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Modeling of rough frictional interfaces is often based on asperity models, in which the

behavior of individual microjunctions is assumed. In the absence of local measurements

at the microjunction scale, quantitative comparison of such models with experiments

is usually based only on macroscopic quantities, like the total tangential load resisted

by the interface. Recently however, a new experimental dataset was presented on the

onset of sliding of rough elastomeric interfaces, which includes local measurements of

the contact area of the individual microjunctions. Here, we use this more comprehensive

dataset to test the possibility of quantitatively matching the measurements with a model

of independent asperities, enriched with experimental information about the area of

microjunctions and its evolution under shear. We show that, despite using parameter

values and behavior laws constrained and inspired by experiments, our model does not

quantitatively match the macroscopic measurements. We discuss the possible origins of

this failure.

Keywords: rough contact, elastomer friction, onset of sliding, asperity model, shear-induced area reduction,

stick-slip, elastic interactions

1. INTRODUCTION

The mechanical behavior of contact interfaces between rough solids is crucial to understand their
tribological properties. The rough contact mechanics community has been developing models in
two main directions (see Vakis et al., 2018 for a recent review). First, asperity models in which
the contact interface is divided into well-defined microjunctions actually carrying the normal and
tangential loads applied to the contacting solids (Braun and Röder, 2002; Ciavarella et al., 2006;
Violano and Afferrante, 2019). Each microjunction is ascribed a set of individual properties (e.g.,
its height, radius of curvature or friction coefficient) necessary to apply some assumed behavior laws
[e.g., any contact (Johnson, 1987) or friction law (Le Bot et al., 2019)] when submitted to an external
stimulus. The macroscopic behavior of the interface is then the emerging, collective response of the
population of microjunctions (Trømborg et al., 2014; Braun and Peyrard, 2018; Costagliola et al.,
2018). Second, continuum models in which the input quantity is the full topography of the rough
surfaces, and an exact solution of the unilateral contact and friction problem is seeked (Pastewka
and Robbins, 2014; Yastrebov et al., 2017; Ponthus et al., 2019), again under some assumptions on
the interfacial behavior, concerning, e.g., elasticity, friction, and adhesion.
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Each approach can be used to produce two types of results,
either deterministic or statistical. Deterministic results are
obtained for a given topography (for continuum models) or a
given set of model parameters (for asperity models, including
the properties of each microjunction) and are thus specific to
those input data. They are relevant for quantitative comparison
with a particular experiment. In contrast, statistical results
are the expected results of a large number of deterministic
calculations performed on statistically similar random surfaces.
In asperity models, statistical results are obtained when using
probability density functions (pdfs) of the microjunction
properties (Greenwood and Williamson, 1966; Braun and
Peyrard, 2008; Thøgersen et al., 2014). In continuum models,
they are usually obtained using the power spectrum density (psd)
of the topographies under study (Persson, 2001). In the following,
we aim at finding a quantitative match with a specific set of
measurements, so we will consider deterministic results.

Both asperity and continuum models have been widely
explored in the context of rough contacts under purely normal
load, with a recent study explicitly comparing the relative merits
of the two approaches (Müser et al., 2017). Several studies
aimed at a quantitative comparison between deterministic model
results and local, microjunction level measurements (see e.g.,
McGhee et al., 2017; Acito et al., 2019). In contrast, to our
best knowledge, such comparisons have not been reported in
the case of sheared multicontacts. Here we will attempt to
build an asperity model able to quantitatively match recent
measurements performed on the incipient tangential loading
and onset of sliding of a rough elastomer slab in contact with
a smooth glass plate (Sahli et al., 2018, 2019) (Figure 1A).
Those measurements (see a typical example in Figures 1C,D)
are particularly interesting and constraining for models because,

A B

C

D

FIGURE 1 | Experiments that our model attempts to reproduce. (A) Sketch of the experimental setup. (B) Typical segmented image of the interface showing individual

microcontacts in white, for P = 6.40 N. (C) Concurrent time evolutions of the tangential force Q (red) and the area of real contact (blue), for P = 3.10 N. (D) Area of

real contact as a function of the tangential force, for the same data as in (C).

in addition to the macroscopic loads on the interface, they
include the evolution under shear of the individual contact areas
and shapes of the many microjunctions forming the interface
(Figure 1B).

The philosophy of this work is to start with a model of
independent asperities like the earthquake model of Braun
and Peyrard (2008), enrich it with the recently identified
phenomenology of shear-induced area reduction, and genuinely
ask the question whether such a model is sufficient to
quantitatively match a particular experimental dataset. In other
words, we do not aim at a definitive model of the incipient
tangential loading and onset of sliding of rough elastomer
contacts. Rather, we make one single step ahead compared
to the models in the literature, and try to conclude whether
this step (including shear-induced area reduction) is sufficient
or not. Such an approach can only be fruitful if the values
of the model parameters are sufficiently constrained by the
experimental dataset, so that one avoids fortuitous agreement.
This can be achieved (i) by limiting to the strict minimum
the number of parameters that cannot be directly measured
experimentally, and (ii) by performing a thorough exploration
of the parameter space for those remaining, unconstrained
parameters. In this work, we did our best to apply this strategy,
which in our case leads to an unsatisfactory agreement. This
result is nevertheless a progress in the sense that it clarifies the
range of assumptions that remain to be questioned and improved
in future studies.

In section 2.1, we describe the asperity model and provide the
experimental constraints on the model parameters in section 2.2.
Quantitative comparisons between the model and measurements
are given in section 3, while in section 4 we discuss the possible
reasons for the absence of good matching between the two.
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2. MATERIALS AND METHODS

2.1. Model Description
We consider the frictional interface between a slider of mass M
and a track. The tangential displacement of the slider, X(t), is
assumed to obey the following equation of motion:

MẌ +MηẊ = kL(vt − X)− F, (1)

where M is the slider’s mass, kL is the stiffness of the
loading spring through which the slider is pulled at constant
velocity v, η is an effective viscous parameter accounting for
dissipation, e.g., in the air or in the loading spring, the dot
indicates the time derivative, and F is the resistive force due to
interfacial/adhesive friction.

We assume that the interface is a multicontact made of N
independent individual microjunctions, each resisting a force fi,
so that F =

∑N
i=1 fi. Each microjunction can be in either of

two states. First, a pinned state during which the junction acts
like a (time-evolving) elastic spring of stiffness ki, so that fi =

ki(X(t) − xi), with xi the slip displacement of the junction with
respect to the track (e.g., xi = 0 as long as junction i has never
been slipping). When a threshold force fsi is reached, the junction
enters a slipping state, during which fi = ǫ fsi. Note that ǫ < 1,
so that fsi and ǫ fsi are the analogs, at the junction level, of a static
and a dynamic friction force, respectively.

Themechanical behavior of individual junctions is inspired by
experimental observations made on the same setup andmaterials
in contact as in Figure 1A, but when the rough slab is replaced
by a single smooth sphere (Sahli et al., 2018, 2019; Mergel
et al., 2019). The resulting sphere/plane contact is assumed
to be representative of an individual microjunction within a
multicontact like that of Figure 1B. Those experiments, carried
out both for large normal loads (Sahli et al., 2019) and for small
(even negative) normal loads (Mergel et al., 2019), have shown
that, under increasing shear, the initially circular contact shrinks
anisotropically and becomes increasingly ellipse-like. As shown
in Sahli et al. (2019) the shrinking minor axis of the ellipse is
parallel to the shear loading direction, while the variations of the
major axis (in the direction orthogonal to shear) can be neglected.

Defining ℓ‖i and ℓ⊥i the sizes of an elliptic microjunction
along and orthogonal to shear, respectively, we can define its area
as Ai =

π
4 ℓ‖iℓ⊥i. Following Mindlin (1949), the stiffness of such

an elliptic contact along the shear direction is, assuming no-slip
contact conditions:

ki =
π
2 ℓ⊥iE

(1+ ν)
[

K(e)− ν
e2

(

K(e)− E(e)
)] , (2)

with E and ν being the Young’s modulus and Poisson’s ratio of

the material that constitutes the microjunctions, e =

√

1−
ℓ2
‖i

ℓ2
⊥i

is

the excentricity of the junction, K and E are the elliptic integrals
of the first and second type, respectively. Note that assuming that
microjunctions are elliptic is the simplest increment of realism
compared to a circular assumption, in order to account for the
complex shapes observed for microjunctions in the experiments.

Assuming that each microjunction is initially circular, we can
define the common initial value, ℓ0i, of ℓ⊥i and ℓ‖i from its initial

individual area A0i as ℓ0i =

√

4A0i
π

. As already mentioned, ℓ⊥i

varies negligibly under shear, so we will consider that ℓ⊥i = ℓ0i
at all times. The evolution of each ℓ‖i is then deduced from the
shear-induced area reduction reported in Sahli et al. (2018):

Ai = A0i − αb
1

A
p
0i

f 2i , (3)

with αb and the exponent p two constant parameters of the
model. The size of junction i along the shear direction is
thus simply ℓ‖i =

4Ai
πℓ0i

. Note that there is currently no
rigourous contact mechanics theory for the evolution of the shear
stiffness of a sheared sphere/plane contact that would incorporate
anisotropic contact area reduction. Here, such a behavior is
approximated at all times by the combination of Equation (2),
which is valid under no-slip assumption, and of Equation (3),
which was empirically found at macroscale. Doing so, we assume
that Equation (3) also applies at microscale, as suggested by the
existence of common values of αb and p for both the macro- and
micro-scales (Sahli et al., 2018).

For each microjunction, Equation (3) is used from the
beginning of the experiment, when fi assumed to be 0, up to when
the junction first starts to slip (when fi = fsi). At that instant, Ai

takes the value Asi = A0i−αb
1

A
p
0i

f 2si . For later times, based on the

observation of the typical behavior of Ai during the experiments
of Sahli et al. (2018) (see Figure 2), we assume that Ai always
remains equal to Asi.

In contrast, the force resisted by amicrojunction can vary with
time after the first onset of slipping. When the slider’s velocity,
Ẋ(t), gets smaller than a minimum value Ẋmin = cmin × v, with
cmin a scalar parameter, we assume that all the slipping contacts
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FIGURE 2 | Left axis: time evolution of the contact area Ai of five typical

microjunctions in the experiment at P = 4.01 N. Right axis: concurrent

evolution of the macroscopic tangential force Q.
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will repin, with a position xi = X−ǫfsi/ki. Doing so, at repinning,
there is no force discontinuity, as the repinning force ki(X − xi)
is equal to the slipping force ǫfsi.

Following Sahli et al. (2018), the threshold force fsi at which
the microjunction starts to slip is assumed to be proportional to
its area at the same instant, i.e., fsi = σAsi, with σ the frictional
shear strength of the contact.

The algorithm used to solve themodel numerically is provided
in Appendix 1.

2.2. Experimental Constraints
In order to quantitatively compare the model results with the
multicontact experiments reported in Sahli et al. (2018, 2019),
we need to feed the model with parameter values based on the
measurements. In the following list, we first provide all constant
parameter values that are directly accessible experimentally, with
the error bars when relevant.

• M = M0+M1, whereM0 = 100 g is the mass of the slider and
M1 = 0, 55, 111, 215, 308, 552 g an additional mass, for the six
experiments performed. All masses are given at±1g.

• kL = 9,200± 200 N/m (Sahli et al., 2018).
• v= 0.1 mm/s.
• E = 1.6 ± 0.1 MPa (Sahli et al., 2018). This value and the

associated error bar are the mean value and standard deviation
over 32 estimates using 5 different spherical PDMS samples
prepared in the same conditions.

• ν is assumed to be equal to 0.5, as is classically done
for elastomers.

• the individual values of the initial areas of all microjunctions,
A0i, are extracted from the initial image (for Q = 0),
segmented as described in Sahli et al. (2018). The fact that
all microjunctions have different areas is the result of the
random nature of the elastomer surface topography (see a
typical Power Spectrum Density in Supplemental Material of
reference Sahli et al., 2019) and of its elastic contact interaction
with the rigid glass plate.

• N is also extracted form the same segmented image.
• σexp = 0.23± 0.02 MPa (Sahli et al., 2018), is the experimental

value of the frictional shear strength of the interface,
determined from a linear fit of (As,Qs) for the 6 experiments.
Qs is the macroscopic static friction (peak) force and As is the
total area of real contact at the same instant. We will discuss
below how the value of σ in the model is related to σexp.

There are three model parameters which cannot be directly
measured in experiments: η, ǫ, and cmin.

η is introduced to enable energy dissipation in the system, thus
avoiding spurious oscillations of the slider. However, the value of
η should not be too large, because it would prevent the possibility
of stick-slip in the model. We found that stick-slip exists up to
η between 180 and 200, but for those large values, the initial
stick-slip cycles are significantly different from the experiments.
In practice, we found that

η = 100 (4)

is a good compromise between oscillation reduction and a
reasonable reproduction of the stick-slip sequence. The results
are rather insensitive to the precise value of η, since η = 50 gives
virtually identical results.

ǫ has a leading order control on the amplitude and period of
the tangential force fluctuations during stick-slip. Systematic tests
of the model for various values of ǫ led us to choose

ǫ = 0.90. (5)

In particular, this value is sufficiently small to enable stick-
slip for all six normal loads (as observed experimentally), while
reproducing reasonably well the amplitude and period of the
stick-slip sequences in all cases.

Note that in the model, if there was no stick-slip, the
steady-state sliding friction force would be

∑N
i=1 ǫσAsi (all

microjunctions are in their slipping state). In order for this value
to match the macroscopically measured value Qs = σexpAs, one
has to impose that

σ =
σexp

ǫ
, (6)

and this is what we do in the following.
Our tests showed that the value of cmin has no impact on the

results as far as it is sufficiently small. For instance, simulations
with cmin =10−5 are essentially undistinguishable from those
using 0.01. The reason is that, when

∣

∣Ẋ(t)
∣

∣ crosses the value
cmin × v, the velocity drop is so fast that the time at which the
crossing occurs is almost independent on the value of cmin. In
our calculations, we will use

cmin = 0.01. (7)

Extracting values for p and αb in Equation (3) requires fitting
the power law relationship between the individual area reduction
parameters, αi, and the initial areas, A0i, presented as purple
squares in Figure 3 of Sahli et al. (2018). Such a fitting is actually
difficult due to the large dispersion of the data, as can be inferred
from the large difference in total area decay of microjunctions 1–
3 in Figure 2, although they start with almost identical areas. A fit
letting both αb and p as fitting parameters gives 95% confidence
error bars as large as 600% for the optimum value for αb, which
is not a viable option. We then tried to fix the value of p and fit
the data with αb being the only fitting parameter. We found that
the quality of the fit (quantified by its R2 value) was essentially
independent of p (as long as it is not too different from the
value 3/2 proposed in Sahli et al., 2018), preventing any objective
choice of p.

Based on those observations regarding the determination of p
and αb from experimental data, in our model studies we decided
to fix p and, for each value of p, we determined the value of αb

that gives the best agreement between the area decay predicted
by the model and that measured in the experiments. To do that,
we fitted both the experimental and model version of the curve
A(Q) by a quadratic function of the form A = A0 − αQ2.
A0 being the same in the model as in the experiment (because
A0 =

∑N
i=1 A0i), the fitting procedure enables identification of
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an αb which provides an exact match between the two quadratic
decays. Importantly, we found that, for all tested values of p
close to 3/2 (the value suggested in Sahli et al., 2018), the model
results (when using the corresponding fitted αb) were almost
undistinguishable. So, in practice, we chose p = 3/2, for which
the model studies give an optimal αb = 0.45 10−15 m5/N2 for
the experiment with the smallest normal load, and αb = 1.00
10−15 m5/N2 for the experiment with the largest normal load.We
then adopted the average value between both, αb = 0.725 10−15

m5/N2, as a constant to be used for all experiments.

3. RESULTS: QUANTITATIVE COMPARISON

We run the model of section 2.1 with the parameter values
described in section 2.2, for the six different PDMS/glass
multicontact experiments reported in Sahli et al. (2018). Figure 3
compares, for two different normal loads, the measured time
evolution of the area of real contact and tangential force to
their corresponding model predictions. Note that the initial real
contact area is essentially proportional to the normal load, as
widely discussed in the contact mechanics modeling literature
[see e.g., the reviews (Persson et al., 2005; Vakis et al., 2018)]
and confirmed in the experiments discussed here (see Figure S2
of Sahli et al., 2018). To facilitate comparison between model
prediction and measurement, the time origin of the experimental
data has been offset by the amount necessary to superimpose the
measured and predicted force curves in the central portion of
their initial increase. Note that the initial non-linear increase of
the measured force is due to the non-vanishing bending stiffness
of the steel wire used to pull the slider, when it first bends around
a pulley before a significant tension arises along the wire. The
apparent difference between the measured and predicted values
of the initial area of real contact is due to the above mentioned
time offset: the initial predicted value exactly corresponds to
the measured value from the first image, but the latter image
now corresponds to a negative time and is thus not shown in
the figure. The observed difference is of the order of the area
measurement noise, presumably due to temporal fluctuations in
the illumination and noise in the camera’s sensor.

Figure 4 then shows, for all normal loads, the evolution of
the area of real contact as a function of the tangential force, for
both the measured and predicted data. This figure is similar to
Figure 2A in Sahli et al. (2018), but shows all measurements
points rather than just 1 of 130. Note that stick-slip is responsible
for the accumulation of nearly horizontal cycles close to the
minimum area/maximum force point of each curve. Also note
that the model forces can transiently exceed the value σexpA, but

always remain smaller than σA =
σexp
ǫ
A, as expected.

4. DISCUSSION

Although other combinations of model ingredients may have
been proposed, we believe that our model incorporates all of
the currently available knowledge on the system that we tried to
reproduce. As such, it can be seen as the most comprehensive
independent asperities model of shear multicontacts so far, to be

A

B

FIGURE 3 | Direct comparison between measurements and model

predictions, for two typical experiments with either P = 1.53 N (A) or P = 3.10

N (B). Time evolutions of the measured (dashed, black) and predicted (solid,

blue) area of real contact, and of the measured (dashed, magenta) and

predicted (solid, red) tangential force.

used for deterministic comparison with the experiments of Sahli
et al. (2018, 2019).

Most of the model parameters (M, kL, v, E, ν, A0i, N,
σexp) take their value directly from the measurements. Three
adjustable parameters have been systematically varied to choose
the most relevant value: cmin has no effect on the results, while
η and ǫ have been adjusted to reproduce at best the stick-
slip regime. Ideally, p and αb should not be adjustable, but the
dispersion in the experimental estimates of αi is such that their
values were not sufficiently constrained. In practice, the value
of p was chosen equal to the one suggested from experiments
incorporating not only microjunctions within multicontacts, but
also millimetric smooth sphere/plane individual contacts (Sahli
et al., 2018). The value of αb was then adjusted to best match the
overall decay of real contact area during the incipient loading of
the interface.

With those values, the time evolution of the tangential load Q
is quite well-reproduced (see Figure 3). In particular, the slope of
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FIGURE 4 | Real area of contact vs. tangential force for the six experiments.

Black (blue) curves show the measured (predicted) data. The red line has slope
1

σexp
and passes through the origin.

the incipient loading is correct, which suggests that the stiffness
used for the individual microjunctions is also correct. In contrast,
the time evolution of the real contact area is not satisfactory.
Of course, the total amplitude of the real area decay, from the
initial contact to macroscopic sliding, is correct, because we start
from the measured initial value (

∑N
i=1 Ai0), and we adjusted αb

to get the correct final value. So we argue that the quality of
the comparison between the model and experimental results can
only be assessed through the shape of the real area decay. And as
can be seen from Figure 4, while the shape of the experimental
curves A(Q) is essentially quadratic, that of the model curves
is much more linear [except from the very beginning, when
all microjunctions are pinned and thus decay quadratically
according to Equation (3)]. We emphasize that this quasi-linear
shape is a very robust feature of our model, because we found
that the predictions are essentially unaffected by changes in the
model assumptions (elliptic vs. circular microjunctions, Equation
(3) applied at all times or only before the first depinning event)
and in the parameter values (for values of η and ǫ enabling
stick-slip or not).

The shape of the curve A(Q) results from a sum of a
large number (N) of complex individual behaviors (non-linear
area decay while pinned, constant area while slipping) with
distributed parameters (initial area, stiffness, threshold), and
is therefore unlikely amenable to a simple explanation. We
can however mention an instructive particular case where
all microjunctions would have the same initial area. In
those (unrealistic) conditions, all microjunctions would behave
identically when submitted to a common displacement X and
thus depin at the same instant. The total area decay would
be the sum of N identical quadratic decays, and thus be itself
quadratic with the total shear load, until macroscopic sliding.
With those specific (but wrong) initial conditions, we would

recover a macroscopic area curve with the correct quadratic
shape and a simple adjustment of the value of αb would allow
us to provide a good matching with the measurements. This
example illustrates the major influence of the distribution of
initial areas on the final shape of A(Q). It also clearly shows
that the fact that we did not succeed in reproducing a quadratic
area decay is not a generic problem of our model, but partly
relates to the initial conditions (through the A0i) imposed by the
experimental dataset.

Could there be other reasons for the failure of our model
to reproduce the evolution of the real contact area? The main
model ingredient responsible for this evolution is Equation (3).
The first possibility is that, despite the evidence brought in Sahli
et al. (2018, 2019), the anisotropic area reduction under shear
would not follow a single behavior law at all junction scales,
from millimeter- to micrometer-sized junctions. This possibility
is indeed suggested by a recent adhesion-based model of sheared
sphere/plane junctions (Papangelo et al., 2019), where the
authors find that the exponent p varies systematically, for a given
sphere, with the normal load applied, and hence the initial area.
Here we did not try to apply the model of Papangelo et al. (2019),
because it would require the knowledge of the characteristic
radius of curvature of, and normal load on, each individual
microjunction. In contrast, experimental measurements only
provide a combination of both quantities, through the area of
the microjunction.

We now argue that the solution to the failure of our model will
presumably be much more complex than a mere improvement
of the form of Equation (3). The problem may very well be
that the predicted individual force fi is significantly different
from the one that really applies on the microjunction. This is
substantiated by Figure 2 which shows the time evolution of
the contact area of various microjunctions. Two of them (4 and
5) were selected to show that the time window over which the
area decay occurs can be very different: microjunction 4 has
not started to shrink yet when the decay of microjunction 5 is
already complete. This observation suggests that the individual
tangential forces f4 and f5 evolve very differently during the
experiment, although they have very similar initial areas and
are submitted to the same tangential displacement by the glass
substrate. We speculate that such a difference may be the result
of elastic interactions between microjunctions, with junctions in
a crowed neighborhood evolving differently from those far from
neighboring junctions1.

Those interactions are ignored in our model of independent
microjunctions. We thus believe that, in order for an asperity
model to have a chance to quantitatively match experiments
like those considered here, tangential elastic interactions must
be accounted for to describe the shear behavior of individual
microjunctions. Such improved models may incorporate those
tangential interactions in ways similar to models already
developed for the normal interactions during normal loading of
rough surfaces (see e.g., Ciavarella et al., 2006; Afferrante et al.,

1The slight initial increase in area of junction 4 in Figure 2may be due not only to

elastic interactions but also to a slight aging due to viscous creep.
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2012) or for the friction of multicontacts (see e.g., Braun and
Scheibert, 2014; Trømborg et al., 2014; Braun and Peyrard, 2018).

5. CONCLUSION

We developed an independent asperity model for the incipient
shear loading and onset of sliding of dry multicontact interfaces
between a rough elastic solid and a smooth rigid surface.We used
it to attempt the first deterministic comparison with experiments
which, in addition to the macroscopic loads and displacements,
also considers the individual areas of the many microjunctions
forming the interface.

The main outcome is that, although we did our best
to incorporate experimentally-based behavior laws, parameter
values and initial conditions into the model, it fails to
quantitatively reproduce the measurements of Sahli et al.
(2018, 2019). Based on observations at the microjunction
scale, we suggest that an interesting starting point for
future attempts to improve the quantitative deterministic
comparison between asperity models and experiments, may be
to incorporate a description of the tangential elastic interactions
between microjunctions.

Nevertheless, we anticipate that asperity-based friction
models, although accounting for tangential elastic interactions,
may suffer from the same limitations as their counterparts for
purely normal contact (in particular the difficulty to define
asperities when a continuum of length scales is involved in
the topography, see e.g., Müser et al., 2017; Vakis et al., 2018),
and may still be unsuccessful to quantitatively match friction
experiments. We thus urge for the concurrent development of

continuum models suitable to reproduce friction experiments
like those of Sahli et al. (2018, 2019).
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APPENDIX 1: INTEGRATION OF THE
EQUATION OF MOTION OF THE SLIDER

Integration Scheme for the Differential
Equation Giving X(t)
Equation (1) is integrated by a second order Leapfrog algorithm.

γ (t) = Ẍ(t) =
1

M

[

kL(vt − X)−

N
∑

i=1

fi

]

− ηẊ (A1)

is the acceleration of the slider at the beginning of an integration
step. γ (t = 0) has to be calculated at the start of the simulation.
In our case, we start with X(t = 0) = 0 and Ẋ(t = 0) = 0 so
that γ (t = 0) = 0.

Let dt be the time step. The algorithm first updates X(t)
according to:

X(t + dt) = X(t)+ dt Ẋ(t)+
1

2
dt2 γ (t). (A2)

With this updated value of X we calculate the new acceleration
γ (t + dt). In the second stage of the algorithm Ẋ is updated
according to

Ẋ(t + dt) = Ẋ(t)+
1

2
dt

(

γ (t)+ γ (t + dt)
)

, (A3)

and then everything is ready for the next step starting at t + dt.

To properly select dt we calculate the elasticity constant ki for
each contact at the start of the simulation. The angular frequency
of oscillation of the slider of mass M under the total force of the

contacts is �0 =

√

(
∑N

i=1 ki)/M and the corresponding period is

T0 = 2π/�0. The calculation uses dt = T0/Ct with Ct = 104.
The exact value of dt depends on the experiment, but a typical
value is dt = 1µs. This value is sufficiently small with respect
to all the frequencies entering in the dynamics of the slider so
that even a second order algorithm gives a very good numerical
accuracy. We have however run some calculations with a 4th
order Runge-Kutta method (Carnahan et al., 1969), which is
significantly slower, but has errors that decay as dt4, to check the
accuracy of our calculations.

Algorithm of the Subroutine Which
Calculates γ

To compute γ (t + dt), X(t + dt) and xi are known. The
main point is to compute all the forces fi on the junctions.
The state of each junction is recorded with two flags: θi
records its instantaneous state, θi = 1 for a pinned junction,
θi = 0 for a slipping junction, and hi keeps track of its
history, hi = 1 for a junction which has never been slipping
switches to hi = 0 the first time the junction starts to slip,
when fi ≥ fsi.

The program scans all the junctions and performs the
following steps:

• Compute fi for each junction

⋆ if hi = 1 the area of the junction depends on fi according
to Equation (3), which determines ℓ‖i and then ki

[

Ai(fi)
]

according to Equation (2). Thus

fi = ki
[

Ai(fi)
] (

X(t + dt)− xi
)

(A4)

gives an equation for fi. It is too complex to be solved

analytically. We solve it by an iterative process, using a

dichotomy method starting from the value of fi from the

previous step. Once fi is known we update Ai(fi), ki(Ai) and

fsi = σAi for further steps.

⋆ if hi = 0
- if θi = 1 the junction is pinned but Ai is fixed, as

well as ki(Ai), and they are known from previous

iterations so that fi = ki
(

X(t)− xi
)

.
- if θi = 0 the junction is slipping. fi = ǫfsi.

• Check for transitions in the junction state
⋆ if θi = 1 (pinned junction) then if fi ≥ fsi the junction

starts to slip so that θi switches to 0, fi = ǫfsi. hi switches to 0 if

it was still equal to 1.

⋆ if θi = 0 (slipping junction), if |Ẋ(t)| < cmin ×

v the junction repins, θi switches to 1 and we set xi =

X − ǫfsi/ki so that the junction starts in the pinned state

with fi = ǫfsi.

Once all junctions have been scanned and all fi are determined,
we can compute γ from Equation (A1).
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