is so high as to never allow phases of stick between the rubber
roller and the oscillator. It was shown that the latter coincides
with the no contact case. The analytical and numerical results for
the limiting cases obtained with the simplified model are in very
good agreement with the experimental data.

When the roller starts rotation, there is a transition between
the limiting cases. This was also confirmed experimentally.
Some features of this transition are relatively simple and robust
and were discussed on a qualitative level: At very high sliding
velocities, the contact with the roller does not influence the
resonance curve. When the roller velocity touches the maximum
of the resonance curve of the velocity oscillations, first only the

upper portion of the curve is slightly altered, without significantly
changing the resonance frequency. A further decrease of the
roller velocity leads to a shift of the maximum of the resonance

curve to the right before finally it tends toward the static
contact case.

The qualitative features of the transition between the limiting
cases upon decreasing the roller velocity which were obtained
with the simplified model could also be observed in the available
experimental data of the transition. On a quantitative level,
however, a significant discrepancy of the roller velocities became
evident when comparing the experimental data of the transition
with the corresponding numerical results. In order to obtain
a system response similar to the experimental data, the roller
velocity in the numerical simulation had to be smaller than in
the experiment by an approximate factor of 0.01. This leaves
an open question which will have to be investigated further in
future works.

It is expected that a more detailed model for the contact
will yield more accurate simulation results and provide
insight on why the simplified model chosen in this work
leads to the discrepancies in the transition of the resonance
curves. A first consideration in future works could be the
friction law used in the model. As suggested and discussed
in detail in Woodhouse et al. (2015), the Coulomb model
in its simplest form (Coulomb, 1821), which we adopted
in this work, may be too crude for predicting details of
friction-driven vibration. More complex friction laws, for
example as they are discussed in Barber (2018), may lead
to better results. Therein, a critical component may be
the dependence of the friction coefficient on the sliding
velocity, see Grosch (1963). Another consideration should
be the adoption of a more sophisticated contact model.
Roller and oscillator of the apparatus are practically two
wheels in contact. Such a rolling contact can be modeled
more accurately than in the present paper using more than
one rheological element with the method of dimensionality
reduction, see Popov et al. (2015); Li and Popov (2017).
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