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The relative contact area between an initially flat, adhesion- and frictionless, linearly

elastic body and a variety of rough, rigid counterbodies is studied using Green’s function

molecular dynamics. The indenter’s height profiles range from ideal random roughness

through roughness with a moderate amount of correlation to periodically repeated,

single-asperity indenters having perfect phase coherence. At small reduced pressures,

p∗ ≡ p/(E∗ḡ) ≪ 1, sufficiently large systems are consistent with a linear ac = κ p∗

relation. Here p is the pressure, E∗ is the contact modulus, ḡ the root-mean-square

height gradient, and κ a unitless proportionality coefficient. However, the parameter ḡ

must be evaluated over the real contact area for the linear relation to hold if the random

roughness is correlated or the interfacial dimension reduced. No single unitless structural

parameter—including the Nayak parameter—correlates in a significant fashion with κ.

Keywords: contact mechanics, simulation, theory, random roughness surface, contact area

1. INTRODUCTION

The understanding of how the relative contact area ar depends on pressure in nominally flat,
linearly elastic contacts has made great progress in the past two decades (Persson, 2001; Müser
et al., 2017). Many advanced simulation studies support the view that it increases linearly with
pressure from non-zero but very small ar up to ar ≈ 0.1, at least in the limiting and much
investigated case of randomly rough, self-affine surfaces (Hyun et al., 2004; Campañá and Müser,
2007; Carbone and Bottiglione, 2008; Putignano et al., 2012; Prodanov et al., 2013). The height
spectrum C(q) of a self-affine surface obeys power law scaling with the magnitude of the wavevector
q over several decades (Majumdar and Tien, 1990; Palasantzas, 1993; Persson, 2014; Jacobs et al.,
2017), i.e., C(q) ∝ q−2(1+H), where H is called the Hurst exponent. In the limit of ideal random
roughness, the phases of Fourier transforms of the surface height are independent random numbers
that are uniformally distributed on (0, 2π). In this random-phase approximation, linearity between
contact area and load can be rationalized with Persson’s contact mechanics theory (Persson, 2001;
Persson et al., 2004), which, in addition to predicting the area-load relation reasonably well, finds
a highly accurate pressure-dependence of the interfacial stiffness along with accurate distribution
functions of the interfacial separation (Lorenz and Persson, 2008; Almqvist et al., 2011; Campañá
et al., 2011; Dapp et al., 2012; Prodanov et al., 2013; Afferrante et al., 2018) and correct spatial stress
correlations (Campañá et al., 2008; Persson, 2008), none of which bearing-area models are able
to achieve.
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While it is sometimes argued that there must be a rigorous
linear relation between contact area and load for random surfaces
(in the thermodynamic limit), there are several indications for
this linearity not to be strict. When the load is so small that
contact is made only in a more-or-less connected patch near
the highest point, relations for randomly rough surfaces may
no longer hold (Pohrt et al., 2012). This, however, can be
rationalized as a finite-size effect and be accounted for in Persson
theory (Pastewka et al., 2013). However, even when several
asperities were in contact, deviations from linearity had been
noted by Yastrebov et al. (2015). Unfortunately, their calculations
were conducted at an essentially fixed ratio of system size and
short-wavelength cutoff (with varying roll-off wavelengths) so
that small logarithmic corrections to linear relations between
contact area and load may not be particularly telling. So far,
the strongest support for deviations from linearity were reported
in two carefully conducted simulation studies by Nicola and
coworkers (van Dokkum et al., 2018; Salehani et al., 2020). They
found quite remarkable logarithmic corrections to linear laws in
large, one-dimensional adhesionless contacts (van Dokkum et al.,
2018) as well as clearly sublinear scaling for two-dimensional,
adhesive surfaces (Salehani et al., 2020). However, the latter may
have been in a regime with non-negligible adhesive hysteresis,
in which case non-linearity between ar and p is unavoidable.
Thus, even these two latter works do not explicitly challenge
the view that a linear dependence of contact area on load is
an excellent approximation for linearly elastic, sufficiently large,
two-dimensional elastic bodies squeezed against a randomly
rough, non-adhesive indenter.

An unsolved question is why different Hurst exponents lead to
slightly different proportionality coefficients in the equation

ar =
κ p

E∗ ḡ
, (1)

where p is the nominal contact pressure, E∗ the contact modulus,
and ḡ the root-mean-square height gradient. Yastrebov et al.
(2015) found that the proportionality coefficient κ correlates
with the Nayak parameter (Nayak, 1971), 8N at fixed p∗. As
we will argue in this work, 8N can be seen as the lowest-order
unitless, scalar parameter describing a surface topography other
than ḡ, however, only if the random-phase approximation (rpa)
is satisfied. The Nayak parameter is mentioned in many contact-
mechanics studies. However, none of them that we are aware of
and that claim the proportionality coefficient κ to depend on the
Nayak parameter has the numerical sophistication of Yastrebov
et al.’s works (Yastrebov et al., 2015, 2017). Nonetheless, they only
addressed surfaces with ideal random roughness, i.e., surfaces
obeying the rpa, and, as already mentioned above, the ratio of
system size and short-wavelength cutoff was kept in a relatively
narrow range. Therefore, the Nayak parameter may merely have
strongly correlated with other, relevant (stochastic) quantifiers,
but not have causally determined the κ(H) dependence.

In fact when leaving the realm of ideally rough surfaces, it does
not appear plausible that the Nayak parameter strongly affects κ .
To see why consider the exact solution to a contact problem (no
friction, no adhesion, small-slope approximation) between an

initially smooth, linearly elastic manifold squeezed down against
a rough, rigid substrate fixed in space. In a thought experiment,
modify the substrate’s height profile in the non-contact zones
such that all moved points remain below the elastic body. Its
equilibrium displacement field and contact points at this and
smaller pressures will be the same as for the original substrate,
however, the Nayak parameter can have changed by orders of
magnitude between the original and the modified indenter. In
another thought experiment, consider an indenter with blunt
peaks (facing the elastic body) and steep valleys. At a given load,
it will have a relatively large contact area. If the indenter’s height
profile is flipped around, the Nayak parameter remains the same
but now the contact area is strongly diminished as the elastic
body is now in contact with sharp peaks. Thus, in one thought
experiment, the Nayak parameter changed its value significantly,
while the contact area remained unaffected. In the other one,
the situation reversed: the contact area changed while the Nayak
parameter didn’t. For these reasons, there can be scarcely a
broadly applicable correlation between contact area and Nayak
parameter, at least once the random-phase approximation has
been abandoned.

The two thought experiments reveal that relevant stochastic
topographic quantifiers may only depend on functions that are
defined in the true contact zones. As desired, such a quantifier
would remain unaffected in the first thought experiment when
ar does not change, while both would adopt new values in the
second thought experiment. Dimensional analysis of the specified
contact problem reveals that the root-mean-square gradient plays
a central role for the contact area, even in the absence of the
random-phase approximation (Prodanov et al., 2013). In fact,
one of us (Müser, 2017) demonstrated that Equation (1) also
holds for indenters having a harmonic height profile (asperity
height decreases as a powerlaw with distance from a symmetry
axis) if ḡ is averaged over the true contact area. In this case,
ar is no longer strictly linear in p since ḡ is a function of load
or pressure. Similarly, line contacts between two-dimensional
solids were found to obey Equation (1) but only when ḡ was
averaged over the true contact (van Dokkum et al., 2018). Thus,
the effective κ is a function of the bluntness of the indenting tip,
where bluntness would be defined by the functional form of the
indenters rather than by numerical prefactors.

In this work, we investigate what structural parameters
affect the proportionality coefficient κ , or more generally, the
area-pressure relation. Toward this end, we study the contact
mechanics of height profiles with anisotropy and with phase
correlation in the Fourier transforms of the height profiles. This
correlation is realized by warping rpa height profiles such that
peaks are smoothed and valleys are roughened or vice versa,
whereby the rpa is destroyed. Anisotropy will also be considered.
We then explore to what extent the results on relative contact
area correlate with unitless scalar parameters describing the
topographic features of the surfaces. These parameters include
the Nayak parameter but also a variety of other parameters, which
take constant values for rpa surfaces but not for surfaces with
correlated (random) roughness.

The remainder of this paper is organized as follows: Model
and method are introduced in section 2. The theory is introduced
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in section 3, which includes the systematic construction of
topographic order parameters beyond the Nayak parameter.
Results are presented in section 4, while conclusions are drawn
in section 5.

2. MODEL AND METHOD

As mentioned in the introduction, we are concerned with
contacts between an initially flat, linearly elastic body in
frictionless contact with a rigid, rough counterface indenting
from below. Interactions between the two bodies consist of a
non-overlap constraint. This model has been used extensively
since Hertz.

The contact problem is solved with Green’s function
molecular dynamics (GFMD), which is a frequently employed
and described boundary-value method (Campañá and Müser,
2006; Pastewka et al., 2012; Kajita, 2016; van Dokkum andNicola,
2019). Here we use it in the so-called FIRE-GFMD variant (Zhou
et al., 2019).

Most surfaces simulated in this work are randomly rough.
The default or rather starting surfaces have the isotropic, self-
affine roughness described in the introduction. In addition, it is
assumed that ideal self-affine scaling only exists for wave vectors
qr ≤ q ≤ qs, where qr is the roll-off wave vector and qs is the
short-wavelength cutoff. Thus, the used spectra are

C(q) = C(qr)×







froll if q < qr
(q/qr)

−2(1+H) if qr < q < qs
0 else,

(2)

where froll is a Boolean variable, which takes the value of one if
true and of zero if false. froll is false by default and only set to
true when mentioned explicitly. Thus, by default, λr = 2π/qr
plays the role of a long wavelength cutoff rather than of a rolloff.
In almost all cases, the linear dimension of the simulation cell
L is still chosen larger than λr in order to average implicitly
over different random realizations, which can become relevant
for large Hurst exponents at small relative contact areas.

The elastic body is discretized into elements having a linear
dimension 1a, which is sufficiently small compared to π/qs in
order for the continuum limit to be reached. In fact, different
discretizations are considered and results for all observables are
extrapolated to the continuum limit (εc ≡ 1a/λs → 0), using a
Richardson extrapolation as described in Prodanov et al. (2013).
For the contact area, we find a linear dependence in εc of the

continuum corrections rather than the previously identified ε
2/3
c

dependence (Campañá and Müser, 2007; Prodanov et al., 2013).
Unfortunately, we no longer posses the old configuration files so
that analyzing the origin of the discrepancy cannot be clarified.
While our GFMD code has been rewritten twice after the original
single-authored code by Campana (version 2 by Müser, Dapp,
and Prodanov while version 3 was by Müser with Zhou and
Wang), we now find a linear a(εc) scaling even when using
version 2, which was used, for example, in the contact-mechanics
challenge. Although, corrections turn out differently than before,
the extrapolated values between old and new results matched
whenever tested.

For the so-called fractal correction, i.e., the excess contact
area arising due to the ratio εf = λs/λr being finite, we also
find different scaling than before (Prodanov et al., 2013), i.e.,
the exponent αf of the correction ε

αf
f

is found to vary between
zero (implying approximately logarithmic corrections) and unity.
Precise values are difficult to determine due to stochastic scatter.
One reason for why we no longer find a unique value for
αf is that we now consider contact areas in the continuum
limit before exploring the limit εf → 0. However, since
we find αf to be always equal or less to unity, extrapolation
with αf = 1 from finite εf to zero should never result in
an overcorrection.

Deviations from isotropy are realized by using an effective
“Peklenik” wavenumber

qP =





γ 2
P q

2
x + q2y/γ

2
P

√

γ 4
P + 1/γ 4

P





1/2

(3)

as the variable in the height spectrum rather than the true
wave number q. The Peklenik parameter satisfies 0 < γP <

∞. Surfaces are stochastically isotropic if γP = 1. Anisotropy
increases with increasing (ln γP)

2. The such produced height
profiles reveal preferred directions or “grooves” in Figure 1,
which makes them somewhat more similar to scratched surfaces
than topographies with isotropic random roughness.

Phase coherence can be destroyed through a warping
transformation. A warped height is defined by

hw =







hmin + (h− hmin)
(

h−hmin
hmax−hmin

)w
if w ≥ 0

hmax − (hmax − h)
(

hmax−h
hmax−hmin

)|w|
else,

(4)

where hmin ≤ Min
{

h(r)
}

and hmax ≥ Max
{

h(r)
}

. Here h
indicates the height of the original (rpa) height profile at a given
position r and hw is the height at a given location of the warped
surface. At w = 0, height profiles remain unchanged. For w > 0,
peaks are blunted and valleys sharpened, while the opposite is
achieved with w < 0, as can be seen in the cross-section of the
height-profile shown in Figure 2. In the current study, hmin =
2Min{h(r)} − Max{h(r)} and hmax = 2Max{h(r)} − Min{h(r)}
were used.

Phase correlation through our warping procedure is reflected
by the observation that the height histograms are systematically
skewed for w 6= 0. In contrast, the height histograms of rpa
surfaces are symmetric, except for finite-size effects, because
each height profile has the same likelihood to occur as its
mirror image in which valleys turn to peaks and vice versa.
In addition, the expectation value of the root-mean-square
gradient changes with height, i.e., it is much reduced in the
blunted parts of the surface compared to the roughened parts.
In contrast, for (sufficiently large) rpa surfaces, ḡ is independent
of the height, except near the highest and lowest heights in a
finite sample. In future topographic determinations of random
surfaces with correlation, it would be very interesting to know
to what extent the rms-height gradient changes with height. This
would probably constitute an important quantity to be targeted
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FIGURE 1 | (Left) Topography of a surface satisfying the random-phase approximation characterized by a Peklenik number of γP = 4. (Right) Height-difference

auto-correlation function C(r) for shown topography and r parallel to ex (closed black circles) and ey (closed pink circles).

FIGURE 2 | (Left) Contacts between an elastic body and indenters with different warpings w (top to bottom w = 2, w = 0, w = −2) at approximately 10% relative

contact area. The dashed lines indicate the indenters’ center-of-mass height for the shown cross section. The curves w = ±2 are shifted by a constant to improve

their visualization. (Right) Height histograms for the different surfaces. The number of grid points for each warped surface is fixed to 4, 096× 4, 096.

for computer-generated surfaces. To mimic scratched surfaces
realistically, it will probably be required to assume a scale or q-
dependent Peklenik parameter (Candela et al., 2011) in addition
to warping and to consider additional refinements. However,
our impression is that the w = 2 surface already contains
some features of polished surfaces, i.e., relatively deep valleys and
smoothed tops.

In principle, it would have also been possible to consider

phase correlation by limiting the values of the phases of h̃(q)
to a range −ϕm ≤ ϕ ≤ ϕm defined by a minimum/maximum

allowed phase ϕm for the phases of all h̃(q), while keeping the
height spectra C(q) unchanged. We found this method not to
be helpful, because it lead to indenters with sharp thorns. In the
limit of ϕm → 0, essentially single-point indenters are obtained.
Rather than investigating those, we will consider indenters with

harmonic height profiles satisfying

h(r) =
R

n

( r

R

)n
, (5)

where R is of unit length, while r is the in-plane distance of a
point from the (closest) symmetry axis of an individual indenter,
which we place into the center-of-mass of the simulation cell.
The values of n used in this study were restricted to n = 1.5
(sharp indenter), n = 2 (Hertzian geometry), and n = 4
(blunt indenter). Analytical solution for stress and displacement
fields (in the contact area and its vicinity) and thus for the
dependence of contact area on load are known when the contact
radii are negligibly small compared to the linear dimension of the
simulation cell.
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3. THEORY

3.1. Phenomenological Generalization of
Persson Theory
Persson theory for linear elastic contacts between ideally
randomly rough surfaces predicts a relative contact area of

ar = erf
{√

2 p0/E
∗ḡ
}

, (6)

where ḡ is the root-mean-square height gradient averaged over
the entire surface, i.e,

ḡ2 =
∫

d2qC(q) q2, (7)

which is the expression in the derivation of Persson theory.
One of us noticed that Equation (6) also holds for smooth

indenters with harmonic height profiles if ḡ is replaced with ḡc,
where the latter is not determined over the entire surface but
only over the true contact. Thus, the range of applicability of
Equation (6) appears to extend when re-expressing it through

ar = erf
(√

πκcp
∗
c/2

)

, (8)

where κc is the proportionality coefficient between relative
contact area and the reduced pressure defined by p∗c = p0/(E

∗ḡc).
When omitting the index “c” in κc, we mean to refer to
the proportionality coefficient when the reduced pressure is
normalized to ḡ rather than to ḡc.

In fact, when taking Persson theory literally, it does ask
the question how the rms-height changes in a given point
of contact (described using a small resolution of the surface
topography) when short-wavelength roughness is added to the
description of the contact problem. Using the full spectrum
to estimate this increase in rms-roughness can be seen as an
approximation, which might be possible to correct in future
work. Some possibilities are discussed in the conclusions.

The standard Persson theory predicts a value of κ =
√
8/π ≈

1.596. In the formulation of the theory, it appears to us as if
no distinction is made—or must be made—between κ and κc,
at least as long as pressures lie in a range in which ar ∝ p,
that is, if p is sufficiently large for contact to spread out over
clearly disconnected contact patches but still small enough so
that ar is less than, say, 0.05. Careful simulations of sufficiently
large systems find a relatively weak dependence of κ on the
Hurst roughness exponent, e.g., κ(H ≈ 0.8) . 2 and κ(H ≈
0.3) & 2. (Hyun et al., 2004; Campañá and Müser, 2007; Hyun
and Robbins, 2007; Putignano et al., 2012; Prodanov et al., 2013;
Afferrante et al., 2018). Analytical results for the Hertz contact
result in κc ≈ 1.666, see also Equation (28) and the more
detailed discussion of periodically repeated, smooth indenters in
section 4.5.

3.2. Dimensionless Parameters: Nayak and
Beyond
Since the relative contact area is a number, it can only be
a function of other unitless parameters (p∗,81,82, ...) itself,

where p∗ is a reduced pressure, e.g., p/(E∗ḡ). Moreover, each
variable in the set {8} must obey the law of dimensional
analysis. Specifically, they must remain invariant under the
scaling transformation r → s · r and z → t · z, since the relation
arel = arel(p/E

∗ḡ) already reflects the correct dependencies on s
and t (Prodanov et al., 2013). Moreover, real contact is destroyed
predominantly due to roughness at small wavelengths. Thus, the
8i should not depend on parameters that are defined exclusively
by parameters from the height-distribution also known as Abbott
Feierstone curve.

Before constructing the respective unitless parameters, it is
in place to discuss the square-gradient term. When determining
ḡ over a periodically repeated contact, 〈(∇h)2〉 is identical to
−〈δh1h〉, as can be seen by integration in parts. However, this
equality no longer holds for partial contact. Defining

(

ḡ′c
)2 = −〈δh1h〉c. (9)

the dependence of arel on parameters depending on height
profiles in the contact then becomes

arel = arel[p/(E
∗ḡc), ḡc/ḡ

′
c, {8c}]. (10)

Ultimately, arel is a functional of the height topography. As
such, there should exist a dependence of arel that does not
necessitate parameters averaged over the real contact. However,
those might necessitate non-local terms, or, alternatively, high-
order derivatives of h(r). The latter may not be well defined when
the surface profile or its (higher-order) derivatives are not well-
defined, as is the case, for example, for a conical indenter. Thus,
the following discussion assumes surface height profiles to be
smooth and “well behaved.”

For the construction of relevant parameters, it is useful to
keep in mind three symmetry relations. First, a mirror inversion
(r → −r) leaves the contact area unchanged. This is why
each derivative with respect to a spatial coordinate must appear
an even number of times in the construction of an invariant.
Second, eachmeasure should be rotationally invariant and reduce
to a scalar. This is automatically achieved when representing
derivatives with the Einstein summation convention, which
requires every index (enumerating an in-plane coordinate)
occurring twice in a product to be summed over. To use it
effectively, we use it jointly with the index notation, in which
case h2α indicates the square-height gradient (∇h) · (∇h) and hαα

the Laplacian 1h. However, ḡ will keep indicating the rms height
gradient

√

〈h2α〉. Third, the invariants may not change on a rigid,
vertical translation of the surface h(r) → h(r) + h0. This is why
only δh = h− 〈h〉 can appear in the invariants. The lowest-order
invariant obeying these rules that we could identify are given by

81 =
〈

δh h2α
〉

√

〈

h2α
〉

ḡ2
(11)

82 =
−
〈

δh2 hαα

〉

2
√

〈δh2〉 ḡ2
(12)

83 =
−〈δh2〉 〈hαα〉
2
√

〈δh2〉 ḡ2
. (13)
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Before constructing the next parameters, the allowed values for
the parameter 81 to 83 will be discussed. 81 and 82 are
identical when averaged over a periodically repeated surfaces (as
can be seen again by integration in parts) but not when they
are determined over partial contact, in which case the index “c”
would be added. For periodically repeated surfaces, the parameter
83 is automatically identical to zero but generally different from
zero when averaged over partial contact. This is because themean
curvature disappears for a periodically repeated surface, while the
curvature must average to a negative number for partial contact
(assuming the elastic body indents the profile from above).

The values of 81 and 82 averaged over a single rpa surface
may be finite. However, averaging these means over various
disorder realization will make them disappear, as any surface
realization h(r) has the same probability (density) to occur
as −h(r). Thus, 81 and 82—as well as any other parameter,
in which the symbol h appears an odd number of times as
a factor—should be small when determined over a single rpa
surface realization, in particular when the roll-off domain is
sufficiently large.

When averaged over partial contact and/or over surfaces
violating the rpa,81 and82 may and usually do take finite values.
This is why we call them symmetry allowed in Table 1. For the
remaining parameters, we will no longer state the rationale for
why terms are symmetry allowed or forbidden, as all relevant
arguments have been mentioned or can be easily derived using
the relations for Gaussian random numbers summarized in
section 3.3. Table 1 contains our conclusions on each parameter
constructed in this work.

Additional parameters in which numerator and denominator
are second order in the derivative but higher order in h can
be constructed. They will be considered up to the lowest order
needed beyond the rms-height gradient, in which the parameters
do not disappear in case of the random-phase approximation.
This includes the parameters

84 =
〈

δh2 h2α
〉

〈

δh2
〉

ḡ2
(14)

85 =
−
〈

δh3 hαα

〉

3
〈

δh2
〉

ḡ2
(15)

For rpa-surfaces, 84 is automatically equal to unity and for all
periodically repeated surfaces, 84 = 85.

Finally, we consider parameters in which the order of the
derivatives is increased from two to four while the order in the
height is kept as small as possible. Three of quite a few resulting
(irreducible) possibilities are

86 =
1

ḡ4

〈

δh2
〉 〈

hααhββ

〉

(16)

87 =
2

3 ḡ4

〈

δh2 hααhββ

〉

(17)

88 =
1

ḡ4

{〈

h2αh
2
β

〉

− 3
〈

h2α
〉

〈

h2β

〉

+ 〈hαhβ〉2
}

(18)

89 =
2

ḡ4

〈

hαhβ − h2γ δαβ/2
〉2
, (19)

where δαβ is the Kronecker-delta symbol.

TABLE 1 | Values of parameters averaged over a full, periodically repeated

surface (prs) if the random-phase approximation (rpa) is valid and when it is not

valid (n-rpa).

Full prs rpa n-rpa

81 ǫ Allowed

82 81 81

83 0 0

84 1− ǫ Allowed

85 84 84

86 allowed Allowed

87 ≈ 86 Allowed

88 ǫ Allowed

89 ǫ ǫ

if isotropic If isotropic

The word “allowed” indicates that a finite value is symmetry allowed. The number ǫ implies

that the result averages to zero after an ensemble average over many surface realizations

and that it should be small for an individual instantiation.

The parameter 86 is nothing but the Nayak parameter 8N,
up to a multiplicative constant of 2/3. It is frequently interpreted
as a measure for the spectral width. We chose the prefactor
such that 86 and 87 are equal to unity for single-wave-vector
roughness. The parameter 87 is a generalization of the Nayak
parameter. For randomly rough, rpa surface, its expectation value
is close to but less than86. Thus, both parameters tend to infinity
as the ratio εf = λs/λr becomes small, that is, with ε−2H

f
.

However, for (strongly) correlated random roughness 87 takes
much greater values than 86, just as 84 starts to substantially
exceed unity, because the factorization of the various terms
(see also section 3.3) no longer holds once the rpa is no
longer obeyed.

The parameter 88 plays the role of a generalized height
gradient cumulant. It is constructed such that it takes the value
of zero when the fourth-order cumulant of the surface slope s
parallel to any in-plane unit vector n takes the value of zero if it is
distributed normally, i.e., when c4,n = 〈s4〉−3〈s2〉2 disappears for
every n. This parameter is implicitly symmetrized with respect to
its mirror images in the xz and yz planes so that 〈s〉 = 0 follows.
Note that 88 being small is a necessary but not a sufficient
criterion for every c4,n to disappear. It is only sufficient if the
surfaces are stochastically isotropic.

Finally, 89 is a measure for anisotropy. It takes the
values of zero and one in the limits of ideal isotropic and
ideal anisotropy, respectively, where, for the latter, surfaces
are perfectly smooth along one spatial direction. Assuming
the Peklenik number to be independent of the wavevector,
89 can be easily shown to be identical to (γ 2

P − 1/γ 2
P )

2/2
As is the case for some other parameters too, 89 is
not identical to zero for an individual surface realization,
but only averages to zero after taking sufficiently many
surface realizations.

We conclude this section by stating that the Nayak
parameter is the lowest-order scalar structural parameter that
the proportionality coefficient κ can depend on if the surface
is isotropic and satisfies the random-phase approximation. All
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other parameters of similar or smaller order in height are either
identical to zero, or their expectation value is zero, or they
strongly correlate with the Nayak parameter.

3.3. Evaluation of Fourth-Order Invariants
For (isotropic) randomly rough surfaces, invariants being
fourth order in height and fourth order in derivatives are the
leading-order, scalar structural parameters that can affect the
proportionality coefficient κ . Of particular interest should be
those that—unlike the Nayak parameter—cannot be reduced to
products of invariants being second order in height. Yet, the
evaluation of fourth-order expressions is commonly done using
Wick’s theorem (Wick, 1950), which, applied to the current
problem, translates to

C4(q1, . . . , q4) ≡
〈

h̃(q1)h̃(q2)h̃(q3)h̃(q4)
〉

≈
〈

h̃(q1)h̃(q2)
〉 〈

h̃(q3)h̃(q4)
〉

+
〈

h̃(q1)h̃(q3)
〉 〈

h̃(q2)h̃(q4)
〉

+
〈

h̃(q1)h̃(q4)
〉 〈

h̃(q2)h̃(q3)
〉

, (20)

whereby expectation values of fourth-order expressions are
reduced to products of height spectra, since

〈

h̃(qm)h̃(qn)
〉

∝ C(|qm|) δ(qm + qn), (21)

where C(q) is the height spectrum. Equation (20) is exact for
Gaussian random variables of mean zero.

4. RESULTS

4.1. On the Accurate Calculation of Contact
Area and the Proportionality Coefficient κ

In Yastrebov et al. (2017), Yastrebov et al. claimed to ensure an
unprecedented accuracy in computation of the true contact. If nc is
the number of contact points, ncl the number of contact or rather
contact-line points, which are in contact but have at least one
non-contact point as nearest neighbor, then the relative contact
area was estimated with

ar =
nc − α ncl

ntot
, (22)

where ntot is the total number of points into which the surface is
discretized and α = (π − 1+ ln 2)/24.

While we find the proposed correction to be quite useful
in order to get an astoundingly accurate first estimate of the
continuum correction for isotropic, rpa surfaces, we believe that
it can at best be on par with a properly executed Richardson
extrapolation even in that limiting case. The reason is that the
numerical coefficient α ≈ 0.11811 can scarcely be universal
even if the special form of writing it as (π − 1 + ln 2)/24
might convey a profound mathematical reason for its specific
value. To argue why the proposed method cannot surpass a
Richardson extrapolation in the asymptotic limit, let us assume

FIGURE 3 | Comparison of different extrapolation schemes for the relative

contact area ar to the continuum limit εc ≡ a/λs → 0 for an rpa surface

specified by H = 0.8, p∗ = 0.05, λr/L = 0.5, and λs/L = 0.008. In the

modified Yastrevob extrapolation, the prefactor α in Equation (22) was chosen

such that the extrapolated contact area at a discretization aλs and at 2aλs

gave the same estimate for the contact area. Dashed lines are drawn to guide

the eye.

that the leading order-correction were indeed proportional to the
number of contact-line points within the contact. This number
would ultimately scale with a/λs, because the fractal nature of
the contact seizes to exist in this limit, so that the contact line
acquires the (fractal) dimension of unity, in which case ncl ∝
λs/a. This linear scaling of the leading-order corrections to the
contact area would be picked up by a Richardson extrapolation
and the proportionality coefficient would automatically adjust to
the exact value and not only to a value, which is very good but
not exact.

The proposed correction scheme can only outperform a
Richardson extrapolation if higher-order corrections happened
to be incorporated into it. This, in fact, might be the case, as is
revealed in Figure 3 by the accurate values from the Yastrebov
extrapolation at large εc. However, since the exact value α must
depend on the specifics of a simulation (artificial geometries can
be easily constructed for which α ≡ 0 at large loads), it can only
be exact in isolated cases of measure zero so that it is generally
asymptotically inferior to Richardson. As such, a claim of having
provided data with unprecedented accuracy with this method is
somewhat hazardous given that previous work used a Richardson
extrapolation while employing ratios of εc = a/λs, εf = λs/λr,
and εt = λr/L, which were simultaneously all greater than the
data having the purportedly unprecedented accuracy.

The ideas of Yastrebov’s extrapolation can be modified by
incorporating the spirit of a Richardson extrapolation into it: if
the numbers of contact and contact-line points are known at
two different values of a/λs, the parameter α could be adjusted
such that the Yastrebov extrapolation gives the same estimate for
both discretizations. Asymptotically, this modification leads to an
improvement, as can be seen in Figure 3, however, it is usually a
disimprovement for a/λs ≥ 1/4. To terminate our discussion
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on the Yastrebov extrapolation, we note that we found it to work
equally well for warped surfaces as for rpa surfaces and that our
final estimates for the relative contact area were always very close,
say, within 0.1%, to using a rigorous extrapolation with the value
that we obtained with a Yastrebov extrapolation using

α = 0.11 (23)

and a discretization of a/λs . 1/4. This value of α typically
deteriorates the quality of the contact-area estimate for a = λs/2
but improves it overall otherwise.

Finally, given that the extrapolation used by Yastrebov and
coworkers may lead to different errors at different pressures, the
following question remains: What is the origin of their observed
logarithmic correction of κ on pressure? Is it the lack of a rigorous
extrapolation to the continuum (εc = a/λs → 0), the fractal
(εf = λs/λr → 0), or the thermodynamic (εt = λr/L → 0)
limit? Or is it actually true? After all and despite our criticism of
their self appraisal, we see their data to be of similar quality as
that of most other cutting-edge works, which had unanimously
come to the conclusion of κ acquiring a constant value at small
p, but which either simply took the values at the smallest value
of εc without further extrapolation or that made Richardson
extrapolations, which we can no longer reconstruct. Moreover,
one-dimensional systems show robust logarithmic corrections in
κ at small p (van Dokkum et al., 2018) even for very large sizes
when contact is also made far away from the highest point. (In
the preparation of this manuscript, we verified those claims on
1D systems for sizes exceeding 220 grid points.)

The last limit that needs to be taken to zero is the pressure
p → 0, i.e., the proportionality coefficient κ should be computed
with the smallest possible errors. To do so, we compute κ as a
pressure-dependent function through the equation

ar = erf
(√

πκp∗/2
)

, (24)

rather than through ar/p
∗ or ∂ar/∂p

∗, because Equation (24)
accounts for some of the low-pressure non linearities, as can be
appreciated in Figure 1 of Dapp et al. (2014). The zero-pressure
limit can only be taken in a meaningful manner in conjunction
with a proper size scaling as will be discussed next.

4.2. Isotropic rpa Surfaces
4.2.1. Does κ Have a Low-Pressure Limit?
κ cannot have a finite low-pressure limit, if it is defined or
computed according to

κ =
(

∏

x

lim
εx→0

)

lim
p→0

κ(p), (25)

where the various limits (defined in the previous section with
x taking the “values” c for continuum, f for fractal, and t for
thermodynamic) are taken in arbitrary order. The reason is that
for any finite system at exceedingly small pressures, only the
highest (meso-scale) asperity is in contact, which (in the realm
of continuum mechanics) will ultimately be Hertzian, in which
case κ tends to infinity.

The interesting question is whether ar can be proportional
to p over an extended range in pressure with no or negligible
logarithmic corrections to the proportionality coefficient κ if
both εt,f are sufficiently small while εc is properly taken to zero at
each pressure. Thus, mathematically speaking, we are interested
in a limit

κ = lim
p→0

lim
εt,f→0

ar

p∗
, (26)

since experimental systems, to which simulations should
compare, tend to have much larger values of εt,f than can be
realized in a computer simulation. This limit is certainly not
approached if the product εtεf is taken to be effectively constant
while having varying discretization errors, as in Yastrebov et al.
(2017). Keeping all but one εt,f,c constant—as done by Prodanov
et al. (2013)—is only an unsatisfactory improvement, because
the discretization corrections probably decrease as εf decreases
due to the increase of the characteristic patch size. The cardinal
mistake made by Prodanov et al. (2013) was to assume that
leading errors to κ are sums of terms cxε

νx
x with x ∈ (c, t, f) and

0 < νx, while they could also be of a more general form and
involve, e.g., products of powers of different εx.

To explore the question raised at the beginning of the
previous paragraph in a somewhat more meaningful way than
before, we ran simulations in which εf and/or εt were decreased
simultaneously with decreasing pressure p according to

ε = εref (p/pref)
1
4 . (27)

Results are shown in Figure 4, for which we chose (arbitrarily)
εf = 1/32 and εt = 1/2 at a reference pressure of p∗ = 0.2. It
reveals that κ increases quite noticeably with decreasing pressure
for all three H = 0.3 systems, while it essentially plateaus for the
two H = 0.8 systems in which εf is decreased as p decreases.
While the H = 0.3 might also plateau at even smaller p∗, a
qualitative difference between H = 0.3 and H = 0.8 would
remain: The curves in which both εt and εf are decreased with
decreasing p∗ lead to small κ for H = 0.8 but to large κ for
H = 0.3, which become even larger for fixed εf.

The reason for the different trends can be potentially linked
to the distribution of contact patch areas and the characteristic
contact patch size Ac, which we define to be the expected patch
size that a randomly picked contact point belongs to. The three
H = 0.3 cases and the H = 0.8 case with fixed εf, all
belong to situations, in which the characteristic contact areas
are rather small: Ac increases only logarithmically with εf for
H < 0.5 (Müser and Wang, 2018) so that large patches are
not possible, even when εf is small. Likewise, only small contact
patches can arise for H = 0.8 at pressures well below the
percolation threshold if εf is fixed to a constant value as large
as εf = 1/32. In contrast, large contact patches can arise even
at small pressures. if εf is small and H > 0.5. Large patches are
needed for a linear ar(p) dependence at small pressures, as can be
rationalized qualitatively from bearing-area models.

In order to explore the question further, if κ can have a well-
defined limit when being deduced with the meaningful limit
defined in Equation (26), we compare the κ(p) relation with two
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sets of εt,f: (i) a small system with εt = 1 and εf = 1/32 and
(ii) a larger systems in which both εt and εf were decreased by
a factor of four to εt = 1/4 and εf = 1/128. Figure 5 reveals
that the pressure sensitivity of κ reduces quite noticeably with
increasing system size for H = 0.8 but not for H = 0.3, which,
however, has a relatively minor logarithmic dependence of κ on
p∗ to begin with.

The trends revealed in Figure 5 are consistent with those of
Figure 4. Increasing system size, i.e., decreasing simultaneously
εt and εf, reduces κ and its pressure sensitivity for H = 0.8 but
not for H = 0.3. Our trends are also roughly consistent with
the observations by Prodanov et al. (2013), who proposed the

FIGURE 4 | Proportionality coefficient κ as defined in Equation (27) for two

Hurst exponents and three different choices of how εf,t change with pressure p.

The term “const” relates to εt = 1/2 and εf = 1/32. These two values are the

reference values at p∗ = 0.2. The term “varying” indicates that the respective ε

is scaled according to Equation (27). To give an example, the scaling makes a

varying εf go down to 1/64 and a varying εt to 1.4 at p∗ = 0.0125. Results

were averaged over up to 100 random realizations per data point.

existence of a well-defined value for κ for H = 0.8 but not for
H = 0.3.

While we already speculatively linked the different trends for
H = 0.3 and H = 0.8 to the way how a characteristic contact
patch size changes with decreasing εf, it remains to be explained
why Ac increases only logarithmically with εf for H < 0.5 but
algebraically for H > 0.5. One possibility could be that most of
the elastic energy (in full contact) is stored in long-wavelength
modes for H > 0.5 but in short-wavelength modes for H < 0.5.
If this argument were true, H = 0.5 could be the dividing line
for the different types of behaviors. We therefore repeated the
analysis shown in Figure 5 for H = 0.5. Unfortunately, the
results leave us somewhat uncertain. Significantly more work
must probably be done to characterize the transition between the
different scaling behaviors rigorously.

To conclude this section on the much investigated isotropic,
rpa surfaces, we expect κ to have a well defined zero-pressure
limit, in the sense of Equation (26), which does not depend upon
how it is approached. For small Hurst exponents, i.e., forH > 0.5,
it might not exist and/or it might depend on how εf → 0 is
approached, e.g., it could take different values when reaching
it with constant εf/εt than with constant εf/

√
εt. At the same

time, we somewhat expect that the value of κ ≈ 2.5 predicted
by the more sophisticated bearing-area models, such as that by
Bush et al. (1975), might provide a (potentially rigorous) upper
bound for κ when the limit εt → 0 is taken before εf → 0.
In this case, the surface roughness on scales exceeding the roll-
off wavelength is white noise so that the underlying mean-field
model of elasticity might not be detrimental.

4.2.2. Effect of Nayak and Related Parameters on κ

Yastrebov et al. (2017) proposed the proportionality coefficient
κ to decrease logarithmically with the Nayak parameter, at least
for self-affine, rpa surfaces. However, two aspects of this claim
and their data strike us as troublesome. First, κ is implicitly
predicted to become negative for very large Nayak parameters,
which is physically meaningless. Second, their data points seem

FIGURE 5 | (Left) Proportionality coefficient κ as function of reduced pressure p∗ for three Hurst parameters and two fixed ratios of εt,f, namely (i) εt = 1 and

εf = 1/32 and (ii) εt = 1/4 and εf = 1/128. (Right) Scaling with εf for H = 0.8 and εt = 0.5. Dashed lines are linear fits to the three lowest values in εf. Results were

averaged over up to 100 random realizations per data point.
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FIGURE 6 | Proportionality coefficient κ as a function of the Nayak parameter

8N = 1.586 at p∗ = 0.02. Full and open symbols relate to H = 0.3 and

H = 0.8, respectively. Different surface realizations were considered: (1) orange

triangles up: cut-off, (2) blue triangles down: smooth roll-off, (3) green triangles

left: hard roll-off. In these three cases, εt and εf were fixed: εt = 1/4,

εf = 1/125, Finally, (4) squares: cut-off with 1/40 ≤ εf ≤ 1/1, 000. The dashed

lines are fits κ = κ∞ + c8−ν
N , where ν turned out to be consistent with ν ≈ 0.5

for H = 0.8 and ν ≈ 1 for H = 0.3.

to be partially inconsistent, e.g., in their Figure 10D, the points
(8N, κ) = (700, 1.93) and (70, 2.05) should be moved to (70,
1.93) and (700, 2.05), respectively. The Nayak parameter 8N

would then be consistent not only with our own calculations
but also with the values that Yastrebov et al. reported themselves
in their Figure 1. Once these two data points are corrected, the
logarithmic relation seems to be much less convincing than with
improperly plotted data.

To provide an independent test of the extent with which the
Nayak parameter affects the proportionality coefficient κ , we
investigated a broader range of surfaces than before and contrast
surfaces with cutoff to those with smooth and abrupt rolloffs.
Figure 6 summarizes the results, which were averaged over up
to 400 random realizations per data point.

Our data appears to be consistent with a κ(8N) =
κ(∞) − cN8

−νN
N relation rather than with a logarithmic κ(8N)

dependence. If the original data had been plotted without taking
averages, the H = 0.3 might have scattered sufficiently much to
make them appear as a continuation of the H = 0.8 data. Two
markedly different dependencies of κ on 8N are obtained for
H = 0.3 andH = 0.8. Thus, κ cannot be reduced to be a function
of 8N (and p∗) alone.

4.3. Anisotropic rpa Surfaces
To address the question how anisotropy affects the relative
contact area, we repeated the simulations presented in Figure 4

with a Peklenik number of γP = 4. Results are shown in Figure 7.
It can be seen that anisotropy enhances the pressure dependence
of κ at fixed values of εt,f compared to stochastically isotropic
surfaces with γP = 1. This may not be particularly surprising
in light of the observation that one-dimensional surfaces have

FIGURE 7 | Same as Figure 4, however, this time for stochastically

anisotropic surfaces with γP = 4. Symbols with faint colors represent results

for κc rather than for κ.

logarithmic corrections to the κ(p) relation, even for H >

0.5. By using a Peklenik number clearly differing from unity,
roughness dominates along one spatial dimension, whereby the
spatial dimension can be argued to have been reduced to a
certain extent.

Figure 7 also finds that κ(H = 0.8) is not very pressure
sensitive when εf is decreased with pressure so that for
macroscopic systems, in which εf is two to three orders of
magnitude smaller than in simulations, the pressure sensitivity
is marginally small. However, due to anisotropy, κ is noticeably
increased with respect to the isotropic case. When Peklenik
numbers differ very much from unity, different laws may apply
as the surface’s dimensionality has effectively changed from two
to one. In the limit of one-dimensional surfaces, the pressure
sensitivity of κ at small p∗ has been convincingly established not
only for small H but also for H = 0.8 (van Dokkum et al., 2018).

As a final comment on the non-isotropic rpa surfaces, we
note that κc, whose definition of reduced pressure uses the root-
mean-square height gradient ḡ averaged over contact only, has a
rather weak dependence on p∗. Values are generally close to 1.8.
Interestingly, the ordering of the points are essentially in reverse
order compared to the analysis in which ḡ was averaged over
entire surfaces.

The smallest κc occurs for the smallest Hurst exponent, which
can be rationalized as follows: For H = 0.3, roughness exists
predominantly at short wavelengths and contact patches are
rather small compared to H = 0.8. The coarse-grained, or
rotationally averaged height profile of an individual meso-scale
asperity is therefore blunter for H = 0.8 (where many valleys
are sampled over) than for H = 0.3 (containing essentially only
high peaks). Neglecting the fact that contact is more and more
partial in such amesoscale asperity with distance from the highest
point, Equation (28) finds that blunter tips have larger κc. The
extreme limit at small p∗ should be a Hertzian asperity, for which
κc ≈ 1.666. The blunter the profile, the larger κc.
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FIGURE 8 | Same as Figure 4, however, this time for a height warped surfaces: (Left) blunt indenting peaks and steep valleys (w = 2) (Right) sharp peaks and

shallow valleys (w = −2).

4.4. Isotropic Height-Warped Surfaces
The assumption of the random-phase approximation is subject
to the serious and legitimate criticism not only of Persson’s
contact mechanics theory but on a large body of simulation
studies using ideal, rpa surfaces. Quite a few numerical studies
use a Weierstrass profile, which has (perfect) phase correlation,
while reproducing a height autocorrelation function (ACF)
being similar to experimental ACFs. However, the Weierstrass
profile lacks any visual similarity to experimental surfaces as
demonstrated in Figure 2 of Müser (2018). We therefore believe
that the warping method proposed in section 2, while probably
still being far from ideal, reproduces the stochastic properties of
correlated surfaces in a significantly more realistic fashion than a
Weierstrass-function based height profile.

Figure 8 reveals that the increase of κ with decreasing
pressure is much accentuated for a positive warping exponent
w, in which case the peaks of the indenting asperities are
flattened compared to the valleys. This times κ(H = 0.8) even
increases with decreasing p∗ when εf is reduced with decreasing
pressure. However, for the opposite case of w < 0 leading
to sharp asperities and shallow valleys, κ is found to decrease
with pressure. This statement also holds in certain pressure
ranges, when εf is not scaled according to Equation (27) but
kept constant.

When defining the root-mean-square height gradient and
thus the reduced pressure with respect to the true contact area,
κc turns out yet again to be rather insensitive to the reduced
pressure and to be around 1.8 for small p∗c . Correlating the
respective values of κc with the structural parameters, which are
symmetry-allowed and finite, has remained unsuccessful so far.

4.5. Periodically Repeated Smooth
Indenters
When indenters are periodically repeated, each indenter carries
the same load. If the linear contact dimension is small compared
to the period, that is, at small applied external pressures p0, a
similar relation between contact area and load or pressure must
be obtained as if the indenter were isolated. As alreadymentioned

in the introduction, it has been noticed recently (Müser, 2017)
that the corresponding asymptotic low-pressure relation for
periodically repeated indenters with harmonic height profiles
can be cast in terms of Equation (8). The prefactor κc can be
calculated analytically, specifically

κc(n) =
√

π

n

Ŵ( n2 + 3
2 )

Ŵ( n2 + 1)
, (28)

where Ŵ(•) represent the gamma function. The numerical
data shown in Figure 9 confirms the analytical results at low
pressures. Errors in the relative contact become noticeable only
once ar exceeds 0.3, but they remain below 25%. The high-
pressure asymptotics can also be described reasonably well with
Equation (8), however, the value for κc needs to be decreased.
Since the approach to full contact is the quite special case of a
conical dimple for the periodically repeated indenters, it will not
be investigated any further in this study.

5. DISCUSSIONS AND CONCLUSIONS

In this study, various structural parameters determining the
relative contact area ar in a contact between a rough surface and
a linearly elastic counterbody were investigated. The focus was
laid on the questions if ar is linear in pressure p and inversely
proportional to the root-mean square height gradient ḡ for small
reduced pressures, defined as p∗ = p/(E∗ḡ), and if yes, what
structural parameters determine the proportionality coefficient κ .

One of the difficulties to determine whether or not ar is linear
in p∗ at small p∗ is that taking the limit p∗ → 0 properly
is not a simple task, because the ratios of roll-off wavelength
and system size, εt = λr/L (size scaling), as well as the
ratio of short-wavelength cutoff and roll-off wavelength, εf =
λs/λr (fractal scaling), have to be made systematically small.
While Prodanov et al. (2013) emphasized the necessity of such
a finite-size and fractal scaling, they failed to take that limit
properly themselves, as they kept the ratio of linear mesh size
and short-wavelength cutoff, εc = a/λs, fixed. In this study,
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FIGURE 9 | Relative contact area ar as function of pressure p normalized to

the contact modulus E∗ for periodically repeated indenters with the height

profile h(r) = R (r/R)n/n, where R defines the unit of length and with n = 4

(blunt indenter), n = 2 (Hertzian indenter), and n = 3/2 (sharp indenter).

we extrapolated results for a specific surface configuration to
εc first and then computed contact area while taking εt and εf
to zero simultaneously or by taking εf to zero while keeping
εt constant.

The last type of analysis, in which effectively εc = 0,
while εt is kept constant and p∗ is set to a (very) small value,
deserves particular attention. When doing so, only a single
meso-scale asperity contact (SMAC) will ultimately remain in
contact for very small εf and Hurst exponents H > 0.5.
This is because typical contact patch sizes increase algebraically
with decreasing εf for H > 0.5 (Müser and Wang, 2018).
In an individual SMAC, which can be described as a single
asperity with microscale roughness added to it, linearity between
load and contact area is well satisfied (Pastewka and Robbins,
2016) and the (complementary) contact area in it can be
well-determined using Persson theory (Müser, 2016). As such,
linearity between load and contact area in a macroscopic system
should arise automatically. However, it remains to be understood
why one-dimensional (1D) interfaces behave differently from
2D interfaces, since 1D interfaces do not obey a linear ar(p

∗)
relationship at small pressures (van Dokkum et al., 2018), even
for very large systems. Moreover, we are not yet certain about
the small-pressure ar(p

∗) relationship for H < 0.5, although our
current analysis supports the finding (Yastrebov et al., 2015, 2017)
that the relationship may have indeed non-negligible logarithmic
corrections in p∗. They might be the consequence of the small,
logarithmic growth of characteristic contact patch sizes with
decreasing εf for H < 0.5. At the same time, we wonder
if κ computed in the thermodynamic limit can systematically
exceed predictions of the more advanced bearing-area models
such as Bush, Gibson, and Thomas (BGT) (Bush et al., 1975).
Thus, although we believe to have furthered the rigor with
which κ is computed, we expect that the final answer to how κ

has to be computed in the thermodynamic limit still needs to
be found.

The discussion in the last paragraph as well as the analysis
conducted in the results section of this works reveals already at
the present level of rigor that the Nayak parameter 8N has no
stringent direct correlation with the proportionality coefficient κ ,
which would allow the function κ(p∗,H, εt, εf) to be reduced to
a smaller number of variables, such as, κ = κ(p∗,8N, εt). This
in turn emphasizes once more that a rigorous understanding of
contact mechanics necessitates a spectral analysis of the height
profiles. Knowledge of the Nayak parameter and even more so of
simple distribution functions of asperity heights and geometries
is unavailing.

While Persson theory cannot (yet) be used either to explain
why different Hurst exponents lead to different κ , it does allow
deviations of κ(p∗) from linearity to be rationalized for both finite
systems and surfaces violating the random-phase approximation.
The basic version of Persson theory assumes that the elastic
body “feels” the full root-mean-square gradient (averaged over
the entire surface) as soon as the elastic body hits the rough
substrate. However, for any finite surface, a certain fraction
must be in contact before the root-mean-square gradient and
other stochastic parameters, such as the kurtosis, approach their
“true” mean values. While this fraction decreases with system
size, ḡ (typically) remains below its asymptotic value for finite
rpa surfaces at small ar so that (according to Persson theory
and simulations presented in this work) ar turns out larger
than in the thermodynamic limit. In the case of correlated
random roughness, the situation is more complex, since the rms-
gradient, kurtosis, etc., can be functions of the height even when
surfaces are in the thermodynamic limit. A possible correction
of Persson theory for this case could be to identify the rms-
gradient of the ar × 100% top- (or bottom) most heights and
use this value to determine the reduced pressure p∗c , which
would then satisfy Equation (8) reasonably well. To some extent,
this would constitute a somewhat dissatisfactory compromise
between Persson theory and bearing-area models, since it is not
the top- (or bottom) most, say, 20% of the peaks that are in
contact at 20% relative contact area, as is implicitly assumed in
bearing-area models. However, this is the simplest correction
that comes to our mind at this point of time. It is certainly
much less tedious to work out than the systematic corrections to
Persson theory relying on a cumulant expansion of the short- but
finite-range repulsive interactions between indenter and elastic
body (Müser, 2008).

In full simulations, ḡ can be averaged over the true contact area
and no compromise between bearing-area models and Persson
theory needs to be made. In all investigated randomly-rough
contacts, we find a close-to-linear relation between ar and p∗c ,
i.e., when averaging the rms height gradient only over the true
contact even if the original ar(p) deviates clearly from linearity.
In these simulations, we find κc to lie in the relatively narrow
range satisfying κc ≈ 1.8 ± 0.1. This value for κc is only slightly
larger than the value of 1.6 predicted by Persson theory but
clearly below the value of 2.5 predicted by BGT (Bush et al.,
1975). Thus, the range of validity of Persson theory could be
substantially expanded if the approximation of using the full rms-
height gradient were replaced with an accurate estimate of the
mean rms-height gradient in the true contact.
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It is certainly justified to consider many parts of this
study to be more of a mathematical exercise rather than
an attempt to model any specific real-world problem. And
anyone wondering why there has to be yet another paper
on κ can be assured to have our full sympathy. However,
if poorly conducted studies of contact problems lead to
the conclusion that a legitimate theory is brought into
discredit and these studies receive many citations as evidence
for the theory to be flawed, it should be in place to
demonstrate that a carefully conducted analysis supports
the theory.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

MM designed the study and wrote the manuscript. YZ run the
simulations. MM and YZ jointly analyzed the data and jointly
produced the figures. All authors contributed to the article and
approved the submitted version.

REFERENCES

Afferrante, L., Bottiglione, F., Putignano, C., Persson, B. N. J., and Carbone, G.

(2018). Elastic contact mechanics of randomly rough surfaces: an assessment

of advanced asperity models and Persson’s theory. Tribol. Lett. 66:75.

doi: 10.1007/s11249-018-1026-x

Almqvist, A., Campañá, C., Prodanov, N., and Persson, B. (2011). Interfacial

separation between elastic solids with randomly rough surfaces: comparison

between theory and numerical techniques. J. Mech. Phys. Solids 59, 2355–2369.

doi: 10.1016/j.jmps.2011.08.004

Bush, A., Gibson, R., and Thomas, T. (1975). The elastic contact of a rough surface.

Wear 35, 87–111. doi: 10.1016/0043-1648(75)90145-3

Campañá, C., and Müser, M. H. (2006). Practical green’s function approach

to the simulation of elastic semi-infinite solids. Phys. Rev. B 74:075420.

doi: 10.1103/PhysRevB.74.075420

Campañá, C., and Müser, M. H. (2007). Contact mechanics of real vs. randomly

rough surfaces: a Green’s function molecular dynamics study. Europhys. Lett.

77:38005. doi: 10.1209/0295-5075/77/38005

Campañá, C., Müser, M. H., and Robbins, M. O. (2008). Elastic contact

between self-affine surfaces: comparison of numerical stress and contact

correlation functions with analytic predictions. J. Phys. 20:354013.

doi: 10.1088/0953-8984/20/35/354013

Campañá, C., Persson, B. N. J., and Müser, M. H. (2011). Transverse and normal

interfacial stiffness of solids with randomly rough surfaces. J. Phys. 23:085001.

doi: 10.1088/0953-8984/23/8/085001

Candela, T., Renard, F., Bouchon, M., Schmittbuhl, J., and Brodsky, E. E. (2011).

Stress drop during earthquakes: effect of fault roughness scaling. Bull. Seismol.

Soc. Am. 101, 2369–2387. doi: 10.1785/0120100298

Carbone, G., and Bottiglione, F. (2008). Asperity contact theories: do they predict

linearity between contact area and load? J. Mech. Phys. Solids 56, 2555–2572.

doi: 10.1016/j.jmps.2008.03.011

Dapp, W. B., Lücke, A., Persson, B. N. J., and Müser, M. H. (2012). Self-

affine elastic contacts: percolation and leakage. Phys. Rev. Lett. 108:244301.

doi: 10.1103/PhysRevLett.108.244301

Dapp, W. B., Prodanov, N., and Müser, M. H. (2014). Systematic analysis of

Persson’s contact mechanics theory of randomly rough elastic surfaces. J. Phys.

26:355002. doi: 10.1088/0953-8984/26/35/355002

Hyun, S., Pei, L., Molinari, J.-F., and Robbins, M. O. (2004). Finite-element

analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70:026117.

doi: 10.1103/PhysRevE.70.026117

Hyun, S., and Robbins, M. O. (2007). Elastic contact between rough surfaces:

effect of roughness at large and small wavelengths. Tribol. Int. 40, 1413–1422.

doi: 10.1016/j.triboint.2007.02.003

Jacobs, T. D. B., Junge, T., and Pastewka, L. (2017). Quantitative characterization

of surface topography using spectral analysis. Surface Topogr. 5:013001.

doi: 10.1088/2051-672X/aa51f8

Kajita, S. (2016). Green’s function nonequilibrium molecular dynamics

method for solid surfaces and interfaces. Phys. Rev. E 94:033301.

doi: 10.1103/PhysRevE.94.033301

Lorenz, B., and Persson, B. N. J. (2008). Interfacial separation between elastic solids

with randomly rough surfaces: comparison of experiment with theory. J. Phys.

21:015003. doi: 10.1088/0953-8984/21/1/015003

Majumdar, A., and Tien, C. L. (1990). Fractal characterization and simulation of

rough surfaces.Wear 136, 313–327. doi: 10.1016/0043-1648(90)90154-3

Müser, M., and Wang, A. (2018). Contact-patch-size distribution and limits of

self-affinity in contacts between randomly rough surfaces. Lubricants 6:85.

doi: 10.3390/lubricants6040085

Müser, M. H. (2008). Rigorous field-theoretical approach to the contact

mechanics of rough elastic solids. Phys. Rev. Lett. 100:055504.

doi: 10.1103/PhysRevLett.100.055504

Müser, M. H. (2016). On the contact area of nominally flat hertzian contacts.

Tribol. Lett. 64:14. doi: 10.1007/s11249-016-0750-3

Müser, M. H. (2017). On the linearity of contact area and reduced pressure. Tribol.

Lett. 65:129. doi: 10.1007/s11249-017-0912-y

Müser, M. H. (2018). Response to “comment on meeting the contact-(mechanics)

challenge.” Tribol. Lett. 66:38. doi: 10.1007/s11249-018-0986-1

Müser, M. H., Dapp, W. B., Bugnicourt, R., Sainsot, P., Lesaffre, N., Lubrecht, T.

A., et al. (2017). Meeting the contact-mechanics challenge. Tribol. Lett. 65:118.

doi: 10.1007/s11249-017-0900-2

Nayak, P. R. (1971). Random process model of rough surfaces. J. Lubricat. Technol.

93, 398–407. doi: 10.1115/1.3451608

Palasantzas, G. (1993). Roughness spectrum and surface width of self-affine

fractal surfaces via the k-correlation model. Phys. Rev. B 48, 14472–14478.

doi: 10.1103/PhysRevB.48.14472

Pastewka, L., Prodanov, N., Lorenz, B., Müser, M. H., Robbins, M. O., and

Persson, B. N. J. (2013). Finite-size scaling in the interfacial stiffness of

rough elastic contacts. Phys. Rev. E 87:062809. doi: 10.1103/PhysRevE.87.

062809

Pastewka, L., and Robbins, M. O. (2016). Contact area of rough spheres: large

scale simulations and simple scaling laws. Appl. Phys. Lett. 108:221601.

doi: 10.1063/1.4950802

Pastewka, L., Sharp, T. A., and Robbins, M. O. (2012). Seamless

elastic boundaries for atomistic calculations. Phys. Rev. B 86:075459.

doi: 10.1103/PhysRevB.86.075459

Persson, B. N. J. (2001). Theory of rubber friction and contact mechanics. J. Chem.

Phys. 115:3840. doi: 10.1063/1.1388626

Persson, B. N. J. (2008). On the elastic energy and stress correlation in the

contact between elastic solids with randomly rough surfaces. J. Phys. 20:312001.

doi: 10.1088/0953-8984/20/31/312001

Persson, B. N. J. (2014). On the fractal dimension of rough surfaces. Tribol. Lett.

54, 99–106. doi: 10.1007/s11249-014-0313-4

Persson, B. N. J., Albohr, O., Tartaglino, U., Volokitin, A. I., and Tosatti,

E. (2004). On the nature of surface roughness with application to contact

mechanics, sealing, rubber friction and adhesion. J. Phys. 17, R1–R62.

doi: 10.1088/0953-8984/17/1/R01

Pohrt, R., Popov, V. L., and Filippov, A. E. (2012). Normal contact stiffness of elastic

solids with fractal rough surfaces for one- and three-dimensional systems. Phys.

Rev. E 86:026710. doi: 10.1103/PhysRevE.86.026710

Prodanov, N., Dapp,W. B., andMüser,M. H. (2013). On the contact area andmean

gap of rough, elastic contacts: dimensional analysis, numerical corrections,

and reference data. Tribol. Lett. 53, 433–448. doi: 10.1007/s11249-013-0

282-z

Putignano, C., Afferrante, L., Carbone, G., and Demelio, G. (2012). The influence

of the statistical properties of self-affine surfaces in elastic contacts: a numerical

Frontiers in Mechanical Engineering | www.frontiersin.org 13 August 2020 | Volume 6 | Article 59

https://doi.org/10.1007/s11249-018-1026-x
https://doi.org/10.1016/j.jmps.2011.08.004
https://doi.org/10.1016/0043-1648(75)90145-3
https://doi.org/10.1103/PhysRevB.74.075420
https://doi.org/10.1209/0295-5075/77/38005
https://doi.org/10.1088/0953-8984/20/35/354013
https://doi.org/10.1088/0953-8984/23/8/085001
https://doi.org/10.1785/0120100298
https://doi.org/10.1016/j.jmps.2008.03.011
https://doi.org/10.1103/PhysRevLett.108.244301
https://doi.org/10.1088/0953-8984/26/35/355002
https://doi.org/10.1103/PhysRevE.70.026117
https://doi.org/10.1016/j.triboint.2007.02.003
https://doi.org/10.1088/2051-672X/aa51f8
https://doi.org/10.1103/PhysRevE.94.033301
https://doi.org/10.1088/0953-8984/21/1/015003
https://doi.org/10.1016/0043-1648(90)90154-3
https://doi.org/10.3390/lubricants6040085
https://doi.org/10.1103/PhysRevLett.100.055504
https://doi.org/10.1007/s11249-016-0750-3
https://doi.org/10.1007/s11249-017-0912-y
https://doi.org/10.1007/s11249-018-0986-1
https://doi.org/10.1007/s11249-017-0900-2
https://doi.org/10.1115/1.3451608
https://doi.org/10.1103/PhysRevB.48.14472
https://doi.org/10.1103/PhysRevE.87.062809
https://doi.org/10.1063/1.4950802
https://doi.org/10.1103/PhysRevB.86.075459
https://doi.org/10.1063/1.1388626
https://doi.org/10.1088/0953-8984/20/31/312001
https://doi.org/10.1007/s11249-014-0313-4
https://doi.org/10.1088/0953-8984/17/1/R01
https://doi.org/10.1103/PhysRevE.86.026710
https://doi.org/10.1007/s11249-013-0282-z
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Zhou and Müser Structural Parameters and Contact Area

investigation. J. Mech. Phys. Solids 60, 973–982. doi: 10.1016/j.jmps.2012.

01.006

Salehani, M. K., van Dokkum, J., Irani, N., and Nicola, L. (2020). On

the load-area relation in rough adhesive contacts. Tribol. Int. 144:106099.

doi: 10.1016/j.triboint.2019.106099

van Dokkum, J. S., and Nicola, L. (2019). Green’s function molecular

dynamics including viscoelasticity. Modell. Simul. Mater. Sci. Eng. 27:075006.

doi: 10.1088/1361-651X/ab3031

van Dokkum, J. S., Salehani, M. K., Irani, N., and Nicola, L. (2018). On the

proportionality between area and load in line contacts. Tribol. Lett. 66:115.

doi: 10.1007/s11249-018-1061-7

Wick, G. C. (1950). The evaluation of the collision matrix. Phys. Rev. 80, 268–272.

doi: 10.1103/PhysRev.80.268

Yastrebov, V. A., Anciaux, G., and Molinari, J.-F. (2015). From infinitesimal

to full contact between rough surfaces: evolution of the contact

area. Int. J. Solids Struct. 52, 83–102. doi: 10.1016/j.ijsolstr.2014.

09.019

Yastrebov, V. A., Anciaux, G., and Molinari, J.-F. (2017). The role of the roughness

spectral breadth in elastic contact of rough surfaces. J. Mech. Phys. Solids 107,

469–493. doi: 10.1016/j.jmps.2017.07.016

Zhou, Y., Moseler, M., and Müser, M. H. (2019). Solution of boundary-

element problems using the fast-inertial-relaxation-engine method. Phys. Rev.

B 99:114103. doi: 10.1103/PhysRevB.99.144103

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Zhou and Müser. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Mechanical Engineering | www.frontiersin.org 14 August 2020 | Volume 6 | Article 59

https://doi.org/10.1016/j.jmps.2012.01.006
https://doi.org/10.1016/j.triboint.2019.106099
https://doi.org/10.1088/1361-651X/ab3031
https://doi.org/10.1007/s11249-018-1061-7
https://doi.org/10.1103/PhysRev.80.268
https://doi.org/10.1016/j.ijsolstr.2014.09.019
https://doi.org/10.1016/j.jmps.2017.07.016
https://doi.org/10.1103/PhysRevB.99.144103
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles

	Effect of Structural Parameters on the Relative Contact Area for Ideal, Anisotropic, and Correlated Random Roughness
	1. Introduction
	2. Model and Method
	3. Theory
	3.1. Phenomenological Generalization of Persson Theory
	3.2. Dimensionless Parameters: Nayak and Beyond
	3.3. Evaluation of Fourth-Order Invariants

	4. Results
	4.1. On the Accurate Calculation of Contact Area and the Proportionality Coefficient κ
	4.2. Isotropic rpa Surfaces
	4.2.1. Does κ Have a Low-Pressure Limit?
	4.2.2. Effect of Nayak and Related Parameters on κ

	4.3. Anisotropic rpa Surfaces
	4.4. Isotropic Height-Warped Surfaces
	4.5. Periodically Repeated Smooth Indenters

	5. Discussions and Conclusions
	Data Availability Statement
	Author Contributions
	References


