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Department of System Dynamics and Friction Physics, Technische Universität Berlin, Berlin, Germany

In the past decade, the influence of surface tension on contact properties has attracted

much attention, especially in the context of contact of very soft materials (such as gels)

or contacts at the nanoscale. However, in the most current studies it is assumed that

the tension of the surface inside and outside the contact area is the same. In practical

terms, this means that the object considered is an elastic body “coated” with a tensed

membrane. In real contacts, there is no reason why the surface tensions of the “free

interface” and the “contact interface” should be equal. On the contrary, especially in

contacts of soft bodies with hard solid indenters, one can anticipate that they are

completely different. In the present article, we consider an elastic contact taking into

account different surface tensions inside and outside the contact area. However, the

considered contacts are still “non-adhesive.” This means that the three surface energies

in play (two surface energies of both bodies outside the contact and the interface

energy in the contact region) fulfill the criterion that the work of separation vanishes.

A numerical model based on the Fast Fourier transform–assisted boundary element

method is implemented and is illustrated with a few examples.

Keywords: boundary element method, contact angle, contact mechanics, elastocapillary length, surface tension

INTRODUCTION

It is known that surface tension governs the contact behavior of liquids (Brown, 1974) but it is
hardly seen in contacts of solid bodies at the macro- and mesoscales. It is clear that it should start
to play an essential role if we consider a continuous transition from an elastic solid to a very soft
body such as a gel, soft rubber, and biological tissue (Style et al., 2017). In biological studies, it is
found that surface tension may determine the tissue growth and the kinetics of the regeneration
of organs (Ehrig et al., 2019). Surface tension may become important even in stiff contacts if their
size is very small. In particular, it may influence the function of microelectromechanical systems
(MEMS) (Syms et al., 2003).

There exists a class of contact problems in which the surface energy has been considered already
for almost 50 years; these are adhesive contacts. While non-adhesive contacts of isotropic elastic
bodies are completely characterized by the elastic modulus E and the Poisson’s ratio ν of bulk
material, in adhesive contacts the surface energy plays a key role, as has been shown in the classic
theory by Johnson, Kendall, and Roberts (JKR) in 1971 (Johnson et al., 1971). However, when
talking about the “surface energy,” we have always to specify what surface energy is meant. At the
contact boundary, three interfaces are coming together. The “surface energy” used in the JKR theory
is better characterized as “specific work of separation,” which we will also call “work of adhesion,”w.
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This quantity was introduced already by Dupre in 1869 (Dupré,
1869); it can be expressed as

w = γ1 + γ2 − γ12 (1)

where γ1 and γ2 are specific free surface energies of two
bodies and γ12 interfacial surface energy inside the contact area
(Figure 1).

From a general theoretical point of view, the JKR theory is
incomplete: It makes a step by including surface energy into
consideration but at the same time assumes that the surface
energies of bodies outside the contact area are zero. However,
there are no theoretical reasons why the surface energy of the
interface should be so dominant compared to the surface energies
of the surfaces outside the contact. In a general case, all three
surface energies are different and may have a comparable order
of magnitude.

As academic theoretical models, one can consider various
relations of the three surface energies and corresponding
limiting cases.

(I) If an elastic body is in contact with a rigid body and
the specific surface energy of the elastic body outside the
contact area can be neglected compared with the interface
energy in the contact area, then we have an adhesive
contact with specific work of separation w = γ2 − γ12. It
is this case that is considered in the well-known work by
Johnson et al. (1971). In reality, this case can be realized
only in a contact of a high surface energy solid with low
surface energy polymer but is hardly realizable in a contact
of two materials with comparable surface energies.

(II) If the surface energy of the elastic body outside the contact
area is finite, γ1 6= 0, but the work of adhesion is zero,

γ1 + γ2 − γ12 = 0, (2)

then we have a non-adhesive contact with surface tension.
(IIa) The latter case usually has been further simplified with the

assumption that the surface energies inside and outside
contact are equal:

γ1 = γ12, (3)

FIGURE 1 | (A) Adhesive contact with surface tension. (B) Non-adhesive contact with surface tension. In (B), the contact angle θ = π .

which automatically leads to the conclusion that γ2 = 0.
The corresponding theory was first developed for elastic
foundations (Filonenko-Borodich, 1940; Kerr, 1964) and
generalized to three-dimensional half-space contacts in
Hajji (1978). It attracted much attention in recent years.
However, this case cannot be realized physically, as there
exist no substances with zero surface energy. In particular,
in the cases that motivated consideration of this case—
contacts of a hard indenter with a soft solid—one can
assume that γ2 not only does not vanish but is also the
largest of the three relevant surface energies [(Popov,
2017), Chapter 3]. This popular case can practically be
realized only as a composite consisting of an elastic body
coated with a tensed membrane.

(IIb) If the condition of the absence of adhesion is fulfilled,
but the validity of the usual (and physical completely
unrealistic) condition is not assumed, then we have a
“general non-adhesive contact with surface tension,” which
is characterized by two independent surface energies. It is
this case that will be considered in the present article.

(III) Finally, in the general case both work of adhesion and
surface tension of the free surface are finite. This leads
to a general adhesive contact with surface tension. The
latter attracted much interest in the past two decades in the
context of indentation of soft matter (e.g., gels) (Carrillo
and Dobrynin, 2012; Style et al., 2013; Cao et al., 2014).

It is interesting to note that it took almost 50 years to make the
next necessary (and, as a matter of fact, obvious) step after the
JKR theory. On the other hand, the appearance of the JKR theory,
which is nothing but a direct implementation of the Griffith crack
theory, also took 50 years (Popova and Popov, 2018). For the
sake of historical truth, let us, however, mention that a solution
equivalent to that of JKR was obtained by Sperling already in
1964 in his unpublished doctoral thesis (Sperling, 1964; Borodich,
2014).

In the present article, we will briefly recapitulate the studies
of case IIa and then consider a more general (and more
complicated) case IIb. As already stated above, case IIa can
be physically realized only as an elastic body coated with
a stressed membrane. The fundamental solution determining
vertical displacement of the surface under the action of a
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concentrated force was given for this case by Hajji (1978). In this
contact problem a characteristic length appears, γ12/E

∗ , which is
called “elastocapillary length,” determines the influence of surface
tension: the surface tension effect is significant if the value of
γ12/E

∗ is comparable with the contact radius (Long and Chen,
2017). This leads to a “size-dependent” behavior in indentation
testing (Style et al., 2013).

In the past few years, adhesive and non-adhesive contacts
with surface tension have been studied intensively, for example,
contact of homogeneous elastic half space including spherical
contact (Long and Wang, 2013; Hui et al., 2015), conical contact
(Long and Chen, 2017), and two-dimensional cylindrical contact
(Liu et al., 2015), all based on the Hajji’s fundamental solution,
as well as complicated inhomogeneous coatings based on the
semianalytical modeling of the surface effect (Zhang et al., 2018).

The present article is structured as follows: We start with a
consideration and discussion of the boundary conditions in the
general case of arbitrary values of specific surface energies of all
three interfaces. We then recapitulate the results of the simplest
“membrane model” using a Fast Fourier transform (FFT)-based
boundary element method (BEM) implementation. Finally, we
generalize the FFT-BEM to the case of non-adhesive contact
with different surface energies inside and outside the contact and
illustrate this case with a simulation example.

BOUNDARY CONDITIONS TAKING INTO
ACCOUNT SURFACE TENSION

Analysis of a contact between a rigid body and an elastic
half space taking into account surface tension, carried out in
Karpitschka et al. (2016) and Popov (2020), shows that the
Young’s law determining the contact angle of liquids is also valid
for solids. This leads to the following boundary conditions:

u(x, y) = d − f (x, y), inside the contact area (4)

p(x, y) = γ11u(x, y), outside the contact area (5)

γ1 cos θ = γ2 − γ12, at the contact boundary (6)

where f (x, y) is the profile of rigid indenter and u(x, y) the normal
displacement of the surface of elastic half space, d is indentation
depth, θ is contact angle, 1 is Laplace operator, and p(x, y) is the
normal pressure at the surface immediately below the (infinitely
thin) surface layer. Note that for definitions of the surface profile
we used other direction of the z-axis (out of the elastic half-
space) than for displacement and other quantities (into the half-
space). It is also important to note that Equation (5) is written
in approximation of small slopes of the surface of elastic body,
which, however, is the necessary condition also for application of
the superposition principle used throughout the paper. Equation
(4) states that the surfaces of the indenter and the elastic half-
space coincide in the contact area. Equation (5) determines the
elastic stress at the surface under the tensioned surface layer.
Equation (6) is the equilibrium condition of the contact boundary
under the action of three surface tensions. Similarly to the contact
angle in liquid contacts, θ is a thermodynamic property of
the system. It does not depend on the shape of the body and
deformation of the surface.

Using Equation (1) for the work of adhesion, w, Equation (6)
can be rewritten as

w = γ1 (1+ cos θ) . (7)

This equation is known as Young–Dupre equation (Young, 1805;
Dupré, 1869). For non-adhesive contacts with surface tension it
has w = 0. From Equation (7), it follows that cos θ = −1 and

θ = π . (8)

This equation means that at the boundary the slope of the surface
profile is equal to the slope of the elastic half-space. Thus, in this
specific case the condition (6) can be reformulated as a continuity
of the surface slope at the contact boundary (Figure 1B). In
this article, we focus on this non-adhesive contact with surface
tension and its numerical simulation.

NUMERICAL SIMULATION OF
NON-ADHESIVE CONTACT WITH
SURFACE TENSION

A numerical solution to non-adhesive contact with surface
tension for the case IIa (γ1 = γ12 : = γ ) is based on Hajji’s
equation for the vertical surface displacement u at the position
(

x, y
)

caused by the pressure distribution pc
(

x′, y′
)

:

u
(

x, y
)

=

∫∫

A

pc
(

x′, y′
)

G
(

x− x′, y− y′
)

dx′dy′, (9)

with

G
(

x, y
)

=
1

4γ

[

H0

(

√

x2 + y2

2γ /E∗

)

− Y0

(

√

x2 + y2

2γ /E∗

)]

, (10)

where H0 and Y0 are Struve and Bessel functions of the second
kind of zero order (Hajji, 1978). It should be stressed that the
pressure pc(x, y) is the pressure acting on the surface of the upper
tensed layer and is not equal to the pressure p(x, y) in Equation
(5), which is the pressure under the tensed layer. Qualitatively
speaking, pc(x, y) is the “external pressure” acting on the elastic
body coated with membrane, while p(x, y) is the pressure in the
elastic body immediately under the membrane.

For vanishing surface tension the first term approximations to
(9) and (10) become the classic Boussinesq’s equation

u
(

x, y
)

=
1

πE∗

∫∫

A

p
(

x′, y′
)

√

(x− x′)2 +
(

y− y′
)2
dx′dy′. (11)

In this case, p = pc.
As already stated, according to the theory of surface elasticity

(Gurtin et al., 1998), the contact with surface tension can be
considered as a contact with an elastic body covered by an
(infinitely) thin membrane. The equilibrium and constitutive
equations in the bulk of the elastic body still follow the theory
of elasticity. Therefore, we can find a solution to contact with
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surface tension by use of the fundamental solution for elastic half-
space without surface tension. Using the definitions of pressure
p(x, y) and pc(x, y), as shown in Figure 1B, the equilibrium
condition of the interface in contact the contact region is

pc(x, y) = p(x, y)− γ121u
(

x, y
)

, inside the contact. (12)

The other two boundary conditions (4) and (5) should of course
also be fulfilled. The deformation u

(

x, y
)

is generated by pressure
p(x, y), which can be obtained from the Boussinesq’s equation.

Realization in the Boundary Element
Method
The BEM was developed in the past 30 years and represents
an effective numerical tool for solving various contact problems
including homogeneous material and layered systems, adhesive
and non-adhesive contact, rough contact, and thermal contact
(Nogi and Kato, 1997; Liu et al., 2000; Campañá and Müser,
2006). Some BEM formulations are based on integral equations of
the form of (9) or (11). In a discretized form they can be written as

uij = Kiji′j′p
i′j′

c , (13)

where uij is the displacement of surface element at position
(

i, j
)

in two-dimensional discretization, p
i′j′

c is stress acting on

an element located on
(

i′, j′
)

, andKiji′j′ is the influence coefficient
and its value is calculated analytically or numerically depending
on the form of the fundamental solution. The matrix of influence
coefficients can be found, e.g., in Pohrt and Li (2014). The
convolution nature of integral equations of the form (9) allows
formulating and solving a contact problem using the FFT.
Using this technique increases computing efficiency by replacing
the integration by multiplication and therefore reducing the
complexity fromN4 toN2 logN2 (for a systemwith discretization
of N × N elements). For example, the algorithm of evaluating
Equation (13) can be represented as

u = IFFT
[

FFT (K) · FFT
(

pc
)]

, (14)

where pc is the pressure vector matrix, u is the matrix of
discretized displacements, and K is the matrix of the influence
coefficient. Note that for the non-periodic contact in a finite
domain, the techniques of zero padding and wraparound order
of matrix of pressure and influence coefficient in a doubled
domain should be used to execute cyclic convolution. Thus, the
pc and K should be expanded to dimension 2N × 2N when
FFT is performed. The displacement u is then extracted from
the obtained displacement with the same dimension 2N × 2N
after the IFFT. The details of theories of the linear and cyclic
convolutions and their applications to periodic and non-periodic
contacts as well as numerical procedures can be found in Liu et al.
(2000) and Ju and Farris (1996).

In Equation (14) the fundamental solution (given by the
matrix K) should be first Fourier transformed. Alternatively,
one can directly use the fundamental equation in Fourier space,

which in most cases can be calculated very easily. For example,
for an elastic half-space it is equal to

K =
2

E∗q
, (15)

where q =
√

q2x + q2y . This gives the relation of the Fourier

components of pressure and displacement

u
(

qx, qy
)

=
2

E∗
p
(

qx, qy
)

q
. (16)

Displacement in the coordinate space in then calculated as

u = IFFT

[

2

E∗q
· FFT

(

p
)

]

. (17)

The general form of the fundamental equation in Fourier space
can be written as

u
(

q
)

= C
(

q
)

· pc
(

q
)

, (18)

where the Fourier transform of the kernel of convolution, C
(

q
)

,
depends on a particular system. The only general prerequisite for
this simple form is the lateral homogeneity of the system. In the
direction perpendicular to the surface, it can be heterogeneous
(e.g., a layered system or functionally graded material). C

(

q
)

is of
course also a function of the effective elastic modulus in the case
of a homogeneous material and coating system.

Equations (12) and (5) for non-adhesive contact with surface
tension can be written in Fourier space as follows:

pc(q) = p(q)+ γ12 · q
2 · u

(

q
)

, in contact, (19)

p(q)+ γ1 · q
2 · u

(

q
)

= 0, out of contact. (20)

We first consider the simple case with equal surface energy inside
and outside the contact area, γ1 = γ12 = γ . Substitution
of (18) into (19) gives the relation between pressure pc and
deformation u

u
(

qx, qy
)

=
pc(qx, qy)

1/C
(

q
)

+ γ · q2
. (21)

For the displacement field in coordinate space, it follows

u = IFFT

[

1

1/C
(

q
)

+ γ · q2
· FFT

(

pc
)

]

. (22)

Thus, any available BEM program can be used for simulating this
system covered with a tensed membrane just by adding the term
“γ q2” in the Green’s function. Note that this equation connects
the surface displacement with the external pressure. Therefore,
the boundary condition and numerical procedure can be dealt
in the same way as in all existing BEM: the pressure outside the
contact is zero:

pc
(

x, y
)

= 0, outside of the contact, (23)
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FIGURE 2 | (A) Pressure distribution and (B) contact configuration in a contact between a rigid parabolic indenter and an elastic half-space for two different values of

surface energy. The pressure is normalized by the maximum Hertzian pressure and coordinate by the Hertzian contact radius a0.

while the surface displacement inside the contact area meets
the geometry condition. Of course, the zero padding and
wraparound order are still needed for the non-periodic contacts
as discussed in Liu et al. (2000). For an isotropic homogeneous
material, Equation (22) becomes

u = IFFT

[

1

E∗q/2 + γ · q2
· FFT

(

p
)

]

. (24)

Case Study 1: Isotropic Homogeneous
Elastic Half-Space Coated With a Tensed
Membrane
Let us discuss numerical simulation of a “Hertzian” contact
with surface tension: a contact of a rigid parabolic indenter
with elastic half-space taking into account surface tension,
which we first consider equal inside and outside the contact.
The result obtained using the Hajji’s fundamental solution
was given in Long and Wang (2013). Here we would like
to compare this solution with the above-described solution

based on the fundamental solution (1/C(q)+ γ · q2)
−1

in the
Fourier space. Parameters used in the simulation are as follows:
E∗ = 0.011 MPa; sphere radius R = 1 mm; indentation
depth d = 0.01 mm; and two different specific surface
energies, γ = 0.2 N/m and γ = 0.4 N/m, were considered,
corresponding to the values γ /(E∗a0) = 0.18 and 0.36 of
the parameter γ /(E∗a0) (ratio of the elastocapillary length
and the Hertzian contact radius a0). Figure 2 shows numerical
solution obtained with discretization 512 × 512 points, where
the triangles in Figure 2A are pressure distributions calculated
based on the Hajji’s fundamental equation, and stars are
results based on the alternative approach using the fundamental

solution (1/C(q)+ γ · q2)
−1

. The calculating time by using this
fundamental solution is 12 times smaller than that with the
Hajji’s fundamental solution. The contact behavior found in Long

and Wang (2013) practically coincides with that found with
the above-described procedure. In particular, the pressure at the
contact boundary has a “jump” in the case with surface tension
(Figure 2A), and the surface tension leads to a reduction of
contact area (Figures 2A,B).

Case Study 2: Layered System
As explained above, any existing BEM formulation for a
contact without surface tension can be trivially extended to
include surface tension by a small change in the corresponding
fundamental solution in Fourier space, according to Equation
(21) or (24). Let us illustrate this with an example of an
elastic layer with surface tension. We proceed from the BEM
formulation without surface tension described in Li et al. (2019).
Adding the term “γ q2” in the fundamental solution, we include
the surface tension. Here we show a case of soft layer bounded
on the elastic half space. The layer had elastic modulus E∗1 =

0.011 MPa, specific surface energy γ = 0.2 N/m, and thickness
h0 = 0.03 mm. The elastic modulus of the underlying half-
space is E∗2 = 10E∗1 . The profile of indenter is a sphere with
radius R = 1 mm superposed with a two-dimensional waviness
with wavelength λ = 0.03 mm and a small amplitude of h =

0.0005 mm. The indentation depth was d = 0.01 mm. The
simulation results without and with surface tension are shown
in Figure 3. The color map presents the pressure distribution in
the contact region. Two cross sections of this map are selected to
show the details. Under the above conditions, the contact area
in the system without surface tension is compact (left figure),
while “switching on” the surface tension makes it much more
heterogeneous and even not simply connected (right figure).
This leads to much more intensive oscillations of pressure. Note
that the pressure shown in Figure 3 is the pressure immediately
under the surface of the indenter. This pressure is relevant for
estimating the possible damage of the indenter.
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FIGURE 3 | Pressure distribution in contact between a sphere with wavy roughness and elastic half space coated with a soft layer. The right figure is the pressure

distribution in the contact region and the values at two cross sections are shown with curves below. For comparison, the case without surface tension is present on

the left side.

Different Surface Energies Inside and
Outside of the Contact Area
When surface energies inside and outside the contact are
different, γ1 6= γ12, the FFT of Equations (19) and (20) cannot be
directly carried out for the whole region. However, we can rewrite
Equation (12) in the following form:

p1(x, y) = p(x, y)− γ11u
(

x, y
)

, in the whole area, (25)

p(x, y) = p1(x, y)+ (γ1 − γ12)1u
(

x, y
)

,

in the contact area, (26)

where p1(x, y) is an auxiliary function. In Fourier space, Equation
(25) takes the form

p1
(

q
)

= p
(

q
)

+ γ1 · q
2 · u

(

q
)

=
[

1/C
(

q
)

+ γ · q2
]

· u
(

q
)

.(27)

The computation algorithm is the following. Initially we assume
that the contact area is the geometrical intersection A and the
displacement of the surface of the elastic half-space in this area

coincides with the profile of indenter uA(x, y); the corresponding
FFT (uA) is calculated. Using this FFT (uA) one can obtain the
auxiliary stress function p1

(

q
)

as well as p1(x, y) appearing in
(25). After that, the deformation u

(

x, y
)

can be calculated within
the contact area.With p1(x, y) and u

(

x, y
)

as well as the curvature
of the surface, 1u

(

x, y
)

, one gets the pressure distribution p(x, y)
from Equation (26). After that, the usual correction and iteration
procedure starts: the elements that have negative pressure or
geometrical penetration out of contact are marked as “detached”
so that a new contact area, A′, is generated. With this new contact
area, the above iteration is repeated until both pressure and
geometry conditions for all elements in contact area are met.

Example 1 We give an example with the same parameters
as studied in the case of Figure 2, with the only difference that
the surface energy outside contact area, γ1, is not equal to that
inside, γ12. Surface energy in the noncontact region was equal
to γ1 = 0.2 N/m. Two cases were studied: one with smaller
surface energy inside contact γ12 = 0.1 N/m and the other one
with larger γ12 = 0.4 N/m. The obtained pressure distribution

Frontiers in Mechanical Engineering | www.frontiersin.org 6 September 2020 | Volume 6 | Article 63

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Li and Popov Non-adhesive Contact With Surface Tension

and surface displacement are shown in Figure 4. The results with
equal surface energy are also shown with stars for a comparison.
One can see that when the surface tension inside the contact is
larger, the loading needed for generating the same indentation
depth is also higher due to the surface tension effect (curve
with triangles). Interestingly the contact area and the surface
displacement are the same in all three cases. It is clear that the
surface displacement in the contact coincides with the profile
of the indenter shifted by the indentation depth. Displacement
outside the contact is determined by the pressure p and surface
tension γ1, where p is numerically calculated by Boussinesq’s
equation with the given surface deformation inside the contact.

So surface displacement will be the same for unequal surface
energy inside the contact if the contact area is unchanged. The
difference of surface energy changes only the pressure pc with
a constant value in the case of sphere contact because of the
constant mean curvature.

Figure 4 shows that the shape of the surface of elastic body
does not depend on the surface tension inside the contact area.
A posteriori, this seems to be a trivial conclusion. However, it
is trivial only under the assumption of non-adhesive contact,
which guarantees the unchanged condition at the boundary of
the contact area, which does not depend on the interface surface
energy density. The only quantity that is influenced by the

FIGURE 4 | (A) Pressure distribution and (B) surface displacement in contact between a sphere and elastic half space. The surface energy is unequal inside and

outside the contact area.

FIGURE 5 | Solution to the contact problem with different surface energies inside and outside the contact.
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FIGURE 6 | Colormap of pressure distribution and contact area in the case of (A) equal and (B) unequal surface energy inside and outside contact for a rough

surface. The curves of pressure distribution and surface displacement at a cross section marked in the colormap are shown aside.

specific surface energy of the contact interface is the pressure
distribution. This means that the computation procedure in the
case of two different surface energies can be simplified as shown
in Figure 5.

1. In the first step, the contact problem is solved with a constant
specific surface energy equal to the specific surface energy
outside the contact area.

2. In the second step, the pressure distribution inside the contact
area is corrected by the term δp(x, y) = (γ1 − γ12) 1u

(

x, y
)

.

Example 2 Consider a wavy surface similar to that shown in
Figure 3 with the radius of curvature, R = 1 mm; wavelength,
λ = 0.02 mm; and amplitude of waviness, h = 0.0001 mm. The
elastic modulus of the half space is assumed E∗1 = 0.013 MPa
and the indentation depth d = 0.012 mm. In the following two
cases are considered: (1) equal specific surface energies γ1 =

γ12 = 0.1 N/m and (2) two different specific surface energies,
γ1 = 0.1 N/m and γ12 = 0.2 N/m, inside and outside the contact
correspondingly. Numerical results are shown in Figure 6. The
contact area and surface displacement are the same in both cases.

CONCLUSION

Non-adhesive contact with surface tension is usually solved using
the fundamental solution of Hajji. This fundamental solution
has a complicated form in the coordinate space but can be

derived in an extremely simple way in the Fourier space. More
than that, this derivation has a universal character and can be
applied for more complicated situations, as, e.g., for layered
systems or functionally graded materials. With an example of
Hertzian contact this method was validated by comparison with
the fundamental solution in the coordinate space, and it was then
applied to the rough contact of a coated system.

We argue that the approach based on the fundamental
solution can be used only in the case when the surface tension
inside and outside of the contact area are equal. There are no
physical reasons why it should be the case. Therefore, in the
general case, the approach based on the use of the fundamental
solution and superposition principle does not work. We show
how this problem can be reduced to the simpler contact problem
with constant surface tension inside and outside the contact area.

Of course, the case of non-adhesive contact with different
surface energies inside and outside the contact is a little bit
an academic exercise. In a general “dry” contact of two solids,
the condition of non-adhesive contact normally will not be
fulfilled. However, the contact can be made non-adhesive by
introducing an intermediate liquid with dielectric constant equal
to that of one of the bodies. According to the theory of van
der Waals’ interactions by Dzyaloshinskii et al. (1961), this
leads to suppression of van der Waals force (and thus of the
separation energy), while the surface tensions of both bodies
remain generally non-zero.
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