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A unified model for active control of static and sliding friction by normal, tangential, and

transverse oscillations is discussed, building on a series of past publications. Themodel in

question is quasi-static, uses Amontons friction and takes into account contact stiffness

in both normal and tangential directions. This makes the model fully macroscopic, which

stands in contrast to Prandtl-Tomlinson-derived microscopic models that seem to be

the currently preferred explanation for the influence of vibration on friction. While many

technical details and numerical simulations based on our model have already appeared

in a series of publications, here we attempt to give a high-level overview and discuss

the main properties of friction under oscillation as generally as possible, while making a

minimum of assumptions.
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1. INTRODUCTION

The fact that vibration can be used to significantly reduce the force of friction has been known since
at least the 1950s (Fridman and Levesque, 1959). Since then, the effect has been studied extensively
and exploited in many practical applications. Classical examples are to be found in wire drawing
(Murakawa and Jin, 2001; Siegert and Ulmer, 2001), press forming (Eaves et al., 1975; Ashida and
Aoyama, 2007), cutting (Thoe et al., 1998; Eggers et al., 2004), and other machining processes. Also
well-known is the use of vibration for stabilization of system dynamics, e.g., suppression of brake
squeal (Müller and Ostermeyer, 2007) and cornering noise (Heckl and Huang, 2000).

There are also a number of advanced applications that move beyond simple reduction of
sliding or static friction, and involve vibration-driven directed transport or exact positioning
(Popov, 2017). The most famous example of this are traveling wave motors (Schmidt et al.,
1996; Storck et al., 2002), which are used to adjust focus in camera lenses, among many other
applications. Similar principles are employed in high-precision linear actuators and positioning
systems (Socoliuc et al., 2006), vibrational conveyors (Gaberson, 1971, 1972), and other types
stick-slip drives.

The above examples are only a small sample of technical applications at the intersection of
friction and vibration. Correspondingly, there is a large body of existing research in this field (see
e.g., Pohlman and Lehfeldt, 1966; Godfrey, 1967; Storck et al., 2002; Chowdhury and Helali, 2008).
Most of it is practical in nature, even though several well-known theoretical models have been
proposed as well (DeWit et al., 1995). However, it is the contention of the author that an important
factor is missing from currently popular models: the compliance of the contact and its interaction
with the applied oscillation. The currently prevailing tendency is to ascribe the reduction of friction
by vibration mostly to processes at the micro-scale (Popov et al., 2010). However, here we will
argue that the primary (but not necessarily exclusive) mechanism is to be found on the macro-
scale, in ordinary contact mechanics. It should be noted that this does not automatically invalidate
previous work. In fact, it seems likely that a truly accurate model will be multiscale, combining both
macroscopic dynamics and microscopic processes.
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FIGURE 1 | Static friction model. The intrinsic coefficient of friction in the

contact is µ0. The y-axis points out of the plane.

The primary advantage of our model is its simplicity. It
relies only on macroscopic contact mechanics and introduces
no new physics. In fact, it is likely to be the simplest possible
model that is rich enough to describe almost the full range of
behaviors exhibited by friction under the influence of external
vibration. For this reason, the present paper can be seen
as an exercise in minimalism, attempting to cover as much
phenomenological ground as possible with a minimum of
assumptions and variables.

1.1. Contributions
This work draws heavily on results recently published in a series
of papers with participation of the present author (Mao et al.,
2017; Popov et al., 2017; Benad et al., 2018a,b; Popov and Li,
2018). While there is substantial overlap with these papers, the
present work is organized differently, seeking to present a “big
picture” view without getting bogged down in details. Several
results have been generalized from previous publications, while
the discussion of the influence of oscillation waveforms has, to
the best knowledge of the author, not previously appeared in
the literature.

2. STATIC FRICTION

Towarmup, we consider static friction. This case ismuch simpler
than the sliding case and leads to some satisfyingly general results.
The system under consideration consists of a body resting on a
plane (Figure 1). The body is pressed into the plane with a force
Fz and pulled sideways with a force Fx. The coefficient of friction
between the body and the plane is assumed to be constant and
equal to µ0. The body remains at rest while

|Fx| < µ0Fz (1)

where µ0Fz is the critical force at which the body just begins to
slide. The static coefficient of friction is defined as the ratio of this
critical force to the normal load. In the absence of oscillation, it is
equal to µ0:

µs = µ0 (2)

Things get slightly more interesting when we add an oscillatory
force component. If the force oscillation acts normal to the plane,
we denote it by Azg(t), where Az is the amplitude. The stick
condition in that case needs to be amended to:

|Fx| < µ0

(

Fz + Azg(t)
)+

(3)

The (..)+ notation denotes the ramp function, which clips
negative values to zero. It is necessary because the normal force
does not turn negative when contact is lost.

It is easy to see that the critical force is reduced relative to the
non-oscillatory case, since the above inequality must hold at all
times, including the times when the normal force drops below
its mean value Fz . In other words, static friction is limited by
theminimum of normal force encountered during the oscillation.
For the coefficient of static friction under normal oscillation we
thus obtain:

µs,z = µ0 (1− Az/Fz)
+ (4)

In a similar fashion, we can add an oscillatory component Axg(t)
that is aligned with the tangential force Fx. This results in the
stick condition

|Fx + Axg(t)| < µ0Fz (5)

Note that this inequality is only satisfiable when Ax < µ0Fz .
Otherwise the body starts to slide in place and the contact loses
its ability to statically sustain a lateral force. Thus, µs can be
expressed as:

µs,x = (µ0 − Ax/Fz)
+ (6)

Notice the slight difference between this result and Equation (4).
In particular, note that a tangential oscillation will reduce µs by a
larger amount than a normal oscillation of the same amplitude if
µ0 < 1, and by a smaller amount otherwise.

Transverse oscillations are also able to reduce static friction.
This case is qualitatively similar to that of tangential oscillation,
with the difference that we need to use the vector norm of the
in-plane forces instead of adding them directly:

F2x +
(

Ayg(t)
)2

< (µ0Fz)
2 (7)

Once again, stick is impossible if Ay ≥ µ0Fz , and for the static
coefficient of friction we obtain:

µs,y =

√

(

µ2
0 − A2

y/F
2
z

)+

(8)

One particularly useful thing about these results is that they
are quite general, and in particular independent of contact
geometry, frequency of oscillation, and the shape of the
oscillation waveform.

2.1. Static Friction Under Superimposed
Oscillation
Things become considerably less transparent when we consider
simultaneous oscillation in multiple directions. The stick
condition itself does not change much, and in the most general
case can be expressed as:

(

Fx + Axgx(t)
)2

+
(

Aygy(t)
)2

< µ2
0

(

Fz + Azgz(t)
)2

(9)

Unfortunately, actually finding the maximal Fx that still satisfies
this inequality at all times quickly becomes unwieldy, leading to
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FIGURE 2 | A single massless spring, which serves as a minimal model of a

sliding frictional contact. The sliding velocity is constant, while the vertical

coordinate oscillates. Amontons friction with the constant coefficient of friction

µ0 is assumed in the contact point.

a large number of case distinctions—if a closed-form solution is
possible at all. In addition, when the compliance of the contact is
taken into account, the static coefficient of friction may become
negative, in the sense that a constant force needs to be applied
to prevent the contact from sliding. This effect is what frictional
drives and actuators are based on. For an analysis of this case the
reader is referred to Popov and Li (2018). In this paper, however,
we ignore superimposed oscillation.

3. SLIDING FRICTION UNDER NORMAL
OSCILLATION

The key feature of the model that we use to describe dynamic
friction is that the compliance of the contact is taken into account.
In the initial formulation, the contact is modeled as a single
Hookean spring that has an associated normal stiffness kz and a
lateral stiffness kx (Figure 2). This is a reasonable approximation
of a flat-ended cylinder in contact with a plane. The model can
also be extended to cover arbitrary curved contacts with the
help of the Method of Dimensionality Reduction (Popov and
Heß, 2016). However, for a general analysis, a single spring is
quite sufficient.

The model considered here is displacement-controlled and
quasi-static. A force-controlled and/or inertial model can be
formulated within the same framework, which, however, leads to
certain complications (e.g., resonances) that are outside the focus
of the present paper. For an analysis of such a model, the reader
is referred to Mao et al. (2017).

The kinematics of the model is as follows: The contact spring
is pulled over a flat plane with a constant velocity v0, although
for convenience we consider the spring to be stationary, while
the substrate slides underneath it. The normal displacement uz
of the spring is measured relative to the state of unstressed first
contact with the substrate. uz(t) represents the externally applied
oscillation and is thus given explicitly. The lateral displacement
ux, on the other hand, depends on the current state of the system
and is the only unknown variable.

We assume that Amontons’ law of friction (with a constant
coefficient of friction µ0 that is the same for both static and
sliding friction) holds in the contact point. In general, this may
be an unrealistic assumption. However, the use of a constant
coefficient of friction not only simplifies calculations, but also
eliminates all possible micro-scale influences from the model.
Since one of the primary aims of this paper is to advertise
the feasibility of a purely macroscopic theory of friction under
oscillation, making µ0 constant is actually a prerequisite.

The effective coefficient of friction µ̄, which is to be
determined in the sequel, is defined as the average tangential force
exerted by the spring divided by the average normal force:

µ̄ =
〈Fx(t)〉

〈Fz(t)〉
(10)

where 〈..〉 denotes averaging over one period of oscillation.
Previous publications on the topic assumed that the imposed

normal oscillation is harmonic, so as to simplify analysis.
However, this turned out to be an unnecessary restriction, so
here we will work with a general periodic function that is
parameterized as follows:

uz(t) = ūz + Azw(ft) (11)

Here ūz is the mean indentation, Az is the amplitude and f the
frequency of the oscillation. w(ϕ) is a dimensionless function
describing the “shape” of the oscillation, with ϕ = ft. The
waveform w is normalized such that it is zero-mean, with a
period of 1 and a minimum value of −1. Note however, that the
maximum of w is left unconstrained.

3.1. Pure Sliding
While the behavior of a frictional couple under oscillation has
its complexities in general, there are two extreme cases that
lend themselves to easy and precise analysis: One of them, static
friction, was already discussed above. The second, pure sliding,
is briefly discussed here. The most important thing about pure
sliding is that oscillations do not influence the coefficient of
friction in that mode. This can be easily seen from the fact that
the instantaneous tangential force is uniquely defined during slip
(Fx = µ0Fz), from which the effective coefficient of friction is
immediately obtained:

µ̄slip =
〈Fx(t)〉

〈Fz(t)〉
=

〈µ0Fz(t)〉

〈Fz(t)〉
= µ0 (12)

Irrespective of how complex the dependence Fz(t) may be,
it always cancels out—by linearity of sliding friction. While
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this result may seem unimpressive by itself, it establishes an
important “boundary condition” for the more general case of
friction with stick-slip. Also, as in the static case, the coefficient
of friction in pure slip has the important property of not being
dependent on contact geometry and oscillation parameters. The
result µ̄slip = µ0 is also valid for tangential and combined
normal/tangential oscillations. It can also be shown to be valid
in the inertial case (Mao et al., 2017). However, transverse
oscillations do not, strictly speaking, have this limiting case,
although the deviation becomes negligible at high velocities. This
will be discussed in more detail later.

3.2. Stick-Slip
Two extreme points have now been established: pure stick (static
friction) and pure slip (plateau). Reason suggests that there is also
something in between. It would be physically implausible for the
coefficient of friction under oscillation to “snap” from near zero
back to µ0 due to arbitrarily slow sliding. And this is in fact not
observed experimentally: At a given amplitude and frequency,
the static coefficient of friction is lowest, and then smoothly
increases with the sliding velocity until reaching a plateau of
sorts. Fortunately, the transition region can also be described in
our model. Unsurprisingly, it is dominated by stick-slip.

Let us now consider this phenomenon in more detail. During
sliding, we have Fx = µ0Fz , which can also be written as
kxux(t) = µ0kzuz(t). Substituting uz from Equation (11) and
rearranging gives us the lateral displacement and velocity of the
contact point:

ux(t) = µ0
kz

kx

(

ūz + Azw(ft)
)

(13)

u̇x(t) = µ0
kz

kx
Azfw

′(ft) (14)

A transition from slip to stick happens when the relative motion
between the substrate and the contact point vanishes, i.e., when
u̇x(t) = v0. From this condition, the point of stick onset can
be determined:

ϕ1 = ft1 =
(

w′
)−1

(

kxv0

µ0kzAzf

)

(15)

It becomes obvious that ϕ1 is a function of a single compound
variable, which combines all parameters of the system, except
ūz . To simplify further calculations, we introduce some
dimensionless variables, α (corresponding to amplitude), β

(corresponding to velocity), and ϕ (phase):

α =
Az

ūz
(16)

β =
kxv0

µ0kzAzf
(17)

ϕ = ft (18)

Using these variables, the static coefficient of friction (Equation
4) can be expressed as µs,x = µ0(1 − α)+, while Equation (15)
can be written as

ϕ1 =
(

w′
)−1

(β) (19)

Noting that β is a positive quantity and assuming that w
is differentiable (but not necessarily invertible—there can be
multiple stick events), it can be seen that the above equation has
solutions if

β < max
ϕ

w′(ϕ) = βc (20)

where βc denotes the critical value that separates the stick-
slip region from the continuous sliding region. A harmonic
oscillation, for example, has βc = 2π , while a right-leaning
sawtooth function has βc = 2, which is in fact the smallest
possible value. The larger βc, the more effective the waveform is
at reducing friction at high velocities, but more on that later.

Once stick is initiated, the contact point is dragged along by
the substrate with velocity v0, so that the tangential displacement
and force increase linearly with time:

Fstick(t) = µ0Fz(t1)+ kxv0 (t − t1) (21)

This continues while the condition for static friction holds:

Fstick(t) < µ0Fz(t) (22)

Trivial as it is, this inequality lies at the core of reduction of
friction in our model. It serves as the sole source of nonlinearity
that allows the system to break free of the trivial solution
exemplified by Equation (12). With pure slip, the spring force is
always equal to µ0Fz(t), while in stick-slip it is sometimes lower,
which leads to lower average force and coefficient of friction (see
also Figure 3). Another way of looking at it is that the contact
point stands still when the normal force is highest, and covers
more distance when the normal load diminishes. This leads
to lower energy dissipation over the same distance. The whole
process is somewhat similar to walking, where one leg carries the
load without dissipation, while the other is lifted and advanced to
the next position. Something analogous happens in our model,
only there is just one “leg” and it is not necessarily lifted all
the way.

The stick phase ends at time t2 when the condition Fstick(t2) =
µ0Fz(t2) is met. Expanding this condition yields

µ0kzuz(t1)+ kxv0 (t2 − t1) = µ0kzuz(t2) (23)

or, more conveniently,

v0kx

µ0kz
(t2 − t1) = uz(t2)− uz(t1) (24)

Substituting uz and t = ϕ/f , this can be rewritten as:

β (ϕ2 − ϕ1) = w(ϕ2)− w(ϕ1) (25)

Once again ūz cancels out, leaving us with a function of only
β . Unfortunately, the equation is implicit and cannot be solved
symbolically for ϕ2 except in the simplest cases (sawtooth, square
wave, etc). In the case of a harmonic oscillation, for example,
Equation (25) takes the form (cos x = a + bx), which does
not have a closed-form solution in terms of standard functions.
Numerical solution is required in most cases.
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FIGURE 3 | Stick and slip under the influence of a harmonic oscillation. The

dotted line represents the tangential force as it would be in pure slip

[Fslip = µ0Fz (t)]. The solid line is the actual tangential force in the presence of

stick-slip. The stick phases are the straight segments, e.g., between t1 and t2,

while slip phases are the sinusoidal segments, e.g., between t′2 and t1,

repeating periodically. Note that Fx ≤ Fslip everywhere, which is the origin of

friction reduction in our model.

3.3. Effective Coefficient of Friction
We define the “macroscopic” or “effective” force of friction
simply as the tangential force averaged over one period T = 1/f :

〈Fx〉 =
1

T

∫ T

0
Fx(t)dt (26)

However, it will become clear in a moment that it is more
convenient to consider the difference or reduction of the force of
friction relative to the state of continuous sliding:

1Fx = 〈Fslip〉 − 〈Fx〉 =
1

T

∫ T

0

(

Fslip(t)− Fx(t)
)

dt (27)

Since Fx only differs from Fslip during the stick phase, we can
tighten the integration bounds:

1Fx =
1

T

∫ t2

t1

(

µ0Fz(t)− Fstick(t)
)

dt (28)

This form is convenient for numerical solution. However, some
additional properties can gleaned by expanding Fstick and uz(t)
and making the substitution dt = Tdϕ:

1Fx =
1

T

∫ t2

t1

(

µ0Fz(t)− µ0Fz(t1)− kxv0 (t − t1)
)

dt

=
1

T

∫ t2

t1

µ0kz
(

ūz + Azw(ft)− ūz − Azw(ft1)

−
kxv0

µ0kz
(t − t1)

)

dt

= µ0kzAz

∫ ϕ2

ϕ1

(

w(ϕ)− w(ϕ1)− β (ϕ − ϕ1)
)

dϕ

(29)

It becomes apparent that the expression for 1Fx can be split into
the dimensional factor µ0kzAz and a dimensionless function 9w

of a single variable:

1Fx = µ0kzAz9w(β) (30)

where

9w(β) =

∫ ϕ2

ϕ1

(

w(ϕ)− w(ϕ1)− β (ϕ − ϕ1)
)

dϕ (31)

We refrain from integrating this expression, since a closed-form
solution is precluded by the lack of an explicit formula for ϕ2.
We merely draw attention to the fact that 1Fx is invariant
with respect to mean indentation. The same is not true for the
coefficient of friction:

µ̄ =
〈µ0Fz〉 − 1Fx

〈Fz〉
= µ0 −

1Fx

kzūz
(32)

However, the dependence on ūz is incidental, merely reflecting
the fact that 1Fx is subtracted from different baselines of friction
force. Using our dimensionless variables, the above can also be
written in the following compact form:

µ̄ = µ0

(

1− α9w(β)
)

(33)

Further, it can be shown that 9w is a fairly well-behaved function
that has unit range and is monotonously decreasing and convex
for all waveforms and any number of stick events per cycle
of oscillation. However, space considerations prevent us from
including a formal proof of these properties.

3.4. Oscillation Waveforms
The functional dependence (33) presented in the previous section
permits an interesting observation: the overall strength of the
friction reduction effect is primarily governed by the amplitude of
the oscillation and not by the frequency. In principle, the effective
coefficient of friction can be reduced to very low values, but that
requires a force amplitude that is comparable to the mean normal
force. Thus, the technique is not very useful for reducing friction
in highly loaded contacts, e.g., rail-car or truck wheels.

Furthermore, a higher frequency cannot be used to
compensate for small amplitude. However, frequency is
still an important parameter, since it determines the “velocity-
resistance” of the effect: As has been pointed out before, the
largest reduction is always seen in the static case, and becomes
lower with increasing sliding velocity. The frequency determines
the scaling of this decline, and a strong reduction can be achieved
even at high sliding velocities if the frequency of the applied
oscillation is high enough. However, frequency is not the only
factor that determines this “velocity-resistance.” The waveform
of the oscillation is also quite important, which is why we briefly
discuss it here.

By far the most important property of a waveform w is the
maximal positive value of its first derivative, or βc. A right-
leaning sawtooth function, for example, has βc = 2; a harmonic
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oscillation has βc = 2π , which is slightly better; however, a left-
leaning sawtooth function has βc = ∞, which is ideal. An infinite
value of βc implies that the oscillation will provide some measure
of friction reduction at arbitrarily high velocities. While this is
not really possible in practice, the general rule for waveform
selection is nevertheless that the load should increase as fast as
possible and then relax slowly. Thus, approximations of left-
leaning sawtooth or the square wave are preferable to smooth
and symmetric functions like the harmonic oscillation. Naturally,
this recommendation is subordinate to practical technological
constraints. For example, a high-amplitude harmonic oscillation
could be generated by exciting a natural vibrational mode of
the system, while a square wave would likely require more
sophisticated equipment.

We conclude this section by giving 9w for a few common
waveforms explicitly. For both sawtooth variants and the square
wave 9w can be calculated in closed form. However, for most
oscillations, including sinusoidal ones, this is not possible.
Nonetheless, the function can easily be computed numerically
for arbitrary waveforms, and so we include two empirical
approximations for the harmonic oscillation, which were first
obtained in Popov et al. (2017). The first approximation is slightly
more accurate.

9str(β) = 1−
β

2
(34)

9stl(β) =
2

2+ β
(35)

9sqr(β) =

{

1− β/8 , for β < 4

2/β , for β > 4
(36)

9sin(β) ≈
3

4
(1− β/βc)

2 +
1

4
(1− β/βc)

4 (37)

≈ (1− β/βc)
2.4 (38)

For a visual comparison, the dependence of the coefficient of
friction on β is plotted in Figure 4 for all four of the above
waveforms. To keep things simple, only the case of maximal
friction reduction is shown α = 1, in which case Equation (33)
reduces to µ̄ = µ0[1 − 9w(β)]. This is why all curves show
zero static friction. For other values of α the shapes of the curves
would remain the same, but they would start at nonzero values of
µs and would be scaled accordingly.

As a final remark, we note that there is a unique optimal
waveform with regards to reduction of friction. It is given by
the periodic extension of δ(ϕ) − 1, where δ is the Dirac delta
function. This “impulse wave” is −1 everywhere, except for very
short positive spikes (impulses) that occur with a period of 1 and
each integrate to 1, so that the average of the function is zero.
With this degenerate waveform, the system slides most of the
time, with only an infinitesimal stick phase at each spike, which
implies that 9 is very close to 1 for all β :

9imp(β) → 1 (39)

Thus, we conclude that friction can be reduced, in principle, to
an arbitrary degree even at high sliding velocities, by effectively

FIGURE 4 | Coefficient of friction under normal vibration with different

waveforms, computed using Equation (33) and the individual influence factors

Equations (34)–(37). Note that for all curves α = 1, which corresponds to

maximal friction reduction. Legend: dashed line—right-leaning sawtooth

function (Equation 34); solid line—harmonic oscillation (Equation 37);

dash-dotted line—left-leaning sawtooth function (Equation 35); dotted

line—square wave (Equation 36).

hopping over the surface. In practice, this approach will be
limited by plastic deformation, radiation of elastic waves and the
sheer difficulty of generating such an oscillation.

4. TANGENTIAL AND TRANSVERSE
OSCILLATIONS

Most of this paper was devoted to reduction of friction by
normal oscillations. This focus is explained partly by the fact
that the normal case is easiest to analyze, and partly because
normal oscillations are generally the most efficient way to reduce
friction, out of the three possible directions. Nevertheless, both
tangential (in the direction of sliding) and transverse (in-plane,
but orthogonal to sliding) vibration can reduce friction. For
detailed analysis of the tangential case the reader is referred to
Popov and Li (2018) and for the transverse case to Benad et al.
(2018a). Here we only present some highlights and point out
the major differences between normal oscillations and the other
two modes.

In the tangential oscillation case the normal indentation is
kept constant while an oscillatory component is added to the
base of the spring. Sliding friction under such conditions can
proceed in three modes: (I) pure sliding, in which the effective
coefficient of friction is equal to µ0, as argued previously. (II)
simple stick-slip, which occurs for obvious reasons when the
velocity amplitude is greater than the mean sliding velocity
(Axfw

′(ft) > v0). (III) multiple stick-slip, which occurs when
the velocity amplitude is much larger than v0, so that the contact
point slides back-and-forth in each cycle, going through two stick
and slip phases each.
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The most important difference between friction reduction by
normal and tangential oscillations is that normal oscillations
actually reduce the total dissipated energy through a walking-like
mechanism, while tangential oscillations do not. The author is
not aware of a good analogy to visualize the mechanism in the
tangential case. But it is clear that, since the normal load (and
therefore the force of sliding friction) is constant, the dissipated
energy is simply friction force times distance (in mode II).
Although the effective coefficient of friction (i.e., average spring
force) may be lowered, the missing energy must be supplied by
the oscillator. In mode III, when the amplitude is large enough to
cause in-place sliding, the total sliding distance actually increases,
and the total energy expenditure becomes larger than without
oscillations, even though the effective coefficient of friction will
still appear lower than µ0.

Friction reduction by transverse oscillation always operates
in something like mode III of tangential oscillation: it causes
additional sliding in the direction orthogonal to the main sliding
motion, thereby increasing the total path and therefore energy
expenditure. However, the apparent coefficient of friction is
reduced, because the magnitude of the local friction force is still
limited to µ0Fz , but now shared between the force components
parallel and orthogonal to the main sliding direction. Thus,
transverse oscillations are effectively “stealing” the friction vector
from the slider, but at considerable expense of energy by the
oscillator. This also accounts for the fact, mentioned previously,
that the system never formally reaches the “invariant plateau”
(µ̄slip = µ0) even at high sliding velocities, because the
projection of the local friction force onto the sliding direction
is always less than its total magnitude, so long as the transverse
amplitude is non-zero. However, for sufficiently large sliding
velocities this difference becomes very small, so for all practical
purposes the plateau exists in the transverse case as well.

To summarize, normal oscillations are most effective at
reducing dynamic friction and should be used in preference
to the other directions. Not only do they actually reduce the
total dissipated energy, but normal oscillations also act at
right angles (by definition) to the sliding motion. Thus, they
technically do not require energy to keep going. Of course, this
is never quite the case in practice, but by exciting a resonant
frequency the power needed to drive the oscillator can usually

be made quite small. Compared to that, tangential oscillation
requires a powerful oscillator (except in the static case), while
transverse oscillation is even more energetically expensive, and
also less effective overall. There are cases, however, where energy
expenditure is not a primary concern (e.g., stabilization of system
dynamics) and normal oscillations cannot be easily applied due
to technological constraints. In such cases, tangential and even
transverse oscillations are viable alternatives.

5. CONCLUSION

The present paper summarizes and generalizes a series of recent
works that aim to establish a simple macroscopic contact model
as a viable explanation for active control of friction by externally
applied vibration. Despite its apparent simplicity, the model
not only captures the full range of experimentally observed
effects, but is also very flexible, being able to adapt to static
and dynamic friction, oscillations in normal, tangential and
transverse directions, contacts of curved bodies, etc. Apart from
straight-forward reduction-of-friction settings, the model can
also be applied to the study of frictional drives and actuators
under complicated loading scenarios. A similar approach was
also highly successful in modeling positioning systems without
using any modified friction laws such as the elastoplastic model
(see e.g., Teidelt et al., 2012; Grzemba et al., 2014; Teidelt, 2015).
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