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Germany

Impact tests are an important tool to analyze dynamic material properties of viscoelastic

media in technology and biology. In this context, rigorous contact mechanical models

of the collision problem are necessary to adequately interpret data from impact

experiments. It is shown here theoretically that the coefficient of restitution in these types

of testing is mainly a function of one specific material property, namely, the ratio between

the loss and storage moduli of the viscoelastic probe at the characteristic timescale

of the impact. Explicit dependencies of the restitution coefficient on factors like impact

velocity, impactor shape, general material rheology, and functional grading—beyond the

fact that those may influence the impact duration and the dynamic modulus associated

with it—are weak.

Keywords: impact testing, restitution, viscoelasticity, rheological models, graded materials

INTRODUCTION

Impact tests are considered as a fast and simple method to gain insights about the material
behavior of viscoelastic media—for example, rubber or soft tissues like articular cartilage—under
dynamic loading.

In the simplest case, only the rebound velocity (or some directly related measure, e.g., the
rebound height) of a rigid impactor is determined. In technical contexts, this testing procedure
is often referred to as the determination of the “rebound elasticity” of the material [see, e.g.,
the industrial standard DIN EN ISO, 8307 (2018)]. However, how the so-obtained coefficient of
restitution (COR) generally relates to the viscoelastic rheology, or put bluntly, what kind of material
property the “rebound elasticity” actually represents, remains unclear.

Biological tissues, especially in joints, are often subject to impact loading, for example, during
sporting activities or accidents. Therefore, impact tests are also performed on these tissues to
analyze material properties and to determine damage thresholds. For this purpose, Burgin and
Aspden (2007) constructed a drop tower, which was later developed further by Kang et al. (2017).
In this regard, Burgin et al. (2014) pointed out that the material behavior of articular cartilage
under impact loading is quite different from the one under slow loading conditions. Ozcan
et al. (2011) used the frequency response function in impact tests with a hammer to characterize
frequency-dependent material properties of the human liver.

Contact mechanics models of viscoelastic impacts have a long history. In solving the impact
problem, these models, obviously, heavily rely on the solutions of the contact problem. For
linear materials, the latter ones are obtained based on the correspondence between linearly
elastic and linearly viscoelastic boundary value problems established by Lee (1955). Although the
correspondence principle strictly only holds, if the regions of boundary themselves do not change
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in time (this is generally not the case for dynamic contact
problems, when the contact area is not known a priori), Lee
and Radok (1960) were able to show that the correspondence
solution of the viscoelastic Hertzian problem is consistent
with all boundary conditions, if the contact radius is a non-
decreasing function of time. If the contact radius possesses a
single maximum (this is the case for the impact problem), the
solution needs to be adjusted, as was acknowledged by Lee
and Radok in their paper. The corrected contact solution for
the restitution phase (when the contact radius is decreasing in
time) has been presented by Hunter (1960) (for the Hertzian
case) and Graham (1965) and Ting (1966) (for arbitrary convex,
axisymmetric profile geometries).

Hunter also applied his contact solution to analyze the
respective contact-impact problem. Bassi (1978) was the first
to examine the problem, to which extent impact characteristics
(for the linear impact onto an incompressible Kelvin solid,
see Impact Onto an Incompressible Kelvin Solid) allow for the
determination of dynamic material properties. The linear impact
problem for viscoelastic materials (i.e., the impact of a rigid
flat cylindrical punch onto a viscoelastic medium) has been
also studied by Butcher and Segalman (2000), Schwager and
Pöschel (2007), and Argatov (2013). For the impact of a sphere
onto a Kelvin solid (see Impact of a Paraboloid), Kuwabara
and Kono (1987) proposed a model, later studied in detail
by Ramírez et al. (1999), in which the simple form of the
equation of motion during the compression phase (when the
contact radius is increasing) is also used for the restitution.
This, from a contact mechanics perspective, is slightly erroneous
(as pointed out above) but allows for a mathematically simple
treatment of the impact. A contact mechanically more rigorous
solution of this problem was given by Willert et al. (2017).
Selyutina et al. (2015) and Springhetti and Selyutina (2018)
theoretically studied the impact response of articular cartilage
on the basis of a quasi-linear Kelvin material model. The impact
problem for a quasi-linear standard solid has been analyzed by
Argatov et al. (2016).

In the present manuscript, it is analyzed in detail whether
the primary result of a viscoelastic impact test, the COR,
can be directly related to a specific material property and
how this relation is in turn affected by the shape of the
impactor (flat punch or spherical), the general material rheology,
and functional grading—as biomaterials usually are graded
media. For this purpose, the low-velocity (i.e., quasi-static)
central normal impact of a rigid body with mass m and
initial velocity v0 onto an incompressible viscoelastic half-
space is studied. First, in Impact Onto an Incompressible
Kelvin Solid, the simplest viscoelastic material, the Kelvin solid
with complete decoupling of elastic and viscous properties,
is considered, and the known respective impact solutions
are briefly summed up. To capture the influence of material
rheology, a more general material model is considered in
Influence of Material Rheology, first in a rigorous way and
after that in an approximate sense, which demonstrates that
the COR indeed is bound to a specific material property.
Influence of Viscoelastic Grading is devoted to the effect of
graded viscoelasticity.

IMPACT ONTO AN INCOMPRESSIBLE
KELVIN SOLID

The arguably minimal model of a viscoelastic material is the
Kelvin solid with shear modulus G∞ and shear viscosity η. The
complex dynamic modulus in this case simply reads as

Ĝ (ω) = G∞ + iηω, (1)

with the angular frequency of oscillation ω and the imaginary
unit i. In the following, the known solutions for the impact of a
cylindrical flat punch with radius a, and a sphere (approximated
in the vicinity of the contact as a paraboloid) with radius R onto
such a material, occupying a half-space, are briefly recapitulated.

Impact of a Cylindrical Flat Punch
In case of the impact of a rigid, cylindrical punch, the impact
solution can be looked up in Butcher and Segalman (2000),
Schwager and Pöschel (2007), Argatov (2013), andWillert (2020).
It only depends on a nondimensional damping parameter

2D : = ηω0

G∞
=

Im
{

Ĝ (ω0)

}

Re
{

Ĝ (ω0)

} , ω0 : =
√

8aG∞
m

. (2)

Note that ω0 is the characteristic angular frequency of the
elastic problem. “Im” and “Re” denote the imaginary and real
parts of a complex quantity, respectively. Hence,D is given by the
ratio of the loss and storagemoduli at the characteristic frequency
scale of the impact problem.

The COR for weak damping is given by Argatov (2013).

ε = exp

[

− 2D√
1− D2

arctan

(√
1− D2

D

)]

, D < 1, (3)

whereas for strong damping (Willert, 2020)

ε = exp

[

− 2D√
D2 − 1

artanh

(√
D2 − 1

D

)]

, D > 1. (4)

Impact of a Paraboloid
For a spherical impactor, contact mechanically rigorous
modeling is slightly more complicated than in the previous
case, because the contact radius is not prescribed by the radius
of the flat punch and therefore increasing and decreasing
during the impact. Hence, compression and restitution must
be considered separately. A self-consistent model of the impact
is most conveniently implemented within the framework of
the “method of dimensionality reduction” (MDR; Popov and
Heß, 2015; Popov et al., 2018). In the model by Kuwabara and
Kono (1987), the simple form of the equation of motion for
compression is also used for the restitution phase. It has been
shown recently by the author in the monograph (Willert, 2020)
that both models differ only slightly from each other. Also, both
agree well with experimental results by Van Zeebroeck et al.
(2003) on impacts with rubber and various biomaterials.
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The impact duration and thus the characteristic frequency for
the elastic problem were given by Hertz in his classical paper
(Hertz, 1882). Hence, the nondimensional damping parameter,
in analogy to Equation, reads (omitting numerical factors of the
order of one)

2D = η

(

Rv0

m2G3∞

)1/5

. (5)

Figure 1 shows the COR as a function of the damping
parameter for the flat punch and the spherical impactor. The
curves are practically the same. Hence, the explicit dependence
of the COR on the impactor shape is very weak. However, the
shape obviously influences the damping parameter and therefore,
implicitly, the impact solution. Especially note that the damping
parameter for the spherical impactor depends on the impact
velocity, so the COR is velocity dependent. This is not the
case for the linear contact with a cylindrical punch, where the
characteristic frequency is strictly a system property.

INFLUENCE OF MATERIAL RHEOLOGY

The fact that model predictions based on the Kelvin solid agree
well with experimental data raises an interesting question: If,
obviously, no real viscoelastic material exhibits such a trivial
rheology, as suggested by the Kelvin model, how is it possible for
the latter to accurately predict real impact behavior? Although the
answer is quite simple, to demonstrate it, we have to briefly look
into more general rheological models.

Rheological Models in Linear
Viscoelasticity
The rheological behavior of “real” linearly viscoelastic materials is
often captured in terms of a Prony series. In case of a generalized

Maxwell model, the time-dependent shear modulus reads

G (t) = G̃∞ +
N
∑

i=1

Gi exp

(

− t

τi

)

, (6)

with several different relaxation times τi (usually arranged in a
logarithmic scale) and associated moduli Gi. If the problem of
interest itself has an inherent timescale τ ∗ (for impact problems,
this is the impact duration), it seems reasonable to assume that
all relaxation processes faster than τ ∗ run infinitely fast and all
slower than τ ∗ run infinitely slow (note that relaxation times
in a Prony series are usually listed in a logarithmic scale). As
under this assumption a Maxwell element of the Prony series
with very slow relaxation degenerates to a spring, and one with
very fast relaxation degenerates to a dashpot, we arrive at the
following rheological model (see Figure 2): a Maxwell element
in parallel with a Kelvin element. The modulus and viscosity of
the Kelvin element are given by summing up the fast and slow
relaxation processes,

G∞ : = G̃∞ +
∑

τi≫τ∗
Gi,

η0 : =
∑

τi≪τ∗
Giτi. (7)

Hence, the complex dynamic modulus is

Ĝ (ω) = G∞ + G∗ (ωτ ∗)2

1+ (ωτ ∗)2
+ i

[

η0ω + G∗ ωτ ∗

1+ (ωτ ∗)2

]

. (8)

Now, why is the Kelvin solid such a convenient model?
Because for harmonic loading with angular frequency ω, owing to
Equation (1), any linearly viscoelastic material can be interpreted
as a Kelvin solid, with the elastic modulus and viscosity given
by the storage and loss modulus at ω! Loading under impact is
not exactly harmonic but can be approximated well enough by

FIGURE 1 | Coefficient of restitution as a function of the governing damping parameter for the impact onto an incompressible Kelvin solid. (A) Impact of a cylindrical

flat punch. (B) Impact of a paraboloid; solid line, contact mechanically rigorous model implemented within the method of dimensionality reduction (MDR); dashed line,

Kuwabara–Kono model.
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FIGURE 2 | Rheological model for the Kelvin–Maxwell solid. Notations are

given in the text.

harmonic functions; see, for example, the work of Hunter (1957)
on the Hertzian impact problem. Note that exactly sinusoidal
indentation has been studied in detail by Argatov (2012) and that
harmonic loading is also used in models of impact tests (Ruta and
Szydło, 2005).

Solution of the Impact Problem for the
Kelvin–Maxwell Solid
Let us analyze the consequences of this idea in case of the Kelvin–
Maxwell solid introduced above. For simplicity, the impact of
a rigid flat cylindrical punch with radius a and mass m is
considered, as it has been shown before that the impactor shape is
of secondary importance. The system of equations of motion for
the outer and inner degrees of freedom of the rheological element
shown in Figure 2, u and z, reads

0 = mü+ 8η0au̇+ 8G∞au+ 8G∗a (u− z) ,

0 = τ ∗ż + z − u. (9)

Written in proper nondimensional variables, the problem
only depends on the following parameters:

δ0 : = η0

√

8a

G∞m
, δ∗ : = G∗τ ∗

√

8a

G∞m
, γ : = G∞

G∗ . (10)

In Figure 3 the COR—obtained by explicit solution of
Equation —is shown in contour lines as a function of the
governing parameters for

γ δ∗ ≡ 1 ⇔ τ ∗ ≡
√

m

8G∞a
(11)

in a logarithmic scale.

Approximate Solution via the Solution for
the Kelvin Solid
These results can be reproduced in a very simple way, based on
the idea laid out above: If, for harmonic loading, a viscoelastic

FIGURE 3 | Contour line diagram of the coefficient of restitution as a function

of the governing nondimensional parameters for the impact of a cylindrical flat

punch onto a Kelvin–Maxwell solid.

material can always be considered a Kelvin solid, and loading
during impact is close to harmonic, it should be possible to
obtain the impact solution for an arbitrary viscoelastic rheology
based on the closed-form analytic solution for the Kelvin solid
in Equations (3) and (4). For the Kelvin–Maxwell solid, Equation
(2) suggests the following form for the damping parameter D:

2D =
Im
{

Ĝ (ω0)

}

Re
{

Ĝ (ω0)

} , ω0τ
∗ = 1, (12)

which has been proposed recently by the author in the context of
a three-element standard solid (Willert, 2020), that is, the ratio
of loss and storage moduli at the characteristic frequency of the
elastic problem. This form, however, only provides good results, if
the impact duration does not deviate too strongly from the elastic
case. A significant improvement can be achieved if the actual
timescale of the viscoelastic problem is used, that is,

2D =
Im
{

Ĝ (ω∗)
}

Re
{

Ĝ (ω∗)
} , ω∗ = π

T
, (13)

where the impact duration T for the calculation has been taken
from the exact solution of the problem (see Solution of the Impact
Problem for the Kelvin–Maxwell Solid).

Figure 4 shows the coefficients of restitution obtained by this
simple procedure—calculating the damping ratio according to
Equation or and applying the analytical solution for the Kelvin
solid—in the same fashion as in Figure 3. Usage of the modified
damping parameter in Equation results in very good agreement
with the exact solution. This strongly supports the idea that the
general material behavior in viscoelastic impacts is of secondary
importance; the main influencing factor is the ratio of loss
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FIGURE 4 | Contour line diagrams of the coefficient of restitution as a function of the governing nondimensional parameters for the impact of a cylindrical flat punch

onto a Kelvin–Maxwell solid; approximate solutions based on the solution for the Kelvin solid. (A) Based on Equation (12) for the damping parameter D. (B) Based on

Equation (13) for the damping parameter.

and storage moduli at the timescale of the impact. Hence, this
quantity can be determined in a stable way measuring only
the COR.

INFLUENCE OF VISCOELASTIC GRADING

Besides viscoelasticity or poroelasticity, most biomaterials exhibit
functional grading. Whether and how this influences the
applicability of the idea described above shall be discussed in
the following.

Correspondence Principle in Graded
Viscoelasticity
All hitherto given viscoelastic contact (or contact-impact)
solutions are based on the elastic-viscoelastic correspondence
principle. Already Hashin (1965), as early as in 1965, considered
the viscoelastic correspondence for heterogeneous (composite)
materials. Only roughly 40 years later did Paulino and Jin (2001)
andMukherjee and Paulino (2003) show that the correspondence
principle applies also to graded viscoelastic materials, if the
spatial and temporal variations of the moduli are separable, that
is, if every point exhibits the same stress relaxation behavior
in time. Additionally, Jin (2006) pointed out that in case of
two-phase graded composites, for the relaxation functions to be
separable, the relaxation behavior in shear and dilatation must be
the same.

Impact Onto a Power-Law Graded Kelvin
Solid
So let us consider the impact of a rigid flat cylindrical punch
onto a power-law graded Kelvin solid with the depth- and time-
dependent shear and bulk moduli,

G (z, t) = G0z
q [1+ τδ (t)] ,

K (z, t) = K0z
q [1+ τδ (t)] , (14)

with exponent q of the power-law grading, some characteristic
time τ and the Dirac δ function. The static Poisson ratio is

ν : = 3K0 − 2G0

6K0 + 2G0
≈ 0.5, (15)

because the material is considered to be incompressible. The
elastic solution of the contact problem was given by Booker et al.
(1985a),

Fel = 2cN
(

q
)

a1+qd : = k
(

q
)

d, (16)

where cN is a lengthy expression, which can be constructed from
the fundamental solution in Booker et al. (1985b).

As the viscoelastic correspondence principle holds for this
problem, the equation of motion reads

md̈ + k
(

q
)

τ ḋ + k
(

q
)

d = 0, (17)

and is thus formally the same as in the homogeneous case. Hence,
also for graded viscoelastic materials, the COR is determined
by the ratio of the loss and storage moduli at the timescale
of the impact—at least, if the relaxation functions in shear
and dilatation are separable and identical in form. Nonetheless,
grading obviously affects the contact stiffness and therefore the
impact duration.

DISCUSSION

As has been shown, the COR mainly depends on a ratio of
moduli. To determine the values of the moduli themselves, one
has to consider at least one dimensional property of the impact,
for example, the impact duration or the maximum indentation
depth. However, the relation between these quantities and
the dynamic modulus seems to exhibit a slightly stronger
explicit dependence on the material rheology than the restitution
coefficient itself. For the flat cylindrical punch, a decent estimate
for the absolute value of the dynamicmodulus (showing a relative
error of <10% for the Kelvin–Maxwell solid with γ δ∗ ≡ 1 and
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not too small values of the restitution coefficient, ε ≥ 0.3) is
given by

∣

∣

∣
Ĝ
(

ω∗)
∣

∣

∣
≈ π2

T2

m

8a
, (18)

with the impact duration T.
All results presented are strictly valid only for incompressible

media. Although many technological and biological materials
can in good approximation be considered to be incompressible,
there is, of course, no physical necessity to neglect dilatation.
However, it has been shown recently by the author that the
effect of compressibility in viscoelastic impacts is often very
small (Willert, 2020). Moreover, the restriction to quasi-static
processes, which requires the impact velocity to be much smaller
than the smallest speed of wave propagation in the deformable
material, poses a serious constraint of the calculations and
considerations presented above, especially for very soft materials,
as in this case wave propagation can be a significant source of
energy dissipation (Hunter, 1957; Roylance, 1973).

To obtain a general linearly viscoelastic material model, which
is nonetheless manageable in terms of the material parameters
used, the analyzed Kelvin–Maxwell solid neglects the finite
character of the relaxation processes that are either much faster
or much slower than the impact itself. Thus, the results obtained
can probably only serve as a “zero-order” approximation for
“real” general linearly viscoelastic media (whose sets of material
parameters, though, are usually unmanageable with respect to
comprehensive analysis).

In sinusoidal indentation, the behavior is characterized by
incomplete storage and loss moduli (Argatov, 2012). Their
use may well be appropriate also for the analysis of the
impact problem.

CONCLUSIONS

The low-velocity impact of a rigid impactor onto a linearly
viscoelastic flat has been studied within the framework of
viscoelastic contact mechanics. It is found that the COR in
this impact configuration is mainly a simple, unique, decreasing
function of the ratio of the loss and storage moduli at the
impact timescale. The explicit dependencies of the COR on the
profile shape of the impactor, the general material rheology,
and material grading (at least, if the relaxation behavior in
shear and dilatation are the same)—beyond the fact that
all these quantities may influence the impact timescale and
the loss and storage moduli associated with it—are very
weak. Therefore, as a simple and good approximation for the
impact solution, the closed-form analytical solution for the
impact of a flat cylindrical punch on a Kelvin solid can be
used. Contact mechanically semi-rigorous approaches, like the
Kuwabara–Kono model for parabolic impact, can also often be
used. The obtained results will help to appropriately interpret
impact test measurements on soft materials like rubber or
articular cartilage.
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