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Simulation is commonly utilized as a best practice approach to assess building

performance in the building industry. However, the built environment is complex and

influenced by a large number of independent and interdependent variables, making

it difficult to achieve an accurate representation of real-world building energy in-use.

This gives rise to significant discrepancies between simulation results and actual

measured energy consumption, termed “the performance gap.” The research presented

in this paper quantified the impact of underlying causes of this gap, by developing

building simulation models of four existing non-domestic buildings, and then calibrating

them toward their measured energy use at a high level of data granularity. It was

found that discrepancies were primarily related to night-time use and seasonality in

universities is not being captured correctly, in addition to equipment and server power

density being underestimated (indirectly impacting heating and cooling loads). Less

impactful parameters were among others; material properties, system efficiencies, and

air infiltration assumptions.

Keywords: the performance gap, energy model calibration, case research, post-occupancy evaluation, sensitivity

analysis

INTRODUCTION

Designed performance is generally determined through compliance modeling, which is, in the
UK, currently implemented by the use of simplified or dynamic thermal modeling to calculate the
energy performance of a building under standardized operating conditions (e.g., occupant density,
setpoints, operating schedules, etc.), set out in the National CalculationMethodology (NCM, 2013).
Compliance modeling is useful to assess the energy efficiency of buildings under standardized
conditions to determine if minimum performance requirements are met. However, it should not
be used as a like-for-like comparison with actual performance. This results in a deviation between
regulatory predictions and measured energy use, which creates a significant risk to designing and
operating low energy buildings. Conflating compliance modeling with measured energy use is one
of the reasons for the popularization of the “perceived” energy performance gap. Theoretically, a
gap is significantly reduced if predictions are based on actual operating conditions, also known as
performance modeling. Performance modeling includes all energy quantification methods which
aim to accurately predict the performance of a building. van Dronkelaar et al. (2016) urge the need
to adhere to a classification of different gaps, in particular the regulatory gap (i.e., the difference
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between compliancemodeling tomeasured energy use) and static
performance gap (i.e., comparing predictions from performance
modeling to measured energy use). A comprehensive review of
the regulatory energy performance gap and its underlying causes
is given by van Dronkelaar et al. (2016).

There is a need for design stage calculation methodologies
to address all aspects of building energy consumption for whole
building simulation, including regulated, and unregulated
uses and predictions of actual operation (Norford et al.,
1994; Diamond et al., 2006; Torcellini et al., 2006; Turner
and Frankel, 2008). However, a fragmented construction
industry (Cox and Townsend, 1997; Construction Task
Force, 1998; House of Commons, 2008), has led the
design community to rarely go back to see how buildings
perform after they have been constructed (Torcellini et al.,
2006), resulting in a lack of practical understanding of
how modeling assumptions relate to operational building
energy use. Post-occupancy evaluation of existing buildings
is essential in understanding where and how energy is
being used, how occupants behave, and the effectiveness of
system strategies.

This paper quantifies the impact of underlying causes of
the regulatory energy performance gap in four case study
buildings. It does this by exposing calibrated energy models
to typical modeling assumptions (set out in the UK National
Calculation Methodology). It then compares their impact
on a discrepancy at a high level of data granularity. This
is supported by explaining and employing how operational
building performance data can be used to inform building
modeling assumptions.

PREDICTING AND MEASURING ENERGY
USE

The regulatory performance gap seems to arise mainly from the
misconception that a compliance model provides a prediction
of the actual energy use of a building. Whereas, the static
performance gap is not well-understood, because performance
modeling has not been common practice among practitioners,
and where it is undertaken, predictions are often not validated.

Presently, diagnostic techniques can identify performance
issues in operation. Trend analysis, energy audits, and traditional
commissioning of systems can highlight poor performing
processes in a building. An integrated approach is the calibration
of virtual models to measured energy use. Calibration can
pinpoint differences between how a building was designed to
perform and how it is actually functioning (Norford et al.,
1994). It can identify operational issues, improvements, and
determine typical behavior in buildings, which in turn can
support design assumptions. It is also increasingly used in
activities such as commissioning and energy retrofitting scenarios
of existing buildings (Fabrizio and Monetti, 2015), as an
accurately calibrated model is more reliable in assessing the
impact of Energy Conservation Measures (ECMs). Calibrated
energymodels can be inversely used to assess the impact of typical
assumptions (simplifications) on building energy use.

Model Calibration
Model calibration is seen as one of the key methodologies
to develop more accurate energy models. It is the process
of changing input parameters in order to obtain a model
that lies within agreed boundary criteria and is therefore
likely to predict future options more closely related to
the actual situation. According to ASHRAE (2013), this
is a 5% monthly mean bias error on total yearly energy
use and 10% for hourly mean bias error on yearly energy
use. In addition, coefficient of variation of the root mean
square error [CV(RMSE)] is also used; ASHRAE sets
their criteria at <15% for the months, and <30% for
the hours.

It is, however, questionable if a calibrated model predicting
within this range is an accurate model for representing reality,
as the ranges mask higher levels of data granularity by only
representing total energy use. As such, it can mask modeling
inaccuracies when focusing on the building or system level
(Clarke, 2001). Raftery et al. (2011) showed that even the most
stringent monthly acceptance criteria do not adequately capture
the accuracy of the model with measured data on an hourly
level. In other words, unaccounted energy end-uses may not
necessarily abide to the same statistical criteria. For example,
lighting energy use may be significantly over predicted, while
chiller energy use is under predicted. In total, however, they fall
within the range and can be considered calibrated. Inherently,
the input parameters determine the amount of energy used,
as such, their assumptions need to be supported by collecting
building design or commissioning information as much as
possible, otherwise benchmark figures can be used. It is here
where model calibration and operational data can make a
significant impact in supporting and providing assumptions for
performance modeling during design.

METHODOLOGY

An empirical validation method was employed to investigate
differences between predicted andmeasured energy use. Previous
research efforts have primarily focused on monthly calibration
for electricity and gas consumption for the whole building
(Pan et al., 2007). In line with the objective of the study,
more detailed operational performance was collected to ensure
a higher level of model accuracy. Post-occupancy evaluation
is one of the key methods used to establish data collection.
It is used to identify how buildings are used, and how
parameters, such as occupancy presence, differ from typical
design assumptions. It aims to provide detailed information
of energy flows for the whole building, including major sub
loads such as lighting, heating, ventilation, air-conditioning, and
equipment. The actual operation of the building was represented
as accurately as possible using advanced and well-documented
simulation tools. Juxtaposed prediction and measurement points
were consecutively calibrated using an evidence-based decision
making process whilst employing uncertainty and sensitivity
analysis to estimate the impact of design assumption and to
quantify their effect on a discrepancy. A flowchart of the
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FIGURE 1 | Modeling, calibration, and analysis process.

modeling, calibration, and analysis process is shown in Figure 1,
each step is described below.

Case Study Buildings
Four case study buildings were investigated; two university
buildings (referred to as CH and MPEB) and two office buildings
(referred to as Office 17 and Office 71), all are located in
London, the United Kingdom. Access was provided byUniversity
College London (UCL) estates and BuroHappold Engineering,
both parties were directly involved with this research. The
buildings consist primarily of open-plan office space, where
both university buildings include some teaching spaces and
MPEB includes workshops and laboratories, in addition to two
large server rooms. Office 17 is a naturally ventilated building
with a provision for air conditioning in the basement and
reception. CH and Office 71 are also naturally ventilated, but
have air conditioning throughout the building. MPEB has a
variety of mechanical systems in place to provide ventilation and
air conditioning, in addition to openable windows for natural
ventilation in perimeter spaces. Buildings were selected based on
their accessibility and availability of both design and measured
data at a high level of granularity.

Modeling
Ideally a design model would be available as a starting point,
this would allow comparing initial assumptions with a calibrated
model, however these are often not available as these are generally
not disclosed by the design engineer. Instead models were
built based on drawings and specifications in Operation and
Maintenance (O&M) manuals. All building spaces were included
in the model and zoning of the spaces was identified during

FIGURE 2 | Virtual models of the case study buildings.

walk-throughs of the buildings. OpenStudio1 (1.14) was used to
develop the models, a graphical interface for the EnergyPlus2

(8.6) simulation engine. A visualization of the three dimensional
virtual models is shown in Figure 2.

Analysis of Discrepancy
Differences between predicted and measured energy use were
compared on a detailed level to identify performance issues.
Maile et al. (2012) use data graphs to explain performance issues
by comparing predicted and measured data. They and others
(Yang and Becerik-Gerber, 2015; Chaudhary et al., 2016; Kim
and Park, 2016; Sun et al., 2016; Kim et al., 2017) use statistical
variables proposed by Bou-Saada and Haberl (1995), such as the
normalized mean bias error and CV(RMSE) given in Equations
(1) and (2).

NMBE (%) =

∑n
i−1(mi−si)

n

m
· 100 (1)

CV (RMSE) (%) =

[

∑n
i−1(mi−si)

2

n

]
1
2

m
· 100 (2)

where mi and si are the measured and simulated data points,
m is the average of the measured time series data and n is the
number of data points in the time series (i.e., Nmonthly = 12,
Nhourly = 8760).

1https://www.openstudio.net/
2https://energyplus.net/
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Sampling
For the purpose of uncertainty and sensitivity analysis, variability
was introduced to a large set of input parameters in the building
models. The Monte Carlo method was employed to repeatedly
random sample distributions of inputs to obtain the distribution
of energy consumption. The amount of simulations to be run
is dependent on when convergence criteria are met, i.e., when
the true mean is established. The convergence of the method
is based on the size of the sample, which thus determines the
computational cost. The sample size is in effect the number of
different combinations of input parameters that are run through
the deterministic model, whereas the number of parameters
included in the sample determine the volume of the parameter
input space. The sample sizes were between 100 and 300 variable
inputs for the four case study buildings. Including uncertainty
in material properties, power densities, scheduling, set-point
temperatures, natural and mechanical ventilation requirements,
infiltration, and system efficiencies. In this research, Latin
hypercube sampling is used for creating randomized designs,
which is one of the sampling methods that has been found to
have the fastest convergence on the mean estimates (Burhenne
et al., 2011). Parameter ranges were established at a 20% variation
for all considered variables used in the samples, to allow for
enough variation and understand parameter influences as done
by Eisenhower et al. (2011).

Parametric Simulation
Each sample of inputs is used to generate separate simulation
files, which were then simulated using EnergyPlus on Legion,
UCL’s computer cluster. For each building, several thousand
simulations were run in order to analyse the variance in
predictions. A higher number of simulations increase the
accuracy of the calculated correlations between inputs and
outputs from sensitivity analysis. For sampling, use is made of
pyDOE (2017), an experimental design package for Python, with
which Latin-hypercube designs were created.

Uncertainty and Sensitivity Analysis
Uncertainty analysis quantifies uncertainty in the output of
the model due to the uncertainty in the input parameters.
Uncertainty analysis is typically accompanied by sensitivity
analysis, which apportions the uncertainty of the model output
to the input.

Spearman’s rank correlation coefficient (SRCC) was calculated
to assess the relationship between the inputs and outputs. SRCC
was used in conjunction with Pearson correlation coefficients, but
were found to be similar, due to the inputs and outputs being
elliptically distributed, as such, only SRCC is shown. Equations
for the computed coefficients are as follows:

(SRCC)ρrgX ,rgY =
cov

(

rgX , rgY
)

σrgXσrgY
(3)

where ρ is the correlation.

Manual Calibration
Input parameters are predominantly based on evidenced
information collected from O&M manuals and verified

in operation through energy audits. In addition, system
performance, occupancy presence and energy use is verified
through measurements, where energy use is the objective of the
calibration process. However, in certain cases, changes made to
a model can seem arbitrary when not enough data is available
to justify making a change to the model. For example, when
over prediction of power energy use is identified, there are then
several options for changing the model to align to the actual
situation, as power energy use is determined by multiple input
parameters in a model. There is no premise for changing one
parameter over the other when detailed measurements are not
available, even though they will affect the model in different
ways. Changing equipment power density in one space with
space conditioning opposed to one without will have different
effects on heating and cooling loads, whilst achieving the purpose
of aligning power energy use. Under this rationale, it becomes
clear that a higher level of data granularity can support in
developing a more accurate model, but that a lack of information
can cause these parameter changes and mask the real situation.
Choices made in changing input parameters are not extensively
described, but will be explained when significant changes were
necessary or when certain limitations were identified that could
drastically affect the accuracy of the model.

As such, instead of running through each iteration per model,
an overview is given of essential adjustments that were necessary
and had a major impact on the accuracy of the model. In
addition, limitations are described that were likely to affect model
calibration accuracy, typically due to a lack of information.

RESULTS AND DISCUSSION

Initial base case models for the case study buildings were created,
assumptions were based on collected data from O&M manuals
and the Building Management System (BMS) and Automatic
Meter Reading (AMR) system. In addition, Wi-Fi and swipe-
card access data were collected to inform occupancy presence.

FIGURE 3 | Number of Wi-Fi connections for an average weekday and

weekend day at a 15-min interval for CH and MPEB.
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Subsequently, uncertainty was introduced to input parameters
in order to quantify the uncertainty within the outputs and
compute the sensitivity of parameters. This supported the
calibration of the base case models toward measured energy use
and understanding of the impact of underlying causes of the
regulatory performance gap. Several iterations were necessary to
adjust themodels to achieve a closer representation of the existing
building. Manual calibration focused on removing modeling
errors and discrepancies between predictions andmeasurements.
More specifically, this involved determining specific holidays in
the measured data, establishing base electricity loads for lighting
and equipment, disaggregating energy end-uses for juxtaposition,
determining systems set-up and HVAC strategy, and introducing
seasonal occupancy factors.

Operational Data to Inform
Model Assumptions
Collected data is invaluable in supporting assumptions in the
building modeling process. In particular, the development of
occupancy, equipment, and lighting schedules is essential for
model calibration and should even be useable in a design setting,
by collecting an evidence base of similar building types and their
typical schedules of use. Although environmental and system
performance data was also analyzed to establish system settings
and set-point temperatures, these variables are much more case
study dependent.

Developing Typical Schedules of Use
Lighting and equipment use and occupancy presence in building
simulation are based on schedules of use, represented using
values between 0 and 1. These schedules are then applied to
certain spaces or space types, which are then multiplied by power
and lighting loads (W/m2) or occupant densities (m2/p) assigned
to these spaces, to calculate the final load (W) or number of
people in a space at a certain time of the day. For compliance
modeling in the UK, standard schedules are used, which may not
be representative of reality. Schedules of use directly affect energy
use and can have a large impact on the discrepancy between
predicted and measured energy use. As such, for performance
modeling during design, it is essential to determine future use
of spaces, potentially based on previous experience or data from

FIGURE 4 | Weekly number of swipe-ins at main entrance in CH and MPEB.

existing buildings. Operational data can be utilized to develop
these schedules of use, either based on; (1) measured occupancy
presence data or (2) measured electricity use.

Logically, the use of lighting- and equipment electricity
consumption will create more accurate lighting- and equipment
use schedules, while occupancy data will create more accurate
occupancy presence schedules. The use of occupancy data
to represent lighting- and equipment schedules assumes that
occupancy presence has a large influence on these types of
energy use. Although generally true for most buildings, it can
differ per building and is not always as strongly correlated,
introducing a certain margin of error. Lighting- and equipment
schedules are more important than occupancy schedules as they
have a more significant influence on energy use. Using this
reasoning, the use of electricity data to develop operational
schedules would be the preferred option. Nevertheless, in both
cases, it needs to be ensured that the developed schedules do
not apply for all space types (depending on the granularity
of data collected; whole building/floor/space). Using whole
building collected occupancy data would be a better proxy
for the schedules of use in office spaces, than in storage-,
toilet-, and kitchen spaces. In the case study buildings, the
first approach was used for MPEB and CH, where Wi-Fi
data was available, but an accurate breakdown of lighting-
and equipment electricity was not. Whereas, for Office 17
and 71, solely lighting and equipment electricity data was
available and the second approach was used to develop schedules
of use.

Schedules Based on Occupancy Data
Swipe card and Wi-Fi data were used to develop typical weekday
and weekend day schedules, in particular Wi-Fi was effective
at understanding the cumulative trend of people within the
building, as shown in Figure 3. Counting the number of swipes
gave an indication of the maximum number of people during a
day, which was used to define the occupancy density (m2/p) of
the different space types.

The typical profiles were normalized to retrieve values
between 0 and 1, to be used as occupancy schedules in the
building. However, it became clear that a large variation exists
in occupancy throughout the seasons as MPEB and CH are

FIGURE 5 | Occupancy, equipment, and lighting schedules for a single

parametric simulation run for CH.
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university buildings where occupancy is affected by university
terms or semesters, evident from Figure 4.

This seasonal variation in occupancy needs to be accounted
for in building energy modeling as occupancy has a significant
effect on energy use. A monthly seasonal factor was calculated
by taking the average daily maximum number of swipes per
month. These values were then scaled to between 0 and 1. The
seasonal factors were then multiplied by the typical weekday and
weekend day schedules, creating a total of 12 different weekday,
and weekend day occupancy schedules, one for each month.

It would be possible to incorporate the collected occupancy
data directly into the energy modeling software, i.e., instead of
creating 12monthly schedules, each half-hour can be represented
by the collected data. This would, however, make the occupancy
schedule considerably long, and would over-fit the model,
therefore, would only apply to a specific year. Instead, the
schedules can take into account uncertainty within the data
to understand the effect of variability in the schedules on
energy use.

The occupancy schedules were then used to create lighting and
equipment schedules by introducing an out-of-hours baseload,
which is the lighting or equipment electricity use during
unoccupied hours relative to the average peak during the day.
This requires making an assumption about the typical baseloads
for lighting and equipment use. By analyzing their electricity
profiles for the case study buildings, it was found that lighting and
equipment energy use baseloads for Office 17, Office 71, CH, and
MPEB which were; 20/25, 15/20, 20/65, and 65/85%, respectively.
These figures indicate the use of lighting and equipment in
the buildings outside of normal operating conditions (night-
time operation) as a percentage of total. These figures were
used to create the lighting and equipment schedules, by taking
the occupancy schedules, and applying the baseload where the
occupancy schedule factor is lower than the baseload. Internally,
they aremultiplied by the assumed lighting and equipment power
densities. The resulting occupancy-, equipment- and lighting
schedule for a typical weekday and weekend day in CH are shown
in Figure 5. It was assumed here that the lighting and equipment
schedules are slightly wider than the occupancy schedule. A
monthly seasonal factor based on the variation of occupancy was
applied to these schedules.

Schedules Based on Electricity Data
In many buildings, the availability of occupancy data is minimal
and assumptions have to be made. To support these assumptions,
it might be useful to base occupancy profiles on other available
data, such as electricity use. This would ideally require at least
a breakdown into lighting and power for the building. For
Office 17 and 71, equipment and lighting electricity use was
disaggregated and available per floor. Absolute electricity use
schedules were scaled to between 0 and 1, as to be used in the
building simulation software. Either separate schedules can be
used for each floor (as shown in Figure 6) or an average for the
building can be calculated.

There is often a strong correlation between lighting and power
energy use and occupancy, indicating that they follow a similar
trend. However, their main difference is the baseload in electricity
use (i.e., night-time energy use), which is not the same for
occupancy. To create occupancy profiles solely based on the
lighting and power electricity use, the L&P profiles were first
scaled to between 0 and 1, the baseload is then subtracted from
the values in the time series and negative values are set to 0. Then,
the time series is again scaled to between 0 and 1, and a typical
weekday and weekend day were calculated, as shown in Figure 7.

As can be seen, the newly created occupancy profile, solely
based on lighting and power electricity, represent the actual Wi-
Fi data well. However, the accuracy of this method is strongly
dependent on the assumed baseload.

Sensitivity Analysis
For each model, parametric simulations created an input- and
output space (i.e., samples of input parameters and predictions
of energy use). Predictions were aggregated by comparable end-
uses, to create a like-for-like comparison with measurements. In
Figure 8, energy end-uses for 3,000 simulations are compared
with measured energy use (orange circles), displaying the
uncertainty for each end-use.

By varying the input parameters within the model, their
individual impact on different end-uses can be analyzed. For
example, varying the space set-point temperature deadband or
L&P profiles during different simulations, can highlight how
these impact cooling energy use, as shown in Figure 9. A change

FIGURE 6 | Lighting electricity use per floor scaled to between 0 and 1.
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FIGURE 7 | Weekday occupancy profile based on L&P electricity use, for CH.

FIGURE 8 | Predicted (blue) and measured (orange) energy use for 3,000

simulations for MPEB.

in deadband would have a larger influence on cooling energy use
than offsetting the L&P profiles.

The inputs and outputs were used to understand the
sensitivity of the input parameters on the outputs.

CH
For CH, the variability in “DeadBand” (i.e., interval between
heating and cooling temperature) has a strong negative
correlation (ρ = −0.6) with cooling energy use. This can be
seen in Figure 10, where input variables are filtered where ρ

>[dolmath]±0.25 for any of the energy end-uses.
Set-point temperatures were varied at a 0–3◦C interval. This

was primarily helpful to capture the uncertainty of the Variable
Refrigerant Flow (VRF) control strategy. In addition, equipment
power density, as defined for the office spaces, has a strong
positive correlation (ρ = 0.79). Other parameters, such as the
boiler efficiency have a strong negative correlation (ρ = −0.64)
with gas use, i.e., an increase in the boiler efficiency reduces gas
energy use. Although, some of these parameters have a strong
correlation with individual end-uses, their effect on total energy
is negligible, as presented on the right side of the diagram. For
example, boiler efficiency is weakly correlated to total energy use,
because of the small percentage of gas use out of total energy
use, used solely for radiator heating within circulation spaces.
The “weekday L&P offset” refers to the variability introduced by

allowing the lighting and power schedules to fluctuate by up to
2 h as a horizontal offset.

Office 17
For Office 17, significant parameters are the lighting and
equipment power densities, typical for office buildings that are
naturally ventilated. They have a strong positive correlation
(Lights ρ = 0.36, Equipment ρ = 0.90) on electricity use and
coincidentally a strong negative correlation (Lights ρ = −0.23,
Equipment ρ = −0.41) on gas use, due to an increase in internal
gains, which decreases the need for radiator heating (the only
form of mechanical heating). Furthermore, gas use is strongly
dependent on the heating temperature and allowance for opening
windows, increasing either will have a strong effect on increasing
gas energy use.

Office 71
For Office 71, the strongest positive correlation (ρ = 0.97) is
between the mechanical outdoor air flow rate to the offices and
fan energy use. This input was sampled with a mean (µ) of
8 and standard deviation (σ) of 1.2 l per second. In contrast,
the strongest negative correlation is between the hot water
temperature of the boiler (µ = 82, σ = 4) and the pump energy
use. Although both highlight strong effects on their respective
energy end-uses, their proportionate effect on total energy use
is considerably smaller. Instead, most important variables are
lighting and equipment power density.

MPEB
ForMPEB there are amultitude of parameters that affect different
energy end-uses. In particular, lighting and equipment power
densities in the offices, servers, and laboratories have a strong
positive correlation on lighting and equipment (including server)
energy use. These in turn affect the correlation coefficients of the
VRF heat pump Cooling Coefficient of Performance (CCOP),
which has a strong positive correlation (ρ = 0.35) on systems
energy use. However, on total energy use, the server equipment
power density (i.e., W/m2 produced by computer clusters) is
the dominant factor with a very strong positive correlation
(ρ = 0.92). In addition, it strongly influences chiller (ρ = 0.45),
fan (ρ = 0.98), pumps (ρ = 0.98), and systems energy use
(ρ = 0.9). Systems energy use in MPEB is mainly from the VRF
heat pump, providing cooling in the server rooms. Whereas,
chillers energy use is from the chillers, providing cooling to
both Fan Coil Units (FCUs) in the server rooms and offices, in
addition to the air handlers, providing conditioning to occupied
spaces. Server energy use in the building is 1/5th of total energy
use, but the sensitivity indices show that other energy end-
uses are strongly affected due to the high cooling loads and
necessary conditioning.

Summary
Spearman rank correlation coefficients for each building are
summarized in Table 1, in order of significance. In particular,
equipment power density is a significant parameter to influence
energy use, which is typical for non-domestic buildings.
Therefore, it is important to make evidence based assumptions
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about these loads to make sure predictions are in line with
measurements. It is important to note that both equipment and
server energy use are not taken into account under the current
regulatory framework. Other significant factors to influence

FIGURE 9 | Impact of varying the space set-point deadband and lighting and

power profiles of use on cooling energy use.

energy use in the case study buildings are the heating and cooling
set points, in particular in spaces with high internal gains, where
temperatures can strongly fluctuate. Insignificant parameters to
influence energy use are material properties and air infiltration.
For domestic buildings, the thermal envelope has a considerable
impact on reducing heating energy use (in colder climates).
In contrast, in non-domestic buildings, an increase of the
performance of the thermal envelope can have a negative effect
on energy use due to high internal gains in certain spaces, which
inhibit heat loss to the outside, and therefore, have an increased
cooling load. In high-density workspace in modern buildings,
Passive house standard envelopes are therefore unlikely to be an
energy efficient design decision. Similarly, infiltration does not
have a significant effect on energy use in any of the buildings,
although there is a distinct difference between the seasons.

Calibration
For each building model, manual adjustments were made to
bring the predicted energy use closer to measured energy use
(i.e., manual calibration). O&M manuals were to be reviewed

FIGURE 10 | Spearman correlation coefficient per energy end-use and total energy use for CH.
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TABLE 1 | Spearman correlation coefficients of input parameters on total energy use per building.

Office 17 Office 71 CH MPEB

ρ > ±0.75 Office equipment (W/m2) Office mechanical vent flow rate. Office lighting and equipment (W/m2),

temperature difference between

heating and cooling SP

Server, office and workshop

equipment (W/m2), office lighting, lab

mechanical ventilation rate

±0.75 > ρ

ρ > ±0.50

Heating SP Fixture flow rates for hot water,

boiler hot water temperature, L

&P (W/m2) in offices

Flow rates of hot water fixtures,

infiltration rate, server equipment,

boiler efficiency

Flow rates of hot water fixtures

±0.50 > ρ

ρ > ±0.25

Natural ventilation air flow,

lighting power density

(W/m2)

Boiler efficiencies, seasonal

weekday factor

Lighting and power offset, heating SP Lab L &P, L &P base load modifiers,

CCOP of VRF condenser serving

server

p < ±0.25 Material properties,

infiltration, system

efficiencies,

Material conductivity, L &P

densities in space types with

only a few spaces, VRF COPs,

exhaust fan efficiency, natural

ventilation rate

Material conductivity, VRF CCOP, and

HCOP, L &P power densities in

non-office space, natural ventilation

air flow

Material conductivity, L &P power

densities in space types with only a

few spaces, natural ventilation air

flow, metabolism

to understand the design and intended operation of a building,
which were subsequently validated through energy audits. The
latter is especially important, as the intended design and design
strategies differed from that observed, which in many cases had
a significant effect on energy performance. An overview is given
of typical adjustments among the case study buildings, and more
specific adjustments to adjust outliers.

Specific Adjustments
• For both Office 17 and 71, the boiler is turned off during the

summer months (May to September). However, according to
the simulation model, some heating is necessary during these
months (based on the weather). To replicate reality, the boiler
was turned off in the model.

• Continuous operation of the VRF system during day and night
in CH was identified. This was represented by adjusting night-
time heating- and cooling set-points. Whereas, for MPEB,
continuous chillers use was measured, mainly due to the high
continuous load from high-performance computing clusters.

• In Office 17, gas use during the night was similar to its daytime
baseload, different from initial assumptions. To represent
this in the model, the boiler was configured to provide
heating during the night. After communicating this issue to
facilities management, the boiler was set to operate on a timer.
Consumption drastically decreased as a result, as can be seen
in Figure 11, where gas use for two typical weekdays for the
winter of 2013 and 2016 are shown.

• In addition, seasonality in occupancy presence proved to be a
major factor of variability for the university buildings. This was
represented by introducing a seasonality factor for occupancy,
lighting and equipment loads, calculated by analyzing the
occupancy (Wi-Fi and swipe-card data), lighting and power
loads throughout the seasons.

Typical Adjustments
• Another example that caused differences between predictions

and measurements is the occurrence of holidays, which
a model needs to take into account. Although this is
standardized within the NCM methodology, for performance

modeling purposes, this needs to be explicitly defined in
the model.

• For each building, the out of hours equipment and lighting
baseloads were important factors, determined by calculating
typical weekday and weekend day profiles and comparing their
peak and base-loads, specifically for lighting and power where
available. The power baseloads were defined as 20, 20, 85, and
65% for Office 17, Office 71, MPEB, and CH, respectively.

Limitations
Limitations were identified that resulted in some uncertainty
within the calibrated models, in particular these were related to
the following:

• Metering systems did not always pick up all end-uses
accurately, due tomislabeling, faultymeters, and some systems
not being measured. In particular, for Office 71, the VRF
system and AHU were not metered, and calibration was
performed solely on the other available end-uses. Similarly in
MPEB, the heat meter for the district heating system was out
of order.

• Electric water heating (through zip-taps and showers) cannot
be distinguished from measured power energy use (i.e., plug
loads). Therefore, this use was added to the power use within
the models ensuring a like-for-like comparison.

• Electricity use for heating and cooling provided by VRF
systems cannot be separated as is normally done for building
simulation. These are therefore combined.

• Related to a previous bullet point, a VRF system with local set-
point control is difficult to represent in building simulation,
and will introduce some uncertainty within the calibration.

• For MPEB, part of the server electricity use was determined
to be connected to the L&P bus-bar, making it impossible to
distinguish these loads accurately.

These limitations are a common issue with model calibration,
however, most could be alleviated through rigorous and
continuous commissioning, in addition to ensuring that a reliable
metering strategy is in place.
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FIGURE 11 | Gas energy use for an average weekday during January to April

2013 (Left) and 2016 (Right).

TABLE 2 | Statistical calibration criteria, differences between predicted and

measured energy use.

17 71 CH MPEB *

NMBEmonth −1.4 1.7 −2.9 2 ±5

CV(RMSE)month 4.3 12.1 11 4.5 <15

CV(RMSE)hour** 67.8 66.7 28.8 11.2 <30

*ASHRAE (2013) criteria.
**For CH and MPEB based on solely electricity.

FIGURE 12 | NMBE based on hourly electricity3.

All four case study buildings were calibrated within the
ASHRAE criteria at a monthly level as shown in Table 2. At an
hourly level however, both Office 17 and 71 show significant
differences due to discrepancies between predicted andmeasured
gas use. In both buildings, heating was turned offmanually for the
summer months. In contrast, the model still predicted significant
gas use. Additionally, there was significant night-time gas use
(heating during the night), which was not fully taken into account
in the model. Together, this resulted in large differences at an
hourly level.

The ASHRAE criteria are helpful to understand differences
between predicted and measured energy use, but provide a
limited understanding of differences at a higher temporal
granularity, in particular for the NMBE, a statistic where
negative and positive values can cancel each other out. As
such, comparison of the NMBE and CV (RMSE) at different
energy end-uses on a monthly basis were also made. Aggregated
electricity use is shown for MPEB in Figure 12.

FIGURE 13 | Typical weekday Systems and L&P electricity use for CH.

Furthermore, the ASHRAE calibration criteria are for total
energy use, and do not take into account the differences
between energy end-uses. One end-use can potentially mask the
other. To avoid this, calibration focused on limiting differences
between end-uses where a like-for-like comparison was possible.
Comparing typical weekday and weekend day for predicted
and measured energy use proved to be helpful in determining
typical hourly differences and identified if adjustments were
necessary. For example, as shown in Figure 13, system and
L&P energy use for a typical day indicates that: (1) electricity
is under predicted for the system, while the profile is a good
approximation of its variability, and (2) the assumed total power
density of lighting and power should be slightly lower to align
with the measured profile.

Impact of Regulatory Assumptions
To determine the impact of regulatory assumptions on energy use
predictions and consequently the performance gap, typical NCM
assumptions (i.e., simplifications) were applied to the manually
calibrated base case models. Simplifications were applied both
individually and combined to understand their individual and
aggregated effect on energy use. An overview of the applied
simplifications is given in Table 3.

Input variables, such as material properties, system
efficiencies, metabolism, and natural ventilation rates, have
not been further investigated as these were shown to be least
impactful by the sensitivity analysis. Simplifications were applied
to base case models for each case study building, however several
simplifications were not applied to each building as they were
not initially taken into account, such as the seasonality in Office

3See Appendix for further explanation.
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TABLE 3 | Simplifications.

S0 No seasonality (i.e., assuming a steady profile of use throughout the

year).

The seasonal variation applied equipment, occupancy, and lighting

profiles for CH and MPEB are assumed to be unity for each month.

S1 Equipment power density for different space types is based on NCM

values instead of observation.

S2 Combination of S0 and S1.

S3 Typical NCM occupancy, lighting, and equipment profiles are used

instead of those based on Wi-Fi or sub-metering profiles.

S4 NCM heating and cooling profiles are used for the space types instead

of those based on O and M manuals

S5 Infiltration was adjusted to more conservative values, increasing the air

tightness values for CH and 71, while decreasing this for MPEB (as an

airtightness test showed a value of 8 m3/m2h @ 50m Pa).

S6 Combination of S1 and S3

S7 Changed calibrated power density in the servers from 1,000 to 500

W/m2, typical assumptions for computer clusters.

S8 Design weather files were used instead of weather files based on actual

weather data.

S9 Combination of S0, S3, and S4

S10 No server or equipment energy use

TABLE 4 | Percentage impact of simplifications on total energy use compared to

the calibrated model.

17 71 CH MPEB

S0 x x 33.7 8.6

S1 −37.0 −5.8 26.7 −25.4

S2 x x 58.0 −19.0

S3 −21.3 −19.9 −4.2 −4.9

S4 −10.0 −0.1 −13.7 −1.4

S5 0.3 0.1 −1.5 0.2

S6 x −23.1 18.5 −27.8

S7 x x x −19.2

S8 x x 4.0 1.0

S9 −57.0 −23.1 27.5 −27.8

S10 −72.7 −46.4 −15.8 −64.4

Color is used to distinguish the level of impact, or scale between the values.

17 and 71. The percentage impact on total energy use for each
simplification is shown in Table 4.

Simplifications concerned with a change of internal gains
highlight the importance of accurately determining the
assumptions for equipment and lighting power density in spaces,
as they have a large effect on total energy use. This is supported
by the strong correlation coefficients for these parameters. In
particular, server loads can be dominant in modern buildings,
evident for MPEB where energy use in the building was primarily
driven by the power use of the computer clusters, indirectly
influencing systems’ electricity use. Moreover, defining the right
schedules for these loads is tantamount to establishing the right
loads for spaces. Its effect was significant on energy use for each
of the case study buildings, as shown by S1 and S3. In particular,
a significant difference is notable for S1 between MPEB and CH,
which is due to the difference between the NCM and calibration

FIGURE 14 | Occupancy, lights, and equipment schedules for the calibrated

model compared with NCM (in black) assumptions for CH.

assumptions for equipment power density. More specifically, it
was found to be directly related to the power density of the server
rooms, which for CH, was half of that of the NCM assumption
(500 W/m2), where it was double that in MPEB.

As part of the manual calibration process, it was found
that high baseloads existed in the buildings, which had to be
accounted for by adjusting the internal gain schedules. These
were a large contributor to a discrepancy between regulatory
predictions and measurements as there was a significant
difference compared to the typically assumed NCM equipment
power baseload. In the case study buildings, the baseloads for
equipment in Office 17, 71, CH and MPEB were ∼25, 20, 65,
85%, respectively, compared to the NCM assumption of 5.3%.
NCM and calibrated model schedules of use are shown for CH
in Figure 14, which clarify the cause of their significant impact.

Besides internal gains, the heating and cooling temperatures
in different space types can vary significantly between initial
assumptions and those in operation, something which is difficult
to replicate within a model when a variable strategy is in place. In
CH in particular, the operational set-point temperatures could be
adjusted manually by occupants and this was difficult to replicate
accurately, especially since system energy use for conditioning
was found to be constant in both CH from the VRF system
and MPEB from the chillers. Replacing the calibrated set-point
temperatures with NCM assumptions led to a significant decrease
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in energy use for Office 17 and CH, while for Office 71, the
temperatures were similar to NCM assumptions. Finally, for S8,
changing the weather file based on actual historical weather data
to a design weather file from Gatwick had a notable effect in
increasing annual energy use for CH (4%), but only aminor effect
for MPEB (1%). This is in contrast to some earlier findings that
have shown differences of up to 7% on annual energy (Bhandari
et al., 2012).

CONCLUSION

Discrepancies between predicted and measured energy use was
mitigated through iterative adjustment of building energy model
assumptions in four case study buildings. The reliability of this
process is strongly dependent on the availability of both design
and measured data, which is the evidence to support any iterative
changes. If there is a lack of such data, any iterative changes
will be arbitrary, even though a discrepancy may be mitigated.
Under this rationale, it becomes clear that a higher level of data
granularity supports the development of a more accurate model.
A higher level of data granularity and availability of evidence can
filter out inaccurate predictions.

Calibrated models were used to quantify the impact of
regulatory design assumptions on energy use. Regulatory
assumptions are those defined under the UK National
Calculation Methodology, which pre-scribe the inputs for
specific space types, in order to determine the minimum
performance requirements of a building for Building Regulations
(i.e., compliance modeling). Compliance modeling should
not be used as a design tool by informing building efficiency
improvements. In practice, however, this occurs as increasingly
stringent building efficiency targets set by the government
or local councils are not being met. Further refinement of
the design is necessary to achieve these targets, which may
be tested through the compliance model, even though the
compliance model is not an actual representation of the
building. Tested efficiency measures can have a significantly
different impact on the compliance model than on the
actual building.

The impact of typical assumptions on energy use identified the
significant differences that exist between regulatory assumptions
and the actual operation of a building, giving a better
understanding of how and what assumptions should be made

when using performance modeling. The findings underline
the need to confirm, most importantly; future equipment
loads, equipment and lighting (or occupancy) schedules,
seasonality of use, and heating and cooling strategies of
a building. In addition, typical lighting and equipment
baseloads under compliance modeling are a gross under-
prediction of actual baseloads measured in the four case
study buildings.

The use of operational data to inform assumptions for
modeling existing buildings is straightforward, but may also
prove to be worthwhile during the design of new buildings. Data
on similar buildings, predominantly based on building type, can
be used as a proxy for design stage building energy models; (1)

indirectly, input parameters as identified in this paper can be
applicable to certain new buildings, and (2) directly, by collecting
data on existing buildings, in particular, understanding those
significant variables as identified by the sensitivity analysis; plug
loads, profiles of use (incl. baseloads), domestic hot water use and
server loads.

This paper highlights that a stronger emphasis on the use
of performance modeling is needed, in order to drive design
decisions that will effectively mitigate the risk of the energy
performance gap.
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APPENDIX

Data Visualization and Analysis Techniques
Several visualizations were used that might not be
straightforward to understand and are therefore explained
here, to be used as a reference.

“Typical” Weekday and Weekend
Day Profiles
Typical weekday and weekend day profiles of energy use were
used to compare predicted and measured energy use and
understand the hourly variation in energy use, profiles were
created for a per year basis. A typical weekday and weekend
day are determined by first separating the holidays, working
days and weekend days in a specific time series (these are year
dependent). The separated day types are then grouped together
and the average, mean, standard deviation during a specific
period is determined. The mean represents a typical day and
is in some instances accompanied by the standard deviation
throughout the same period. In addition, in certain cases, the
profile is normalised to unity (i.e., scaled to bring the values into
the range [0,1]).

FIGURE A1 | Example of a discrepancy metrics analysis.

Discrepancy Metrics Analysis
A discrepancy between predicted and measured energy use is
analysed by using the mean bias error (NMBE) and coefficient
of variation of the root mean square error [CV(RMSE)],
these metrics indicate the error or difference between two
datasets. Used here to indicate the error on a monthly level
(differences between energy use on a monthly interval) and
hourly level (differences between energy use at an hourly
interval). The bar graph in Figure A1 indicates the differences
on an hourly interval per month, whereas both metrics can
also be calculated on a yearly basis. The difference between
two datasets at an hourly interval over the whole year is
given by NMBEhourly and CV(RMSE)hourly. Differences between
the months on a yearly basis are given by NMBEmonthly and
CV(RMSE)monthly. Finally, the orange lines are the criteria set
by ASHRAE that deem a model calibrated, however these
criteria should actually be compared at a yearly basis (the
metrics shown at the top of the graph). They are used in the
bar graph to understand how the model is performing on a
monthly basis.
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