
ORIGINAL RESEARCH
published: 05 August 2020

doi: 10.3389/fmech.2020.00060

Frontiers in Mechanical Engineering | www.frontiersin.org 1 August 2020 | Volume 6 | Article 60

Edited by:

Elena Torskaya,

Institute for Problems in Mechanics

(RAS), Russia

Reviewed by:

J. Jamari,

Diponegoro University, Indonesia

Sergei Mikhailovich Aizikovich,

Don State Technical University, Russia

*Correspondence:

Matthew R. W. Brake

brake@rice.edu

Specialty section:

This article was submitted to

Tribology,

a section of the journal

Frontiers in Mechanical Engineering

Received: 21 March 2020

Accepted: 26 June 2020

Published: 05 August 2020

Citation:

Ghaednia H, Mifflin G, Lunia P,

O’Neill EO and Brake MRW (2020)

Strain Hardening From

Elastic-Perfectly Plastic to Perfectly

Elastic Indentation Single Asperity

Contact. Front. Mech. Eng. 6:60.

doi: 10.3389/fmech.2020.00060

Strain Hardening From
Elastic-Perfectly Plastic to Perfectly
Elastic Indentation Single Asperity
Contact
Hamid Ghaednia 1, Gregory Mifflin 2, Priyansh Lunia 3, Eoghan O. O’Neill 4 and

Matthew R. W. Brake 5*

1Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, United States, 2Department of Mechanical

Engineering, Auburn University, Auburn, AL, United States, 3Department of Physics, William Marsh Rice University, Houston,

TX, United States, 4Department of Mechanical Engineering, William Marsh Rice University, Houston, TX, United States,
5Department of Mechanical Engineering, William Marsh Rice University, Houston, TX, United States

Indentation measurements are a crucial technique for measuring mechanical properties.

Although several contact models have been developed to relate force-displacement

measurements with the mechanical properties, they all consider simplifying assumptions,

such as no strain hardening, which significantly affects the predictions. In this study,

the effect of bilinear strain hardening on the contact parameters for indentations

is investigated. Simulations show that even 1% strain hardening causes significant

changes in the contact parameters and contact profile. Pile-up behavior is observed

for elastic-perfectly plastic materials, while for strain hardening values greater than 6%,

only sink-in (i.e., no pile-up) is seen. These results are used to derive a new, predictive

formulation to account for the bilinear strain hardening from elastic-perfectly plastic to

purely elastic materials.

Keywords: bilinear strain hardening, elastic plastic contact, indentation, constitutive modeling, pile-up and sink-in

1. INTRODUCTION

Fundamental to all assembled systems, contact mechanics is integral to mechanical design. This
is evident in many applications, such as: jointed structures (Brake, 2016), electrical contacts
(Ghaednia et al., 2014), thermal contacts (Jackson et al., 2012), collision mechanics (Brake, 2012,
2015; Ghaednia et al., 2015; Gheadnia et al., 2015; Ghaednia andMarghitu, 2016; Brake et al., 2017),
continum mechanics (Golgoon et al., 2016; Golgoon and Yavari, 2017, 2018), biomechanics (Zhao
et al., 2007; Borjali et al., 2017, 2018, 2019; Langhorn et al., 2018; Mollaeian et al., 2018), turbines
(Firrone and Zucca, 2011), additive manufacturing (Kardel et al., 2017; Pawlowski et al., 2017),
bearings (Sadeghi et al., 2009), particle and powder interactions (Christoforou et al., 2013; Rathbone
et al., 2015), and seals (Green and Etsion, 1985;Miller andGreen, 2001) amongst other applications.
Contact mechanics can be categorized into both single asperity and rough surface contact, where
single asperity models are usually used in rough surface models. A third category, macroscale
applications of contact mechanics, tends to use similar models as for the contact of single asperities
(for spherical contact at least; other geometries have solutions that are similar to Hertz’s original
model, Johnson, 1987; Flicek, 2015). There is a multitude of analytical, numerical, and experimental
studies on all types of single asperity contact: spherical, cylindrical, elliptical, conical, and flat
contact, all with the goals of developing predictive formulations of contact parameters, damage
predictions, or calculating design constraints and standards.

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://doi.org/10.3389/fmech.2020.00060
http://crossmark.crossref.org/dialog/?doi=10.3389/fmech.2020.00060&domain=pdf&date_stamp=2020-08-05
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles
https://creativecommons.org/licenses/by/4.0/
mailto:brake@rice.edu
https://doi.org/10.3389/fmech.2020.00060
https://www.frontiersin.org/articles/10.3389/fmech.2020.00060/full
http://loop.frontiersin.org/people/991303/overview
http://loop.frontiersin.org/people/1000856/overview
http://loop.frontiersin.org/people/856880/overview


Ghaednia et al. Indentation Modeling With Strain Hardening

Contact mechanics of engineering materials, such as metals,
can be divided into three regimes: purely elastic, elastic-plastic
and fully plastic. For amajority ofmetallic contacts, elastic regime
ends at very small deformations, which are often impossible
to avoid. The elastic-plastic regime initiates with the inception
of yield (at some depth below the contact surface), and then
transitions into the fully plastic regime. As the fully plastic regime
often leads to mechanical failure, the majority of contacts exist
in the elastic-plastic regime, which is also the most complicated
phase of contact for analysis.

Approximate analytical solutions are well-known for the
elastic regime. Hertzian contact theory (Hertz, 1882) solves
the elastic spherical contact problem by fitting a polynomial
on the interface and assuming a second order polynomial
for the pressure distribution. The theory is well-validated
for small deformations; however, for large deformations the
approximations of Hertzian theory break down.

For the perfectly plastic regime, there are a few analytical
solutions; however, all of the existing solutions include limiting
assumptions, such as uniform contact pressure, or constant
normal contact pressure or hardness. The majority of the
numerical studies (Hardy et al., 1971; Lin and Lin, 2006) justify
the assumption of a uniform pressure distribution; however,
it has been shown that the assumption of constant hardness
is not accurate (Jackson and Green, 2005). Tabor suggested
a constant H = 2.8Sy in his book (Tabor, 2000), this
value was later analytically verified by Ishlinsky (Ishlinsky,
1944) and has been used in the majority of the engineering
applications and measurements. In contrast to this, Kogut and
Komvopoulos (2004) suggested that hardness depends on the
material properties, and it was shown by Jackson and Green
(2005) that hardness is a function of contact radius as well as the
material properties. This was further explored in Jackson et al.
(2015), which presented an analytical solution of hardness as a
function of the contact radius by using Ishlisky’s slip line theory.
They show that as the contact radius increases, the average
normal pressure decreases. All of these works, however, were
developed for elastic-perfectly plastic materials.

Due to the complexities of the stress distribution in elastic-
plastic contact and the integral (path-dependent) nature of the
material behavior, there is no closed form solution for the
elastic-plastic regime. Most studies use finite element analysis
(FEA) to develop predictive empirical formulations for contact
parameters. Empirical formulations of FEA results started with
the works of Sinclair and Follansbee (Follansbee and Sinclair,
1984; Sinclair et al., 1985). Later, this method was used and
improved by several researchers (Chang, 1986; Chang et al.,
1987; Komvopoulos, 1989; Kogut and Etsion, 2002; Jackson
and Green, 2003, 2005; Ye and Komvopoulos, 2003; Kogut and
Komvopoulos, 2004; Green, 2005; Ghaednia et al., 2016), and
detailed discussions of the contact models can be found in the
reviews of (Bhushan, 1996, 1998; Adams and Nosonovsky, 2000;
Barber and Ciavarella, 2000; Ghaednia et al., 2017).

One important point that is often overlooked in contact
mechanics modeling is that the mechanicsm of indentation and
flattening are fundamentally different. This was demonstrated
in Jackson and Kogut (2006), where flattening models were

characterized as a deformable sphere pressed against a rigid
flat, and indentation models were characterized as a rigid
sphere pressed into a deformable flat. It has to be considered
that the term single asperity contact has been applied to
both of these contact groups, while indentation and flattening
terms are specifying the contact types. Before Jackson and
Kogut (2006), both flattening and indentation contacts were
assumed to be the same. Therefore, in almost all of the
previous works, one of the objects in contact is assumed
rigid. However, Ghaednia et al. (2016) showed that there
is a transition from flattening to indentation contact with
respect to the yield strength ratio of the contacting objects and
that contact of similar materials yields smaller contact areas
and larger contact pressures. Further, Ghaednia et al. (2016)
concluded that the change in the radius of curvature during
contact determines whether the contact will lead to indentation
or flattening.

Another simplifying assumption in contact mechanics is
related to the mechanics of strain hardening. The two primary
models for material strain hardening are power law and bilinear
strain hardening, and only a few contact models (Mesarovic
and Fleck, 2000; Brizmer et al., 2006; Brake, 2015; Zhao et al.,
2015) incorporate strain hardening. Several researchers have
considered power law strain hardening: by FEA (Zhao et al.,
2015), qualitatively (Mesarovic and Fleck, 2000), and analytically
(Brake, 2015). In particular, Zhao et al. (2015) demonstrated that
strain hardening for a flattening elastic-plastic sphere leads to a
decrease in the contact area while the contact force increases for
higher levels of strain hardening.

Brake (2012, 2015) provided an analytical transition between
the purely elastic and fully plastic regimes by applying nine
governing conditions on the transition functions. Brake’s
formulations is based on the Meyer’s hardness test (Meyer, 1908;
Biwa and Storåkers, 1995; Tabor, 2000), which leads to the
functional form for contact force in the fully plastic regime,

Fp = p0π
an

an−2
p

, (1)

where a is the contact radius, ap is the contact radius at the
onset of the fully plastic regime, p0 is the average normal pressure
at perfectly plastic regime or hardness, and n is the Meyers
strain hardening exponent, which comes from a power law
relation between stress and strain (see Nomenclature). The main
complexities in this equation arise from the calculation of ap and
p0, which affect the final predictions significantly.

Studies show that the bilinear strain hardening model is closer
to the true stress true strain curve than power law hardening
(Sharma and Jackson, 2017). Kogut and Etsion (2002) stated that
the effect of bilinear strain hardening with tangential modulus
Et < 0.05E (for a given elastic modulus E) on the contact force
and contact area is less than 4.5%; however, this comparison
was based on very small deformations (δ < 20δc, where
δc is the critical interface at which yield initiates). For larger
deformations, this does not hold true as will be discussed in
this work. An extension of Kogut and Etsion (2002) to include
bilinear strain hardening showed stable predictions for a large
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range of interfaces and material properties for a limited set of
strain hardening coefficients (Shankar and Mayuram, 2008). In
Ghaednia et al. (2019), a new contact model for an elastic-plastic
flattening contact was developed that included both bilinear
strain hardening on the indenter and elastic deformations of
the flat (which many previous flattening model considered
rigid). The present analysis seeks to advance this research by
investigating the role of hardening behavior for indentation.

In the previous work Ghaednia et al. (2019), the effect of
bilinear strain hardening for a flattening contact was studied.
Even though the present work addresses a similar issue for
indentation contact of bilinear materials, it is paramount that
these two regimes be considered separately due to fundamental
differences in their mechanics. The effect of pile-up and sink-
in for an indentation contact significantly affects the stress
distribution at the interface and the contact parameters (Jackson
and Kogut, 2006; Ghaednia et al., 2017). To the best of
the authors’ knowledge, no previous study has developed an
empirical formulation for the effect of bilinear hardening on the
indentation of a surface.

The present work uses a series of FEA simulations that are
detailed in section 2. In section 3, the new empirical formulation
for indentation contact with a strain hardening material model
is derived, and is subsequently verified in section 4. The new
formulation is derived to be general enough to span the full
range of strain hardening behavior, from elastic-perfectly plastic
contact (i.e., the most compliant extreme) to purely elastic
contact (i.e., the most stiff extreme). Case studies are then
presented to assess the effect of strain hardening on the indenter
pile-up and sink-in behavior. Finally, conclusions are presented
in section 5.

2. FINITE ELEMENT ANALYSIS

A two-dimensional axisymmetric model similar to Ghaednia
et al. (2019) was developed in ANSYS Mechanical APDL 18.0 to
simulate normal contact between a perfectly elastic sphere and
an elastic-plastic flat. The sphere has a radius of 1 mm, and the
flat is 3 mm thick and 5 mm wide. The reduction from a three-
dimensional problem to a two-dimensional problem using the
symmetry of the modeled system simplifies the finite element
calculations and significantly reduces the error and computation
time of the analysis. The 2-D simplification is applicable in this
situation because the variables of interest, the real contact radius
(a) and the Hardness (H), are independent of the surface angle
in the case of normal contact. There is no friction modeled
between the nodes, and nine node elements were used in the
model. Mesh convergence was performed for the extreme cases
of purely elastic deformations (i.e., small deformations), and the
largest deformations studies (i.e., the limit of the plastic regime).
The final mesh was selected to ensure that the results across both
regimes were within 0.1% of the finest mesh considered. The final
mesh is similar to the mesh used in Ghaednia et al. (2019) except
that a finer mesh was required on the flat’s surface due to large
pile-ups, Figure 1. The following conditions have been applied
on the FE model:

FIGURE 1 | Finite element mesh for contact between a purely elastic sphere

and a bilinear plastic flat.

1. The nodes on the bottom surface of the flat were fixed in both
x and y directions.

2. The nodes on the vertical axis of symmetry were constrained
in the x-direction, but not in the y-direction.

3. Total of 29166 nodes were used in the mesh.
4. The mesh was biased near the contact tip.
5. A uniform total displacement of 50 µm in the y-direction was

applied to the top surface of the sphere in 40 sub-steps
6. The sphere was modeled as a purely elastic material, while the

flat was modeled as a bilinear strain-hardened material with
variable tangential modulus of Elasticity 0 ≤ Et/Ef ≤ 1.

7. Friction between the sphere and flat was ignored.

The displacement (compressive load) was applied in 15 load
steps that each contained 100 sub-steps, during which none of
the elements experienced large deformations. The von Mises
stress criterion was used to indicate the transition from elastic
to elastic-plastic phase. The profiles of the flat’s top surface were
collected for 13 values of the tangential modulus and at 15
load steps (load steps were required for convergence). This data
was used to describe the relation between the pile-ups and the
strain hardening. The real contact radius, a, was determined
in each case by finding the last surface node in contact with
the sphere, taking its initial x-position, and subtracting the x-
deformation at each sub-step. The sphere deformation ratio,
δ∗s (see Nomenclature), was calculated by collecting the sphere
deformation, δs, at the contact tip and dividing it by the total
displacement, 1. The total reaction force, F, of the flat was
measured by summing the individual reaction forces of each node
in contact with the sphere. Finally, the normal average pressure,
H, was calculated for each sub-step and for each Et .

In this work, unloading is not included in the modeling
effort as the available models in the literature are both mature
and applicable. The interested reader is referred to Ghaednia
et al. (2015), Kogut and Komvopoulos (2004), and Wang et al.
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(2020) for more information regarding how the unloading phase
behaves in a purely elastic manner. As a sample result, Figure 2
shows the von-Mises stress for Et = 0 (i.e., an elastic-perfectly
plastic material) and1 = 50 µm.

2.1. Finite Element Observations: Contact
Parameters
Two sets of materials were modeled using FE to analyze the
contact parameters. For both sets, the sphere is purely elastic
with modulus of elasticity Es = 200 GPa and Poisson’s ratio
νs = 0.3. In set one, the flat is modeled as a bilinear material
with modulus of elasticity Ef = 200 GPa, Poisson’s ratio νf =
0.3 and yield strength Syf = 300 MPa, and for set two, the
flat is modeled as a bilinear material with modulus of elasticity
Ef = 71 GPa, Poisson’s ratio νf = 0.29 and yield strength
Syf = 200 MPa. Thirteen different tangential moduli (Et/Ef = 0,
0.01, 0.02, 0.03, 0.04, 0.06, 0.1, 0.2, 0.3, 0.4, 0.6, 0.9, and 1) have
been used for each of the material sets. For each of the sets, four
contact parameters were analyzed: deformations, real contact
radius, contact force, and average normal pressure. For small
loads approaching zero, the system behaves in a purely elastic
manner. Thus, this regime approaches the results of Hertz’s
model (Hertz, 1882; Johnson, 1987). The numerical results shown
in Figures 3–6 at the lowest load step are linearly connected to
the Hertzian solution for displacements smaller than considered
in the empirical model formulation.

Figure 3 shows the numerical results for deformation ratio of
set one as a function of the tangential modulus Et/Ef and the
applied displacement1/R. The deformation ratio here is defined
as δf /1, where, δf and 1 are the deformation on the flat at the
tip of the indenter and the applied displacement, respectively. At
1/R = 0, Hertzian theory is applied on the results to create the

FIGURE 2 | Von-Mises stress distribution for a contact between a purely

elastic sphere and a bilinear elastic-plastic flat.

boundary condition

δ∗f =
δf

1
=

Ef

(1− ν2
f
)E

. (2)

For 1/R < 0.01, the ratio δ∗
f
exhibits a high sensitivity with

respect to the deformation ratio 1/R. As 1/R approaches 0.02,
δ∗
f
transitions to being weakly dependent on the ratio of1/R and,

in fact, is independent of 1/R for Et/Ef > 0.1. With respect
to the tangential modulus Et/Ef there is a continuous decrease
in the deformation ratio value from the elastic-perfectly plastic
material model (Et/Ef = 0) to purely elastic model (Et/Ef = 1).
The results do not reach the Hertzian theory and shows around
2% larger values.

A similar trend was observed in Ghaednia et al. (2019), where
the strain hardening effect on a flattening contact was studied,
and the the same difference between the Hertzian theory and the
FEM results was found. This result is likely due to neglecting the
difference between indentation and flattening contact in Hertzian
theory, where for both the cases the same effective radius of
curvature is used.

The FEA results for the real contact radius is shown in
Figure 4. The results show a large gradient with respect to the
tangential modulus Et/Ef at the elastic-perfectly plastic limit
(Et/Ef = 0) and converges to the purely elastic (Et/Ef = 1)
solution at around Et/Ef = 0.2.

The average normal pressure is shown in Figure 5. At the
elastic-perfectly plastic limit (Et/Ef = 0) the results match the
hardness values from the Jackson et al. (2015) model. For
Et/Ef > 0, the average normal pressure should not be called
hardness since the material never reaches the plastic flow regime.
Therefore the term average normal pressure represents the
physical meaning more precisely. Figure 5 shows a continuous
increase from the elastic-perfectly plastic material model at
Et/Ef = 0 to the purely elastic material model at Et/Ef = 1.

FIGURE 3 | Variation of flat deformation ratio with respect to the strain

hardening and applied displacement for material set 1 (numerical results).
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FIGURE 4 | Variation of real contact radius with respect to strain hardening

and applied displacement for material set 1 (numerical results).

FIGURE 5 | Changes in the normal average pressure with respect to the strain

hardening and applied displacement for material set 1 (numerical results).

The variation of contact force with respect to deformations
and strain hardening is depicted in Figure 6. The results show
a continuous increase from the elastic-perfectly plastic material
model (Et/Ef = 0) to the purely elastic material (Et/Ef = 1).
The gradient with respect to Et/Ef is large at the elastic-perfectly
plastic limit (Et/Ef = 0) and at large deformations, 1/R. The
Hertzian solution shows smaller values for Et/Ef = 1 that is likely
due to the first order approximation of the contact radius, which
fits a parabola onto on the sphere.

2.2. Finite Element Observations: Pile-Up
vs. Sink-In
An Important characteristic of indentation is the proclivity of
the material to exhibit pile-up, or sink-in. Figure 7A shows the
results of the FEM simulations’ contact profile on the flat for
different tangential modulus Et/Ef values using the properties
of material set one with 21 different tangential moduli from

FIGURE 6 | Variation of contact force with respect to the strain hardening and

applied displacement for material set 1 (numerical results).

Et/Ef = 0 to 1. The position of the highest point at the profile
of the flat top surface is used to measure the pile-up height. If
the highest point is bellow the initial surface of the flat then
the contact resulted in sink-in, and if this point is higher than
the flat initial surface then the contact resulted into pile-up. It
can be seen in Figure 7A that the pile-up happens for Et/Ef ≤
6%. For Et/Ef > 6% the contact profile exhibits sink-in. At
Et/Ef = 0 the profile shows an extremely sharp pile-up, as
large as 30% of the indentation depth, that drops significantly
to 3% of the indentation depth at Et/Ef = 0.01. The maximum
indentation depth decreases from the elastic-perfectly plastic to
the purely elastic material model. In Figure 7B, the volumetric
ratio between the piled-up and sinked-in region

Vp

Vs
=

∫

y+
y(x)xdx

∫

y−
y(x)xdx

, (3)

is shown, where, Vp and Vs are the pile-up and sink-in volumes,
respectively, and y+ and y− are the domains at which y(x) ≥ 0
and y(x) < 0, respectively. The volumetric ratio exponentially
decays from Et/Ef = 0 and converges to 0 at around 5%, which
again shows the significant effect of strain hardening on pile-up
at very small tangential moduli.

One of the parameters that can affect the pile-up/sink-in
deformations is the elastic deformation on the indenter. Figure 8
shows the contact profile for six different sphere moduli Es =
10, 50, 100, 150, 200, and 250 GPa, and elastic-perfectly plastic
flat, Et/Ef = 0, the rest of the material properties are the same
as set one. It can be seen that the pile-up is directly related to the
stiffness of the sphere; however, this does not transform the pile-
ups into sink-in and the profile piles-up for all values of Es. There
is a significant change from Es = 10 GPa to Es = 50 GPa, which
is due to the flat not deforming as much as the sphere (recall,
Ef = 200 GPa), as seen in Figure 8.

Another important factor for the contact profile is the contact
force or the total displacement of the indenter. In the FE
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FIGURE 7 | (A) Evolution of pile-up with respect to strain hardening.

(B) Volumetric pile-up-sink-in ratio.

FIGURE 8 | Effect of the indenter modulus of elasticity on surface profile for a

elastic-perfectly plastic material.

model, (depending on whether the application is displacement
controlled or force controlled) the load is applied as the
penetration of the indenter to the flat. Figure 9 shows the contact
profile for 15 load steps from 1/R = 0.0042 to 1/R = 0.05
for set 1 used in the initial observations. All of the load steps

FIGURE 9 | Effect of loading (in 15 steps) on surface profile for

elastic-perfectly plastic material.

presented in Figure 9 are larger than the critical load needed
to initiate yield in the flat. It can be seen that profile piles-up
independent of the loading.

The contact parameters for set two show a similar trend as
set one’s. Thus, the graphs are not shown here; however, the data
from set two have been used in themodel development, presented
in the next section.

3. MODEL DEVELOPMENT

In the proposed formulation, the contact has been divided into
two phases: elastic and elastic-plastic regimes. The contact starts
with the elastic regime for very small deformations and continues
to the elastic-plastic regime. Eventually the elastic-plastic regime
converges to the fully plastic regime for large deformations.

3.1. Elastic Regime
The elastic regime follows the Hertzian theory. In this phase, the
deformation on each object is calculated as

δf =
E(1− ν2

f
)

Ef
1, δf = 1− δs, (4)

where E is the effective modulus of elasticity

1

E
=

(1− ν2s )
Es

+
(1− ν2

f
)

Ef
. (5)

In the Hertzian theory, the contact curvature is approximated
with a polynomial and the contact radius is calculated up to the
first order accuracy as

ae =
√
R1, (6)
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in terms of the equivalent radius, which is given as

1

R
=

1

Rs
+

1

Rf
. (7)

The contact force for the elastic regime becomes

Fe =
4

3
R1/2E13/2. (8)

3.2. Elastic-Plastic Regime
For large deformations, plastic strains are present in
the softer object (i.e., the object with the smaller yield
strength). By definition, the elastic-plastic regime begins
at the initiation of yield, which occures at some point
beneath the contact surface. Following Johnson (1987),
this critical point is calculated using the von Mises stress
criterion, which gives the critical deformation for the onset of
yield as:

δy =
R

3(νf )

(

πSyf

2E

)2

, (9)

where the material properties of the flat (as the more compliant
material) are used, and3(ν) is solved from Johnson (1987):

3(ν) = max
z≥0

[

−(1+ ν)
(

1−
z

a
tan−1

(a

z

))

+
3

2

1

1+
[

z
a

]2

]2

.

(10)

Jackson and Green (2005) proposed an approximation for the
solution of Eq. (10):

1c =
(

πCSyf

2E

)2

R, (11)

such that from Jackson and Green (2005) C is a fit to the
numerical solution of Eq. (10)

C = 1.295e0.736νf . (12)

Therefore, the elastic-plastic phase starts and continues for
deformations1 > 1c.

To develop a predictive formulation for the elastic-plastic
regime, several governing conditions have been applied to
the model development to ensure that continuity, boundary
conditions, continuity of the first derivatives, and the physical
meaning are preserved in the formulation. In the following,
the model development for the flat’s deformation ratio, δ∗

f
, the

real contact radius, a, and contact force, F are discussed. The
formulations focus on two of the main effects that are neglected
in almost all previous models: first, the effect of the bilinear strain
hardening from elastic-perfectly plastic Et = 0 to fully elastic
Et = Ef , and second, the elastic deformations on the indenter
during contact.

3.2.1. Deformation

The deformation ratio of the flat is defined as

δ∗f =
δf

1
. (13)

Several assumption governing the form of this ratio are made.
First, it is explicitly a function of the ratio of the elastic moduli
Et/Ef and the non-dimensionalized deformation 1/R. Second,
it must satisfy a set of governing conditions that are defined
in what follows. Other variables, such as the effective modulus
of elasticity and Poisson ratio, are implicitly incorporated into
the elastic limit and the large deformation limit, defined below.
Under these assumptions, the functional form of the deformation
ratio, in the most general case, is expressed as

δ∗f = f

(

1

R
,
Et

Ef

)

. (14)

Here, both ratios (1/R and Et/Ef ) only exist on the intervals of
[0,1]. The deformation ratio (Equation 14) must also satisfy the
governing conditions (GCs) that are based on the results shown
in Figures 3–6:

For small deformation ratios, the elastic solution must
be recovered

(I) lim
1
R →0

δ∗
f
= δ∗

fe
=

E(1−ν2
f
)

Ef
, 0 ≤ Et

Ef
≤ 1.

Likewise, for a purely elastic material, the elastic solution must
hold for all deformations

(II) lim
Et
Ef

→1
δ∗
f
= δ∗

fe
=

E(1−ν2
f
)

Ef
, 0 < 1

R ≤ 1.

In GCs (I,II), δ∗
fe
is defined as the elastic limit of the deformation

ratio, which is calculated via Equation (4).
For the large deformation limit, since the flat is assumed

to have a bilinear material model, the solution for large
deformations is assumed to be the same as an elastic material with
the same elastic modulus as the system (Et = Ef )

(III) lim
1
R →1

δ∗
f
= δ∗

fp
, 0 ≤ Et/Ef ≤ 1.

Here, δ∗
fp

is defined as the deformation ratio at the large

deformation limit, which can be estimated as

δ∗fp =
E∗t (1− ν2f )

Et
,

1

E∗t
=

1− ν2s
Es

+
1− ν2

f

Et
. (15)

Equation (15) is defined in terms of E∗t , which is the reduced
modulus of elasticity for a purely elastic flat having modulus
Ef = Et . This simplification is verified against the finite element
results, and is shown for material sets one and two in Figure 10.
In this comparison, the FEM results are shown for an applied
displacement of 1/R = 0.05, which is well below the maximum
displacement ratio considered of 1/R = 1. It is observed from
this comparison that the deformation ratio quickly converges
to the large deformation limit, which justifies the assumption
implicit in GC (III). At Et = Ef , even though FEM results are
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expected to reach the Hertzian solution, Figure 10 shows 2%
smaller values compared to Hertzian theory. The reason is most
likely the definition of the equivalent radius of curvature in the
Hertzian theory, which does not consider any difference between
the flat and the sphere. Since this difference is not significant,
the upper limit, Ef = Et , is left to be the Hertzian theory.
This difference has been considered in the final formulation to
decrease the errors in the predictions.

For large deformations, δ∗
f
asymptotically converges to the

large deformation limit. This is modeled by assuming that the
gradient of δ∗

f
with respect to the applied displacement is 0 for

large1/R.

(IV) lim
1
R →1

∂f

∂
(

1
R

) = 0, 0 ≤ Et
Ef

≤ 1,

From Figure 10, no convergence for δ∗
f
with respect to Et/Ef can

be seen, which can be expressed mathematically in GC (V) as

(V) lim
Et
Ef

→1

∂f

∂

(

Et
Ef

) 6= 0, 0 < 1
R ≤ 1.

The final two GCs define constraint conditions for the derivatives
of the deformation ratio along the boundaries (with respect to
both1/R and Et/Ef ):

(VI) lim
Et
Ef

→0

∂f

∂
(

1
R

) 6= 0, 0 < 1
R ≤ 1,

(VII) lim
1
R →0

∂f

∂

(

Et
Ef

) 6= 0, 0 ≤ Et
Ef

≤ 1.

A seperation of variables solution is proposed for f via

δf

1
= f

(

1

R
,
Et

Ef

)

= φ

(

1

R

)

ψ

(

Et

Ef

)

+ D. (16)

From GC (I) and (II), it is apperant that neither ψ not φ are
constants. Further, in applying these constraints to the functional
form of Equation (16), the constraints of GCs (I) and (II) can be

rewritten in terms of φ and ψ as:

δ∗f (1/R = 0) = φ

(

1

R
= 0

)

ψ

(

Et

Ef

)

+ D = δ∗fe; (17)

φ

(

1

R
= 0

)

= 0, D = δ∗fe, (18)

ψ

(

Et

Ef
= 1

)

= 0. (19)

Substitution of these two constraints on φ and ψ into GC (III)
yields a new constraint equation on the product of φ, ψ at one of
the boundaries:

δ∗f = φ

(

1

R
= 1

)

ψ

(

Et

Ef
= 0

)

+ δ∗fe = δ∗fp. (20)

Asψ is not constant, the application of GC (IV) to the functional
form of Equation (16) establishes that

lim
1
R →1

∂f

∂
(

1
R

) = lim
1
R →1

[

φ′
(

1

R

)

ψ

(

Et

Ef

)]

= 0, (21)

which yields

lim
1
R →1

φ′
(

1

R

)

= 0. (22)

A final set of constraints on φ and ψ come from GCs
(V) and (VI):

lim
Et
Ef

→0
ψ ′

(

Et

Ef

)

6= 0, lim
1
R →1

φ′
(

1

R

)

6= 0. (23)

To satisfy the constraints established in the GCs and detailed
through Equations (16) to (23), the functional form

φ

(

1

R

)

= 1− e
λ1

(

1−1c
R

)λ2

, λ1 =
−2Ef
40Syf

√

Es

Ef
, λ2 = 0.55

FIGURE 10 | Comparison of the FEA results (x) and the assumption of GC III at the large deformation limit (1/R = 0.05). (A) Material set 1. (B) Material set 2.
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ψ

(

Et

Ef

)

= (δ∗fp − δ
∗
fe)



β1 − β2

[

Et

Ef

]β3


 , β1 = 0.9 (24)

β2 =
1

10
, β3 = 0.1

δ∗f = δ∗ef+
(

δ∗fp − δ
∗
fe

)



0.9−
1

10

[

Et

Ef

]0.1




(

1− e
λ1

(

1−1c
R

)0.55
)

,

is proposed, where the coefficients, βi and λi have been calculated
from fitting to FEM results for sets one and two, with Et/Es =
0, 0.01, 0.02, 0.03, 0.04, 0.06, 0.1, 0.2, 0.3, 0.4, 0.6, 0.9, 1 and for 40
increments of 1/R from 1/R = 0 to 1/R = 0.05. Note that
Equation (25) automatically satisfies GC (VII).

3.2.2. Real Contact Radius

Using the model of Equation 25 and the FEA results presented
in Section 2, it is proposed that the real contact radius during
elastic-plastic contact follows the form of

a = ae

(

δ∗
f

δ∗e

)χ

, (25)

where ae =
√
R1 is the Hertzian contact radius and χ is

χ = 0.63

(

Es

Ef

)0.8376


1− 0.8

[

Et

Ef

]1/3


 , (26)

with χ found from fitting to the FEM results (with mean absolute
error less than 2%) and δ∗e and δ∗

f
can be found from Hertzian

theory and Equation (25), respectively. The elastic-perfectly
plastic, Et = 0, limit of Equation (25) reduces to

aep = ae

(

δ∗p

δ∗e

)0.63
(

Es/Ef
)0.8376

. (27)

The elastic-perfectly plastic limit, aep, at large deformations is the
real contact radius that is used in the majority of the hardness
measurements using spherical indenters, such as nano and micro
indentation tests. Even though the effect of pile-up is not directly
mentioned in development of the contact radius formulation, the
effect of pile-up and sink-in is considered as the effect of strain
hardening and is thus embedded in the equations.

3.2.3. Contact Force

To formulate the contact force, the average normal pressure
at very large deformations, conventionally called Hardness,
is assumed to increase linearly from hardness for elastic-
perfectly plastic materials to average normal pressure from
Hertzian theory

PLD = H +
(

P̄H −H
) Et

Ef
, (28)

where P̄H is the average normal pressure is Hertzian theory and
is calculated as

P̄H =
4

3π
E

√

1

R

[

1+
a

3R

]

(29)

and H is the hardness calculated from the analytical solution by
Jackson et al. (2015) for elastic-perfectly plastic materials as:

H =
4Syf

3
√
3

( a

R

)−2

(

1

3

[ a

R

]3
−
[

1+ cos−1
( a

R

)]

[

1−
( a

R

)2
]3/2

−
a

R
+
π

2
+ 1

)

.

(30)

Equation (28) presents a linear transition from elastic-perfectly
plastic to purely elastic materials with respect to the tangent
modulus. The limit of the contact force at large deformations is
proposed as:

FLD = πa2epPLD

(

1+

[

Et

Ef

]γ1

e
γ2

Et
Ef

+γ3
)

, γ1 = 0.1551, (31)

γ2 = −2, γ3 = −1.

The coefficients γj, j = 1, 2, 3, are fitted to the FEM results. The
elastic-plastic contact force is thus calculated via:

F = WeFe +WLDFLD, (32)

where Fe and FLD are from the Hertzian theory (Johnson, 1987)
and Equation (31), respectively, and We and WLD are fitted to
FEM results as

We =
(

1+ α1
[

1−1c

R

])

eα2
(

1−
[

Et/Ef
]α3
)

(1/1c−1)α4 , (33)

α1 =
3

2
, α2 = −0.25, α3 =

3

4
, α4 =

5

12
(34)

WLD = 1− e
−
(

1− Et
Ef

)

(

1/1c−1
[

Es/Ef

]α5

)

, (35)

α5 =
1

2

√

Syf

Ef1c
, (36)

and the coefficients αj, j = 1, 2, 3, 4, are fitted to the FEM results
with absolute mean error less than 2%.

4. RESULTS AND DISCUSSION

4.1. Model Verification
To verify the predictions of the new model, the new
formulation is compared with the contact of six different material
combinations with properties listed in Table 1. Here, Mat1 to
Mat6 are indentation contacts of:
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TABLE 1 | Material sets used in the comparisons.

Mat. sets Mat1 Mat2 Mat3 Mat4 Mat5 Mat6

Es (GPa) 193 205 630 630 630 193

Ef (GPa) 69 69 201 205 193 103

Et/Ef (%) 7 5 2 14 18 4

Syf (MPa) 276 186 385 436 760 241

νs 0.26 0.26 0.31 0.31 0.31 0.265

νf 0.33 0.33 0.29 0.29 0.26 0.31

Mat1 Aluminum (Al) 6061 flat and Stainless Steel
(SS) 304 indenter,

Mat2 Al 5005 flat and Alloy Steel (AS) 4130 indenter,
Mat3 Carbon Steel (CS) 1070 flat and Tungsten Carbide

(WC) indenter,
Mat4 AS 4130 flat and WC Indenter,
Mat5 SS 304 flat and WC indenter,
Mat6 Titanium-G1 flat and SS 304 indenter.

These material sets (in particular, sets 3, 4, and 5) were chosen
to validate the model outside of the material range that was
used for model development. For each of the comparison
sets, three parameters are studied: the deformation ratio, real
contact radius, and contact force. Unfortunately, comparison
with previous models (such as Ye and Komvopoulos, 2003;
Jackson andGreen, 2005; Ghaednia et al., 2016;Wang et al., 2020)
was not possible because those models do not consider the effect
of strain hardening. Thus, comparison between them and the
present model would be dominated by the significant differences
in material models and would be unfair.

As an exmaple of using the presented equations, the contact
parameters for Mat1 has been calculated. A Matlab script was
written to calculate the deformations, contact area, and contact
force for different applied displacements. In each iteration of
the loop, the critical deformation from Equation (11) is first
calculated. The deformation was then determined to be either
in the elastic regime (if 1 ≤ 1c), in which case Equations (4–
8) would be employed, or in the plastic regime (1 > 1c). For
deformations within the plastic regime, the deformation ratio,
δ∗
f
, was calculated from Equations (13–25), contact radius from

Equation (25), and for the contact force Equation (32) is used.
Figure 11 shows the comparison for Mat1, the contact of Al

6061 flat and a SS 304 sphere with R = 1 mm. It can be seen that
for the deformation ratio, the predictions match the FE results
very well with mean absolute error less than eδ∗

f
= 0.5% and

maximum error, emδ∗
f
= 1.2%. For the real contact radius, the

model shows a very good match with maximum error ema =
2.6% and mean absolute error ea = 0.8%. The predictions for the
contact force also shows a reasonable match with maximum and
mean absolute error emF = 5.9% and eF = 4.7%, respectively.

The same quantities are compared for each of the other five
material combinations, and are summarized in Table 2, which
shows the mean absolute error values for all of the cases, where
1m/δc shows the maximum normalized deformation applied

FIGURE 11 | Mat 1 comparisons between FEM results, new formulation and

Hertzian theory for deformation ratio, contact area and contact force.

TABLE 2 | Maximum normalized deformation and mean absolute errors.

Mat1 Mat2 Mat3 Mat4 Mat5 Mat6

1m/δc 336.8 768.8 1430.0 1142.0 333.7 751.6

eδf 0.5 0.3 0.7 0.7 0.3 0.7

ea 0.9 1.2 1.6 1.5 1.3 1.1

eF 4.7 1.3 3.5 3.5 5.6 3.8

on each of the material combinations. All of the maximum
normalized deformations that have been analyzed are well over
110, which is the limit for fully plastic flow in Kogut and Etsion
(2002). Thus, the analysis shows the transition from purely elastic
to elastic-plastic to purely plastic regimes. The deformation
ratio results show a maximum mean absolute error of 0.7%
among all of the compared materials. The maximum error for
the deformation ratio is 2.4%. The contact radius shows the
maximum mean absolute error 1.6% with maximum error being
6.7%. For the contact force the maximum mean absolute error
and maximum error are 5.6 and 8.3%, respectively.

Figure 12 shows the loglog comparison of real contact
radius vs. normalized deformation between the FEM results
and formulation predictions for all of he six material properties
shown in Table 1. For each set, the closest line to the FEM results
is the prediction for that material set. Material sets Mat3 and
Mat4 have the smallest contact radii as functions of deformation;
Mat3 represents a highly plastic case with modulus Ef /Syf =
522 and very small strain hardening Et/Ef = 0.02, and Mat4
represents a highly plastic contact with Ef /Syf = 470 and large
tangential modulus Et/Ef = 0.14. Mat1 and Mat5 both show the

Frontiers in Mechanical Engineering | www.frontiersin.org 10 August 2020 | Volume 6 | Article 60

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Ghaednia et al. Indentation Modeling With Strain Hardening

largest contact radii for a given displacement, and they represent
more compliant materials compared to Mat3 and Mat4.

Figure 13 shows the comparison of contact force with respect
to the normalized deformation between the FE simulations and
the predictions for material properties presented in Table 1.
Overall, the predictions show a very good match with the
differences presented in Table 2.

4.2. Comparison With Experimental Data
As a final comparison, the experimental data recorded by
Brake et al. (2017) was used to validate the proposed model
against experimental data. Additionally, the Jackson-Green

FIGURE 12 | Comparison between all materials for real contact radius in

loglog scale. The markers show the results from the FE simulations, and the

continuous lines show the predictions.

FIGURE 13 | Comparison between all materials for contact force in loglog

scale. The markers show the FEM results and the continuous lines show the

predictions.

(Jackson and Green, 2005), Ye-Komvopoulos (Ye and
Komvopoulos, 2003), and Kogut-Etsion (Kogut and Etsion,
2002) models are compared to the experimental data too as the
available data in the literature is similar to elastic-perfectly plastic
contact (i.e., the experimental data available in the literature
for the indentation contact of metallic materials does not
adequately span the strain hardening regime for validating the
new model). In Brake et al. (2017), amongst other experiments,
the indentation contact of common aerospace materials by
a sapphire sphere for peak loads of 25 mN, 100, mN, 5 N,
and 10 N was analyzed. From Brake et al. (2017) the data for
indentation of Aluminum 6160 (Al 6160) and Stainless Steel
304 (SS 304) with peak load of 10 N is used here. The material
properties reported in Brake et al. (2017) for these experiments
are summarized in Table 3. Both of the materials are considered
to be elastic-perfectly plastic.

Figure 14 shows the comparison between the new model,
the previous models, and the data from Brake et al. (2017).
The results show relatively small elastic-plastic deformations
with normalized deformations up to δn ≃ 6. This is due to
the applied force of 10 N during the experiments. Therefore,
the contact has just entered the elastic-plastic regime. Hertzian
(elastic) contact is also shown on the graph as a baseline for
comparison. The new model, Kogut-Etsion Kogut and Etsion
(2002), and Jackson-Green (Jackson and Green, 2005) models are
all acceptable compared to the experimental data. The previous
flattening model (Ghaednia et al., 2019) and the Jackson-Green
model (Jackson and Green, 2005) are coincident for the case of
elastic-perfectly plastic materials, as modeled here, and is thus
not shown. One interesting observation is that from 1 < 1n <

4 experimental data shows larger results than Hertzian theory,
which is considered the upper limit of the contact.

In Figure 15, the same comparison as in Figure 14 is shown
between the experimental data (Brake et al., 2017), the proposed
model, and the previous models. The experimental results show
normalized deformation of up to δn = 17, which is still in the
lower ranges of elastic-plastic regime. The new model compares
better with the experimental data than the othermodels; however,
at larger deformations (1n > 15) the experiments show a slight
decrease in the slope and a negative second derivation.

4.3. Influence on Frictional Sliding
Together with Ghaednia et al. (2019), four different conditions of
contact can be considered:

1. Rigid on rigid,
2. Flattening (an elastic-plastic sphere against an elastic or

rigid substrate),

TABLE 3 | Material properties used from Brake et al. (2017).

Mat. sets Al 6160 SS 304 Sapphire

E (GPa) 71.47 187.02 370

Syf (MPa) 353.70 331.72 -

Brinell Hardness 99.36 206.91 1740

ν 0.29 0.29 0.22
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FIGURE 14 | Comparison between the new model and experimental data

from Brake et al. (2017) for Al 6160.

FIGURE 15 | Comparison between the new model and experimental data

from Brake et al. (2017) for Stainless Steel 304.

3. Indentation (pile-up; an elastic sphere against an elastic-
perfectly plastic flat),

4. Indentation (sink-in; an elastic sphere against a strain
hardening flat).

The condition of rigid on rigid could be more broadly
contextualized as elastic on elastic for small deformations; once
the deformations become large, the contact evolves into one of
the other three conditions. Additionally, flattening could also
include large deformations of an elastic sphere against a rigid (or
very stiff) substrate. For these four different conditions of contact,
the surface deformations are substantially different, as shown
in Figure 16. Once tangential loads are applied to these four
different conditions of contact, significantly different frictional
forces are to be expected. Given a coefficient of friction of

FIGURE 16 | Surface profiles for (A) rigid on rigid contact, (B) flattening

contact, (C) pile-up contact, and (D) indentation contact.

TABLE 4 | Effective coefficients of friction for different tangential displacements.

Contact condition Effective µ

Rigid on rigid 0.6

Flattening 0.599

Pile-up 0.838

Sink-in 0.577

µ = 0.6, the frictional force defined for rigid on rigid contact
is ff = µN for a given normal load N. From preliminary
simulations of tangential loads applied after normal loads to a
flattening case (Al 6061 sphere, WC flat), a pile-up case (WC
sphere, Al 6061 flat with Et/Ef = 0), and a sink-in case (WC
sphere, Al 6061 flat with Et/Ef = 1), the frictional behavior is
summarized in Table 4. For all cases, the material properties of
Table 1 are used unless otherwise noted; a normal displacement
of 0.05 mm is first applied, then tangential displacements of
0.1 mm are applied across 100 load steps. Coulomb friction is
modeled with µ = 0.6 for all cases. As is evidenced by the
table, the contact condition can result in effective coefficients
of friction that are up to 50% greater than the rigid on rigid
case. These effective µ are, of course, dependent on a number
of parameters: normal indentation, tangential displacement, and
bilinear stiffness amongst others. As these parameters are varied,
the pile-up contact condition is found to have an effective µ
close to 1, while the flattening and skin-in conditions can exhibit
effective µ close to 0.5. This makes sense as significantly more
material is displaced by tangential motion in the pile-up case
than in the sink-in or flattening cases. It is therefore clear that
the conditions of flattening, pile-up, and sink in must be treated
differently and that the historical approach of using one contact
model to describe all three cases is insufficient. As these results are
preliminary, they merit further investigation in subsequent work.

5. CONCLUSION

In this work, a new formulation for a frictionless elastic-plastic
single asperity indentation contact of a sphere and a flat has
been presented. The work focuses on two aspects of elastic-
plastic contact, the effect of bilinear strain hardening and the
elastic deformations on the indenter. The presented formulations
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considers the bilinear strain hardening from elastic-perfectly
plastic to perfectly elastic contact.

The formulation presented in this work provides an empirical
fit to the FEM results for a wide range of engineering
metals. Deformations on both of the objects, real contact
radius, and contact force have been considered in the model.
Several different governing conditions have been applied on
the formulation to ensure that the continuity, boundary
conditions, and common physics limits are satisfied. The
formulation was compared with FE simulations for six different
material combinations, and the accuracy of the predictions
was verified.

In addition to the contact parameters, the occurrence of pile-
up and sink-in on the contact surface have been analyzed. For
elastic-perfectly plastic materials the contact surface shows very
large pile-ups. Further, pile-up transforms to sink-in rapidly with
respect to the strain hardening. From Et/Ef = 0 to Et = Ef =
0.01 the maximum peak height of the surface profile decreases by
an order of magnitude, and at Et/Ef = 0.06, the pile-up has been
completely transformed into sink-in. Moreover, the dependency
of the pile-up on the elastic deformations of the indenter and the
loading has been analyzed. It was shown that the strain hardening
has the dominant effect compared to the loading and indenter’s
elastic deformations.

In this work the indenter was considered to be perfectly
elastic. Due to the strain hardening of the flat, for very
large deformations, the contact stresses reach very large states
that, in reality, would cause the indenter to yield; however,
it must be considered that for a high strength indenter, the
flat will fail before the indenter yields. This scenario becomes
problematic when the yield strength of the contact materials
are close, in which case both of the objects reach the elastic-
plastic regime at similar deformations. This phenomena is not
within the scope of the present study, and is relegated to the
future work.

Finally it has been shown in this work that even 1% tangential
modulus significantly affects the contact parameters. A new
predictive formulation based on an empirical formulation of the
FEM results has been provided for deformations on the objects,
contact radius, and contact force. The current work, along with
previous work on the effect of strain hardening in flattening
contact (Ghaednia et al., 2019) are providing a comprehensive
predictive formulation for a majority of engineering applications.
There is significant work to be done for a better understanding
of single asperity contact. One of the areas that is lacking in
the literature is lack of experimental data for pile-up during
the loading phase. The challenge is that the measurements need
to be conducted during compression of the flat. During the
unloading phase, the pile-ups change significantly. There are two
main parameters that should be considered in future studies: the
effect of friction on pile-up and sink-in, and the effect of strain
hardening on both of the objects in contact.
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6. NOMENCLATURE

a Real contact radius.

ap Real contact radius at which the contact reaches the fully plastic regiem.

ae Real contact radius for purly elastic materials.

aep Real contact radius for elastic-perfectly plastic materials

R Equivalent radius of curvature.

Rs Sphere’s radius of curvature.

Rf Flat’s radius of curvature.

1 Total relative normal displacement of the objects during contact.

1c Critical deformation at which the elastic-plastic regime effectively starts.

1n Normalized applied normal displacement, 1/1c.

1m Maximum applied normal displacement.

δ Deformation of one of the objects.

δs Deformation of the sphere.

δf Deformation of the flat.

δy Deformation at which yield initiates.

δ∗f Deformation ratio of the flat.

δ∗fe Flat deformation ratio limit for elastic contact.

δ∗fp Flat deformation ratio limit for larger deformations.

µ Coefficient of friction.

ν Poisson’s ratio.

νs Poisson’s ratio of the sphere.

νf Poisson’s ratio of the flat.

z Distance depth on the axis of the symmetry from the contact tip.

Sy Yield strength.

Syf Yield strength of the flat.

n Meyer’s hardness exponent.

nǫ Strain hardening exponent.

E Effective modulus of elasticity.

Es Modulus of elasticity of the sphere.

Ef Modulus of elasticity of the flat.

Et Tangent modulus of elasticity of the softer material (flat).

E∗
t Effective modulus of elasticity for a flat with E = Et.

C Coefficient defined by Green Green (2005) to account for the effect of poisson ratio in the initation of yield.

F Contact force.

Fp Purely plastic contact force for elastic-perfectly plastic materials.

Fe Contact force for purely elastic materials.

FLD Contact force at very large deformations.

H Hardness.

HP Hardening Parameter.

N Normal load.

PH Average normal pressure in Hertzian theory.

PLD Average normal pressure at very large deformations.

Vp Piled-up volume.

Vs Sinked-in volume.

φ Function accounting for the effect of applied displacement on the sphere deformation ratio.

ψ Function accounting for the effect of bilinear strain hardening on the sphere deformation ratio.

χ Function accounting for the effect of bilinear strain hardening on the real contact radius.

α,β, λ Fitting parameters.
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