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Nowadays, the manufacturing industry is constantly changing. Production systems

must operate in a highly dynamic environment where unexpected events could occur

and create disruption, making rescheduling inevitable for manufacturing companies.

Rescheduling models are fundamental to the robustness of production processes. This

paper proposes a model to address rescheduling caused by unexpected events, aiming

to achieve the zero-defect manufacturing (ZDM) concept. The goal of the model is to

incorporate traditional and ZDM–oriented events into onemethodology to calculate when

the next rescheduling will be performed to effectively react to unexpected events. The

methodology relies on the definition of two key time parameters for each event type: event

response time (RT) and event delay response time (DRT). Based on these parameters, an

event management algorithm is designed to identify the optimal rescheduling solution.

The DRT parameter is calculated based on a multi-parametric dynamic formula to

capture the dynamics of production. Moreover, ANOM, and ANOVA methods are used

to analyse the behaviour of the developed method and to assess the level of robustness

of the proposed approach. Finally, a case study based on real production scenarios is

conducted, a series of simulation experiments are performed, and comparisons with

other rescheduling policies are presented. The results demonstrate the effectiveness of

the proposed event management algorithm for managing rescheduling.

Keywords: zero-defect manufacturing, rescheduling, unexpected events, events management, design of

experiments

INTRODUCTION

Over the years, the manufacturing industry has seen constant growth and change. The fourth
industrial revolution (Industry 4.0) and relevant advanced technologies have reshaped modern
manufacturing systems and enhanced their ability to meet customers’ higher expectations, such
as for more customised products in a shorter time (Khan and Turowski, 2016; Zhou et al., 2017).
The frequent changes in the industry environment require production systems to perform in
highly dynamic and stochastic scenarios (Ouelhadj and Petrovic, 2009). Under these circumstances,
unexpected events may occur, causing the initial schedule to be changed because it does not fit
the new scenario (Barták and Vlk, 2017). In such cases, rescheduling is mandatory to mitigate the
impact of disruptions and recover the original solution (Salido et al., 2017).
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Scheduling and rescheduling problems have been popular
in both academic and industrial practises. Different scheduling
and rescheduling models have been developed to improve
the reliability and efficiency of production systems. However,
most existing models work only under ideal conditions, since
they do not consider external events (Uhlmann and Frazzon,
2018). Indeed, various unpredictable events could occur at the
shop-floor level and introduce inconsistencies into the ongoing
schedule. Therefore, it is important to broaden the research area
by analysing existing rescheduling models and creating new ones
to mitigate the consequences of unpredictable events (Uhlmann
and Frazzon, 2018).

A proactive approach may not foresee all possible disruptive
events, even if the original schedule is robust (Barták and
Vlk, 2017). Thus, rescheduling has a central role in the
robustness of production processes under uncertain conditions
(Stevenson et al., 2020). Such production processes need to be
as reactive and flexible as possible to minimise interruptions
to the production flow (Cardin et al., 2017). More specifically,
a generated schedule can become infeasible or non-optimal
due to the uncertainties of manufacturing systems, such as
new orders or machine breakdowns (Baykasoglu and Karaslan,
2017). As an example, the outbreak of the COVID-19 pandemic
has heavily impacted almost all manufacturing systems across
the globe. During the first surge of the pandemic, there was
an explosive demand for relevant medical equipment, such as
medical masks and aspirators. This urgent situation required
medical equipment manufacturers and resource suppliers to
adjust their production plans rapidly and maintain high product
quality. According to Lindström et al. (2019), the generic strategy
to apply is the following: first, the scheduling solution has to be
produced (predictive); then, when an unexpected event occurs,
rescheduling should be conducted to generate a new feasible
solution (reactive).

In the current highly competitive market, a high-performance
quality management system is critical to satisfy customer needs,
minimise waste, and increase the sustainability of a production
system (Psarommatis et al., 2020c). Themost sustainable solution
to tackle this problem is to follow the zero-defect manufacturing
(ZDM) philosophy. The aim is to achieve higher efficiency and
quality in the process by eliminating defected parts (Psarommatis
et al., 2020b). The concept of ZDM suggests that for any event in
the production there must be a reaction to mitigate the negative
effects of the event. For example, in the event of a defected part,
repairing the part could be an action to maintain production
quality. ZDM is composed of four different strategies: detection,
repair, prediction, and prevention (Psarommatis et al., 2020b).
The implantation of each of the four ZDM strategies heavily
relies on the technologies that Industry 4.0 offers. In other words,
ZDM is the only quality assurance philosophy that utilises the full
potential of Industry 4.0 technologies.

A previous study (Lindström et al., 2019) has proved that
rescheduling a production system is one of the main challenges
to be addressed to achieve ZDM. This is because the number
of events in production is significantly increased, due to the
addition of ZDM–oriented events, and their counter-actions
must be integrated within the existing production with as little

performance loss as possible. However, to apply ZDM in the
rescheduling process, a new category of real-time events must be
added: product-oriented unexpected events (Myklebust, 2013).
This adds an extra level of complexity when rescheduling.
Therefore, attention should be given to the rescheduling policy
used (Stevenson et al., 2020).

To broaden the knowledge of the research community and
present a reliable solution to industrial practitioners, this research
aims to develop a generic method to incorporate both traditional
production events, such as new orders or maintenance, and
events that arise from the ZDM concept in one model. The
purpose of the proposed model is to balance rescheduling
frequency and measured Key Performance Indicators (KPIs)
and therefore to achieve an efficient ZDM implementation
increasing at the same time the sustainability of the production.
More specifically, the proposed rescheduling model achieves
two goals towards sustainable manufacturing, the successful
implementation of ZDM which contributes to the minimisation
of negative environmental impact while at the same time ensures
an economically sound manufacturing process. This is achieved
by evaluating the events at any point in time and automatically
deciding on the time to reschedule and which events to include to
this rescheduling. The model was validated, and its performance
was tested, using a real industrial case from the semiconductor
manufacturing industry that produces printed circuit boards
(PCBs) for the healthcare sector. Using the Taguchi method for
the design of experiments and the ANOVA method, to study the
behaviour of each control parameter. Other rescheduling policies
were modelled, using the industrial data, and compared with the
proposed method.

The rest of this paper is organised as follows. The related
work is reviewed in section RelatedWork. The proposed method
is introduced in section Events Management Algorithm. A
case study and relevant experiments are presented in section
Industrial Use Case. In section Critical Discussion, a critical
discussion of the proposed approach and the case study is
provided. Finally, we conclude our study in section Conclusion
and Future Work.

RELATED WORK

The aim of this study is to develop a rescheduling model
to support manufacturing companies to effectively react to
unexpected events, aiming at achieving the ZDM vision. A
literature review is conducted to summarise existing solutions.
We first investigate the rescheduling concept in the ZDM context.
We then analyse various existing reschedulingmodels in different
categories. In addition, we compare important rescheduling
models that are linked to ZDM, based on which we propose our
novel solution.

To cope with disruptions and variabilities, the schedules of
manufacturing systems need to be resilient and robust. Such
schedules require two main functions: predictive and reactive
scheduling (Mehta and Uzsoy, 1999; O’donovan et al., 1999).
Predictive scheduling generates a schedule through inserting
idle time between pre-scheduled activities. When a disruption’s
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duration exceeds the inserted idle time, reactive scheduling is
required, which is also commonly referred to as rescheduling
(Salido et al., 2017). Rescheduling has been defined as a process of
generating a new executable schedule upon the occurrence of an
unforeseen disruption (Vieira et al., 2003). It modifies the existing
schedule during processing to adapt to changes in a production
or operational environment (Sun and Xue, 2001).

Disruptions to a manufacturing system may be caused
by different types of events, such as unexpected orders,
unexpected machine breakdown, unexpected product defects,
and so on. Correspondingly, existing rescheduling methods can
be categorised as order-oriented, machine-oriented, or product-
oriented. In addition, there are also studies focusing on generic
rescheduling problems that disregard the cause of the disruption.
Some important studies in each category are introduced in the
following subsections.

Generic Rescheduling
Generic rescheduling solutions aim to address disruptions to
manufacturing systems in general, covering multiple types of
unexpected events or even disregarding differences in disruption
types. Barták and Vlk (2017) propose a back-jumping heuristic
algorithm to respond to unexpected resource breakdowns and
rush orders. The solution adopted is to replace activities present
in the process with other new activities to react as quickly as
possible to the disruptive events. Battaïa et al. (2019) present
a rescheduling algorithm based on a constraint-programming
approach to handle the remaining tasks when unexpected
events disrupt a low-volume assembly line. A fast rescheduling
decision support tool is implemented to reschedule all the
uncompleted tasks. The performance of the tool is evaluated
through numerical experiments to cheque the sustainability
of the model. A multi-objective rescheduling methodology
is proposed by Rangsaritratsamee et al. that considers both
efficiency and stability measures (Rangsaritratsamee et al., 2004).
A genetic local search algorithm that uses a multicriteria
objective function as the fitness function is utilised to generate
schedules at each periodic rescheduling point. This algorithm
enables a balance between efficiency and stability in different
situations. Mejía and Lefebvre propose a model that uses timed
transition petri net (TTPN) to address operation interruptions
and unreliable resources in flexible manufacturing systems
(FMS) in uncertain environments (Mejía and Lefebvre, 2019).
The TTPN model includes controllable and uncontrollable
transitions. The disruptions caused by operation and resource
failures can be represented by the firings of uncontrollable
transitions. Based on TTPN, the authors develop an intelligent
anytime filtered search algorithm that can incrementally compute
control sequences in the event of operation interruptions and
resource failures. Gholami and Zandieh propose integrating
a simulation with a genetic algorithm to solve flexible job-
shop scheduling problems (Gholami and Zandieh, 2009). This
framework minimises expected mean makespan and expected
mean tardiness. To analyse the results of the simulation, the
ANOVA and ANOMmethodologies are applied. It is highlighted
that the breakdown level (Ag) and mean time to repair
(MTTR) are very impactful to minimise both the objectives.

Despite the numerous studies in literature that address the
rescheduling problem, there is no unanimous agreement on how
rescheduling frequency affects performance. In some studies,
very high and very low rescheduling frequency affects the
performance negatively (Gupta and Maravelias, 2016). However,
others suggest rescheduling as frequently as possible until a
critical point is reached (Pfund and Fowler, 2017).

New Order–Oriented Rescheduling
One of the main unexpected events studied in rescheduling
is the new order event. Rahmani and Ramezanian propose a
model that addresses the unexpected arrival of a new order in
a dynamic flexible flow shop (FFS) (Rahmani and Ramezanian,
2016). It aims to generate a reschedule that is stable despite
any unexpected order arrival, since it prioritises generating a
stable solution, rather than an optimal solution that neglects
disruptions. A variable neighbourhood search (VNS) algorithm
is implemented to reduce computational complexity. Three types
of performance measures – stability, total weighted tardiness,
and the parameter’s resistance to change – were considered in
this model. Aiming to define a simple rescheduling procedure
for SMEs, Villa and Taurino develop a constructive rescheduling
method composed of two steps: cheque the constraints of the
work sequence for each order and cheque the non-overlapping
constraints for the operations that each machine must perform
(Villa and Taurino, 2018). This model can satisfy both the
work sequence constraints of operations for each order and the
disjunctive constraints on each machine. This method is simple
but effective: especially suitable for SMEs. Liu (2019) presents
a model to solve a two-machine flow shop outsourcing and
rescheduling problem (TFSORP) caused by the arrival of an
unexpected order. The goal is to optimise the variables makespan
and outsourcing cost by using a hybrid variable neighbourhood
search (HVNS) algorithm. In addition, a design of experiments
is implemented to optimise and calibrate the settings of the
HVNS. Liu and Zhou address the parallel-machine rescheduling
problem caused by an unexpected order (Liu and Zhou, 2013).
The model is based on two dependent factors: the number of
disrupted orders and the completion time. The problem is treated
as a three bi-criteria scheduling problem, using lexicographical
and simultaneous optimisation approaches. Moghaddam and
Saitou propose a rescheduling model for unplanned order arrival
(Moghaddam and Saitou, 2019). The tool developed is based on
the concept of dynamic pegging in multi-level production and on
a mixed integer programming (MIP) model that links dynamic
pegging with rescheduling. When unplanned orders arrive, the
dynamic pegging reassigns the work in progress (WIP) to the
newly arrived orders by optimising rescheduling costs.

Machine-Oriented Rescheduling
Rescheduling because of a machine breakdown event is also
a major study focus. Buddala and Mahapatra (2019) propose
a model to solve a flexible job-shop scheduling problem due
to machine failure by applying a two-stage teaching-learning–
based optimisation (2S-TLBO). The target of this approach is to
minimise makespan to generate robust and sustainable schedules
that mitigate the costs of unexpected machine breakdowns. The
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results obtained with 2S-TLBO are analysed using a one-way
ANOVA test. Qiao et al. (2018) propose a rescheduling model
for machine failure in a dynamic semiconductor manufacturing
system. The model is based on a novel machine group–oriented
match-up rescheduling (NMUR) approach that achieves better
results than right shift rescheduling (RSR) in the stability and
efficiency of rescheduling. Al-Hinai and Elmekkawy (2011)
consider four different types of machine breakdown in a flexible
job-shop. The model implements a two-stage hybrid genetic
algorithm (HGA) to minimise makespan. Yin et al. (2016)
consider a failure of two identical parallel machines. The aim
of this model is to reschedule tasks by considering deviation
costs and total completion time to minimise excessive schedule
disruption. The tool is designed to generate a set of Pareto-
optimal solutions that are based on the optimisation of both
rescheduling completion time and scheduling disruption factors.

Moreover, some solutions consider environmental objectives
without overlooking production objectives. For example, Ferrer
et al. (2018) propose a model to solve an unrelated parallel-
machine rescheduling problem in a dynamic environment by
applying two different approaches: greedy-heuristic and meta-
heuristic. The aim is to improve production management,
in terms of rescheduling quality and computational time,
by limiting energy consumption (so this is an energy-aware
scheduling problem). Nouiri et al. (2018) propose a green
rescheduling method (GRM) that generates a rescheduling
solution for a dynamic flexible job-shop affected by machine
breakdowns. The aim of the model is to optimise the makespan
and the energy consumption. Li (2019) proposes a model that
addresses the rescheduling problem for unexpected machine
breakdown. The aim of the model is to minimise the number of
reschedules by considering energy consumption and lead time.

Product or Quality-Oriented Rescheduling
Compared with the previous types of rescheduling problems, far
fewer studies focus on product or quality-oriented rescheduling.
Some research addresses the issue of unexpected product-
oriented events without linking it to the ZDM philosophy.
Kucharska et al. (2017) propose a model to solve unexpected
defects in a flow-shop system with stochastic uncertainties.
The model is developed around a hybrid algorithm based
on an algebraic-logical metamodel (ALMM) that can remove
manufacturing defects detected during quality control. The
approach distinguishes itself by adding the possibility of
modelling the decision-making process. The results of the
experiments are evaluated considering three factors: the cost
of algebraic-logical models switching operation, the impact
of the number of defect repairs on execution time, and the
number of switches between models. Joo et al. (2016) propose
a model to solve scheduling problems in a three-stage dynamic
flexible flow shop (DFFS). It is mainly based on linking quality
feedback to the defect rate: if the defect rate exceeds the
limit, a quality feedback is generated. Dispatch rules-based
scheduling algorithm is adopted to solve quality problems by
maximising the quality rate andminimising job tardiness. Levitin
et al. (2019) propose a tool based on the Poisson process of
shocks that may generate defects in a random environment.

If defects are detected, an optimised reschedule is generated
with the aim to maximise and optimise, respectively, two
performance indicators: mission success probability (MSP) and
failure avoidance probability (FAP).

The first model that links a rescheduling problem due to
unexpected product-oriented events to ZDM is proposed by
Psarommatis and Kiritsis (2018). The model integrates the
decision support system (DSS) into a dynamic scheduling tool
to comply with ZDM principles. When a disruptive event
occurs, the DSS and the dynamic scheduling tool interact to
produce a new schedule. This solution was evaluated based on
product quality and other KPIs (Psarommatis, 2021). A more
generic model that links scheduling with ZDM is proposed by
Dreyfus and Kyritsis (2018), who aim to increase production
capabilities without large investments. Their model is developed
based on the combination of three different strategies: ZDM,
predictive maintenance, and scheduling algorithms. Automatic
scheduling is considered as the brain of the tool, which considers
uncertainty and decides if it is necessary to launch and schedule
a maintenance operation based on the probability of failures and
the time required to repair them.

To summarise, the literature review results indicate that there
is a lack of research into product or quality-oriented rescheduling
solutions, compared with machine-oriented and order-oriented
solutions. However, product-oriented rescheduling is essential
to realising the ZDM concept. In addition, very few studies
have investigated how to evaluate the solution’s performance
according to different parameters and the number of reschedules.
Aiming to address the above research gaps, this paper proposes a
novel rescheduling model that pays more attention to product-
oriented disruptions and provides a method to evaluate the
quality of the solution.

EVENTS MANAGEMENT ALGORITHM

Manufacturing environments are characterised by uncertainty
and dynamic behaviour. Therefore, unexpected events that
disturb the normal production flow may happen at any
time. Such events traditionally may be new orders, machine
breakdowns, or maintenance. In addition, ZDM requires that
when there is a quality issue, such as a defect detection or a defect
prediction, a mitigation action should occur for each individual
quality event (Psarommatis et al., 2020b). There are two types
of mitigation actions, depending on the nature of the triggering
factor: the repair of a defect or its prevention. More specifically,
if a defect is detected, repair of the part is required, if possible.
Otherwise, a new product should be made to compensate for
the one that was defected. Another case is when a defect is
detected and the defect’s data is used to trace the source of the
problem and conduct preventive actions to avoid future defects.
Furthermore, in the era of Industry 4.0, defect prediction is
possible using methods such as machine learning or artificial
intelligence. Therefore, if a defect is predicted, the prediction data
are analysed to conduct the necessary preventive actions to avoid
the predicted defect and future ones. The preventive actions
may be small-scale maintenance or machine tuning. Therefore,
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a manufacturing stage may include multiple events of varying
importance and requiring different actions.

A key to the success of a manufacturing company is the
efficient scheduling of the mitigation actions proposed by
ZDM and traditional events; otherwise, inefficient integration
of the mitigation actions may lead to monetary and time
losses. The current research work is focused on presenting a
generic, flexible method for calculating the most efficient time
for rescheduling production to incorporate the new tasks. The
goal of the proposed method is to balance the rescheduling
frequency and the measured KPIs, simultaneously permitting the
implementation of the ZDM concept. This would be impossible
to implement without a method for managing the increased
number of events that are created because of ZDM. This is
achieved by introducing an events management method to
calculate the rescheduling time. It does so by considering the
dynamics of production at the time of the decision to adapt
the decision according to production needs. The proposed
events management algorithm uses a custom-made heuristic
rule to calculate the next rescheduling time. This renders it
suitable for real industrial use and able to perform in real time
without requiring high computational time, compared to other
optimisation approaches.

The proposed methodology utilises two key parameters for
each event action: the response time (RT) and the delay response
time (DRT) (Psarommatis et al., 2020a). RT refers to the
minimum time that is required from the moment of the event
until the time that the mitigation action is ready to be released
to the shopfloor, whereas DRT refers to the maximum time
that an event action can be delayed until its release to the
shopfloor becomes mandatory. Each event action has an RT and
an DRT value that constitute the control parameters of the action
management method. In the current study, both parameters have
a dynamic, rather than a static, nature. More specifically, the
RT depends on a manufacturer’s operations policy and supplier
relationships, and therefore there is no suggested formula for
calculating this value. Nevertheless, when the RT is estimated it
can be used alongside other parameters to calculate the DRT.
Equations (1–3) are responsible for calculating the DRT (CT:
current time, OC: Order Criticality, ET: event timestamp, i: event
number, j: the order that the event affects). OC is a measure
for ranking the importance of each individual customer order,
with values between 0 and 10, where 10 is the most important.
Events can also be classified into two categories: order-dependent
and machine-dependent. Order-dependent events are those that
affect only one order, such as a new order or a defected part.
Machine-dependent events are those that affect one machine and
by extension all the orders that are affected by the action of the
event: such events cause maintenance and preventive actions.
For machine-dependent events, the DRT is calculated for each
affected order and the minimum is selected.

DRTij =





CT −

(
OCj

OCmax

)2
∗

(
DueDatej − CT −Mj − Ri

)
,

DueDatej − CT −Mi > 0
0, DueDatej − CT −Mi < 0

(1)

Mj =

{
EstimatedLeadTimej, eventType = New order
PastMakespanj, eventType 6= New order

(2)

Ri =

{
CT − ETi, (CT − ETi) < RTi

0, (CT − ETi) > RTi
(3)

Figure 1 illustrates the flowchart of the developed algorithm,
which was designed to be able to make decisions in real time.
One key feature of the algorithm is that it is event-driven,
which means that every time a new event occurs, the algorithm
runs and provides a decision. Each event is accompanied by an
ET, which is saved to a list with all the current events under
investigation. Using the calculated parameters RT and DRT for
each event action, two times are calculated: the event response
time (EvRT) and the event delay response time (EvDRT). Then,
the minimum EvRT from the current event list is calculated.
The min(EvDRT)_O is used to compare each events’ EvRTi.
If it is smaller, then the current event is included in the next
rescheduling, and it is saved to the rescheduling event list;
otherwise, the event is saved for future rescheduling. If a new
event occurs with min(EvDRT)_N < min(EvDRT)_O, then the
value of the min(EvDRT)_O is replaced by the min(EvDRT)_N,
and all events are re-examined with the new min(EvDRT)_O
value. For example, if the algorithm starts with some events
and a new event has been considered and has the smallest
EvDRT, then the entire process restarts, and all the events
are evaluated using the new smallest EvDRT value. If another
event occurs afterwards with an even smaller EvDRT, the same
process applies. This process continues until there are no other
events in the event list. Once this procedure is finished, the
maximum EvRT from the rescheduling events list is found.
If the CT is equal to the maximum EvRT, the production is
rescheduled at max(EvRT)+PrepTime. PrepTime is the time that
the production needs to prepare for rescheduling. The records of
the event times and rescheduling lists are deleted, and the event
time list is filled with the events from the pending event list.

INDUSTRIAL USE CASE

The analysis and the performance evaluation of the developed
methodology was conducted using a real-life industrial scenario
from the semiconductor domain. The scenario concerns the
production, for a period of 1 year, of an electronic module that
is used in a medical device. The product under investigation is
composed of 15 manufacturing tasks and six inspection tasks
at the points with the highest defect rates. The layout of the
production is configured as a flexible job shop (Pinedo, 2016)
and more specifically is composed of five work centres. Each
work centre is composed of two or three identical machines
capable of performing more than one task. The sixth work
centre is responsible for quality inspection in areas that have
the highest defect rate, between 5 and 6%. This work centre is
composed of six inspection machines capable of performing only
one inspection task.

The proposed methodology is integrated with a dynamic
ZDM-oriented scheduling tool (Psarommatis and Kiritsis, 2018)
to test the developed method. The ZDM-oriented scheduling
tool has the four ZDM strategies implemented, and the
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FIGURE 1 | Events management algorithm.
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concept of ZDM is used during the simulation. Therefore,
for every defect detection or prediction, the tool assigns a
mitigation action to counteract the implications of the triggering
factor. Furthermore, preventive maintenance is also considered
during the simulations, and therefore there are no breakdowns.
Maintenance is performed based on the quality of the produced
parts and is required after a threshold value to avoid future
low-quality parts. The goal of the scheduling tool is to produce
100% acceptable products with as little performance loss as
possible. The problem under investigation is strongly NP-hard,
because although there is only one product under investigation,
the same tasks of different orders are considered as different
tasks. Therefore, the scheduling tool creates the schedule with
the goal of serving each individual order in the best way. The
scheduling tool utilises a set of six different heuristic rules to
solve the scheduling problem (Psarommatis et al., 2020d). Each
time it is used, all six rules are executed, and the best solution
is selected. Heuristics are selected over other methods, as they
require minimum computational time, which is important in
an industrial environment. All heuristic rules utilise a function
for retrieving information regarding the previous schedule, and
the tool schedules the production with minimal alteration to
the short-term schedule when possible. Additionally, defects are
generated based on a random number from an exponential
distribution, presented in Equation (4), which calculates the
probability of a part being defected. The model is driven by the
variable PT, which represents the total operation time of the
machine from the last maintenance point to the point under
investigation. Each machine has its own unique characteristics,
and therefore “a” and “b” are different for each machine.
The proposed dynamic scheduling tool was tested using the
Shapiro-Wilk test to validate the normality of the results (Öner
and Kocakoç, 2017). For this purpose, 30 runs using random
parameter values – which were the same for all the simulations
– were performed, and the normality of the KPIs was evaluated.
The normality test showed that the results are normal, with a
p-value of 0.2169.

defectProbability = ExpRand

(
1

a
∗ e

( 1
b
∗PT

))
(4)

The industrial case was used to analyse the developed
method and to evaluate the performance of the method
compared to other rescheduling policies. The analysis of the
method was performed using a design of experiments method,
specifically the Taguchi method (Phadke, 1995). This analysis
is required to gain insights into the influence of each control
parameter of the events management algorithm (section Events
Management Algorithm Analysis). Section Comparison With
Other Rescheduling Policies is devoted to measuring the
performance of the method and the comparison with other
rescheduling policies.

Performance Indicators
The quality of the solution of each simulation is measured based
on six KPIs (Gholami and Zandieh, 2009; Wang et al., 2018;
Liu, 2019). More specifically, the solutions are measured based

on (i) makespan (MSP), (ii) tardiness (TRS), (iii) rescheduling
frequency (RFY), (iv) production cost (PC), and (v) rescheduling
cost (RSC). MSP and TRS are measures of schedule efficiency
based on time, and the equation is reported (Pinedo, 2016). The
RFY represents the average time from rescheduling intervals.
However, time-based performance measures do not directly
reflect the economic aspect of the production system. Therefore,
it is important also to evaluate scheduling decisions and strategies
based on economic KPIs. In this research, two economic KPIs
are used: the PC and the RSC. The PC is a function of the
operational cost of machines, the cost of raw materials, the setup
cost, the labour cost, and the depreciation of the machines. The
RSC is calculated based on the number of tasks (NT) to be re-
scheduled (Equation 5). If there are tasks in the task list that
are scheduled for the first time, no cost is calculated for them.
RMSCF is the value including cost units, which depicts the cost
for rescheduling one task. It includes the labour and machine
transportation costs for re-configuring the production set-up to
match the needs of the new schedule. To aggregate the five KPIs
into one value, to be able to study the total performance of
each simulation, a two-step method is used. The first step is the
normalisation of the KPI values. In the second step, the utility
value is calculated using a weighted sum formula (Mourtzis
et al., 2015). The utility value is within the range [0,1]: the
higher it is, the better the solution. Equation (6) illustrates the
objective function that is used to aggregate all the KPIs into
one value to be maximised. The “∧” represent the normalised
values of the KPIs. Equation (7) presents the relationships
among the weights for each KPI: the sum of all the weights
must equal one.

RSC = 2 ∗ RMSCF ∗ NT −
RMSCF

NTtot
∗ NT2 (5)

UtilityValue = wm ∗ M̂SP + wt ∗ T̂RS+ wrf ∗ R̂FY

+ wp ∗ P̂C + wrc ∗ R̂SC (6)

wm + wt + wrf + wp + wrc = 1 (7)

Events Management Algorithm Analysis
In the current section, a design of experiments is presented, based
on the Taguchi method (Phadke, 1995). This method implies
that a standard orthogonal array is selected that is based on the
number of factors and the levels of each factor. This orthogonal
array denotes the experiments that must occur for the method to
have accurate results. Other design of experiments methods were
investigated, such as the central composite design and the Box-
Behnken design, but they were rejected due to the high number
of experiments that were required. The goal of this analysis is
to gain insights into the influence of each of the algorithm’s
control parameters on the measured KPIs. For this analysis, three
types of events were used: new orders, defect detection, and
defect prediction. Therefore, in total there are six time-oriented
parameters based on the definition described in section Events
Management Algorithm. One more parameter, the prediction
horizon (PH), controls how far ahead the prediction algorithm
searches for a defect. Therefore, there are seven parameters
to investigate, and two level factors with interactions were
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TABLE 1 | Factor levels and interactions.

Factors L32 column LvL1 LvL2 Factor interactions (L32 column)

New Order RT, NORT(hours), F1 1 5 100 F1XF2 (5), F2XF6 (20), F3XF5 (10), F3XF6 (24), F4XF5 (13), F4XF6 (31),

New Order DRT, NODRT(hours), F2 4 2 30 F5XF6 (18), F3XF4 (7), F1XF7 (23), F2XF3 (12), F2XF4 (11), F1XF3 (9),

New Defect RT, NDRT(hours), F3 8 3 13 F1XF4 (14), F1XF5 (3), F1XF6 (17), F2XF5 (6)

New Defect DRT, NDDRT(hours), F4 15 1 20

New prevention RT, NPRT(hours), F5 2 0.2 1.2

New prevention DRT, NPDRT(hours), F6 16 0.1 0.9

Prediction Horizon, PH(minutes), F7 22 5 50

selected. The factors’ levels and the corresponding interactions
can be seen in Table 1. At this point, it should be mentioned
that to perform this analysis the DRTi time is considered
static to control its the value and measure the impact on the
solution. The L32 orthogonal array was selected to conduct the
experiments, which denotes 32 experiments. This is more than
double the number in the other design of experiments methods,
due to the higher number of factor levels. This analysis is not
performed to optimise the performance of the algorithm, but
to understand the behaviour of each control parameter relative
to the KPIs.

For each of the 32 experiments denoted by the L32, 10
runs were performed to improve the accuracy. The aim was
to overcome the inherent randomness of generating defects
during simulation. From the 10 simulation runs, the average
utility value was taken as the final value for the experiment
set. The results from the experiments are presented in Table 2

and analysed using the ANOVA and ANOM analyses. More
specifically, an initial ANOVA was performed on the results
to calculate the significance of each of the 23 terms examined
(seven factor main effects and 16 interactions). The results
from the initial ANOVA analysis showed that some factors
and many interactions were not significant, and therefore a
stepwise linear regression model reduction method was used
to eliminate non-significant terms and improve the accuracy
of the results. In total, 17 terms were eliminated. The results
from the linear regression model showed that the model had
a good fit with R-squared: 0.894. The adjusted R-squared was
0.869, the root mean squared error was 0.0546, and the p-value
was 5e−11.

For the remaining significant terms, an ANOVA was
performed, and the results are presented in Table 3. An
interesting observation is that, in general, the DRT times did
not contribute to the final solution, except the NPDRT, which
contributed only 3.98%. At the same time the RT times presented
significant percentages, with 20.60 and 42.03% for the NORT
and NPRT, respectively. Furthermore, the PH factor showed
significant influence on the final solution, with the second
highest percentage: 24.87%. From the 16 interactions, only
two were significant: the NORT∗NPRT and the NPRT∗PH,
with 2.13 and 5.92%, respectively. The parameters regarding
defects (NDRT and NDDRT) seem to have no significant
impact on the solution. Moving forward, to analyse in which
direction the quality of the solution is moving, the ANOM

methodology was used for the factor main effects. In summary,
the transition from level 1 to level 2 for factors PH, NORT,
and NPDRT affects the solution negatively, with 19.10, 16.19,
and 8.20%, respectively. Only NPRT affected the solution in
a positive way, with 24.39% of difference from level 1 to
level 2.

Comparison With Other Rescheduling
Policies
The analysis of the developed method revealed some interesting
insights regarding the performance of the events management
algorithm. In reality, however, it is difficult to optimise
parameters, such as how quickly the production can react
to an event, mostly because they are the outcomes of many
different aspects that are not easy to control. This is due to
the dynamic nature of manufacturing systems. Nevertheless,
manufacturers have the option to try to remain as close as
possible to the values that least affect the solution. The analysis
in section Events Management Algorithm Analysis provided
the direction and extent to which each factor affects the
final solution, providing a starting point that can be used as
a reference.

In the current section, the comparison of the performance
of the developed method with other rescheduling policies is
conducted. For these experiments, the same industrial set-up as
in section Events Management Algorithm Analysis is used, with
the difference that the DRTi time is calculated dynamically based
on the methodology presented in section Events Management
Algorithm. Furthermore, for the specific industrial case, the
NORT is set at 7 h, the NDRT at 3.5 h, the NPRT at 17min,
and the PH at 30min. To those values, some stochasticity is
introduced to simulate a real production environment. The
stochasticity is introduced by using a normal distribution to
generate a random number. The values mentioned earlier are
used as the mean value of the distribution, and each has its own
standard deviation based on the data provided by the specific
industrial case. The current industrial scenario was simulated for
the period of 1 year, and the demand profile was the average for
the past 2 years.

In total, five alternative rescheduling policies are simulated
alongside the proposed method and a benchmark scenario
that constitutes the ideal scenario, meaning that there are
no defects and the only events that occur are new orders.
The five rescheduling policies that are used are considered as
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TABLE 2 | Design of experiments simulation results.

Exp. no Utility value Exp. no Utility value Exp. no Utility value Exp. no Utility value

1 0.5143 9 0.5315 17 0.3509 25 0.3725

2 0.2820 10 0.6800 18 0.1684 26 0.4418

3 0.4661 11 0.5492 19 0.3975 27 0.4311

4 0.0798 12 0.5280 20 0.0710 28 0.3658

5 0.2366 13 0.5747 21 0.1136 29 0.4778

6 0.3729 14 0.4722 22 0.3371 30 0.3360

7 0.2881 15 0.583 23 0.1930 31 0.3617

8 0.3739 16 0.4818 24 0.2893 32 0.2645

TABLE 3 | ANOVA table of the reduced model.

Variable Coef. Sum Sq. Influence % DoF Mean Sq. F p-value

Intercept 0.4651 - - - - - -

NORT −0.00073873 0.13035 20.60% 1 0.13035 43.8 6.1988e-07

NPRT 0.14405 0.26601 42.03% 1 0.26601 89.38 9.829e-10

NPDRT −0.070119 0.02517 3.98% 1 0.02517 8.45 0.0075171

PH −0.0052464 0.15737 24.87% 1 0.15737 52.87 1.2793e-07

NORT*NPRT −0.00086419 0.01348 2.13% 1 0.01348 4.52 0.043352

NPRT*PH 0.0030424 0.03748 5.92% 1 0.03748 12.59 0.0015603

Error - 0.00297 0.47% 25 0.00297

Total - 0.63283 100% 31

fixed periodic rescheduling policies because of the simplicity
of their implementation in production systems and their
high performance (Stevenson et al., 2020). These policies are
divided into two categories: rescheduling occurs after every
event and rescheduling occurs at certain time intervals. In
the latter category, four different time intervals are tested:
rescheduling twice a day, every day, every 2 days, and
every 3 days, of which some are widely used (Stevenson
et al., 2020). For each rescheduling policy, 10 individual runs
were performed, as explained in section Events Management
Algorithm Analysis, to overcome the inherent randomness of
generating defects and the randomness of the control factors of
the developed method.

The performance of the seven simulated scenarios was
measured using the five defined KPIs, which were aggregated
into one value, the utility value (section Performance Indicators).
Furthermore, multiple KPI weight factor sets were used to
calculate the utility value and study the impact of each
rescheduling method on each KPI or on the combination
of KPIs. In total, nine weight factor sets were investigated;
Table 4 presents the actual weight factor values for each KPI.
There are three categories to which the weight factor sets
belong: set 1 considers all the KPIs equally; sets 2–6 place
importance on one KPI at a time, keeping all the others equal;
and the final category, sets 7–9, place importance on more
than one KPI at a time. The results from the simulation are
illustrated in Figure 2, in which the utility values are presented
for each weight factor set. Furthermore, the error from the
10 individual simulation runs of each scenario was calculated

and is presented using the error bars, with a 95% confidence
interval. Analysing the results further, the relative difference
between the developed method (action management algorithm)
and the other six scenarios was calculated and is summarised
in Table 5.

Overall, the results showed that the proposed method
outperformed the five other rescheduling policies, and it was
close to the best solution, on average by 21.1%, considering the
results from all the weight factor sets. The worst solution to
almost all the weight factor sets was rescheduling after each event;
only in set 9, in which attention was given to the MSP and
PC, was this policy the second worst, after rescheduling twice
a day. Furthermore, third place is held by rescheduling every
3 days, which was on average 26.2% worse than the proposed
method. In Figure 2, three different trends are observed among
the different weight factor sets. The first concerns sets 1, 3, 4, 5,
and 6, in which the events management algorithm was clearly
the second best solution, 29.4% of relative difference ahead of
the third best and 18.4% worse than the benchmark scenario.
These weight factors are those that either give equal importance
to each KPI or give attention to one KPI at a time, keeping all
the others at the same weight, except MSP. When attention is
given to the MSP, a similar trend is observed between weight
factor sets 2 and 9, in which the performance of the developed
method is very close, but better by 6.6% than the next policy.
More specifically, in set 2, in which importance is given only to
MSP, the performance of rescheduling every 3 days is apparently
increased and the performance of the developed method is at the
second lowest value. However, in set 9, in which attention is given
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TABLE 4 | Weight factor sets.

KPIs/weight factors sets Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9

Makespan 0.2000 0.3333 0.1667 0.1667 0.1667 0.1667 0.1429 0.0909 0.3846

Tardiness 0.2000 0.1667 0.3333 0.1667 0.1667 0.1667 0.1429 0.4545 0.0769

Rescheduling frequency 0.2000 0.1667 0.1667 0.3333 0.1667 0.1667 0.2857 0.1818 0.0769

Production cost 0.2000 0.1667 0.1667 0.1667 0.3333 0.1667 0.1429 0.0909 0.3846

Rescheduling cost 0.2000 0.1667 0.1667 0.1667 0.1667 0.3333 0.2857 0.1818 0.0769

FIGURE 2 | Comparison of alternative re-scheduling policies.

TABLE 5 | Relative difference from the events management algorithm.

Policies/Weigh factors sets Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9

Benchmark 21.76% 21.79% 11.82% 18.23% 21.09% 19.04% 16.48% 2.32% 56.03%

Rescheduling after every event 106.32% 69.36% 113.22% 121.50% 111.10% 120.99% 132.07% 135.36% 34.01%

Rescheduling 2 times/day 95.21% 64.67% 113.60% 97.23% 109.66% 95.36% 97.03% 134.54% 49.87%

Rescheduling every day 40.35% 19.23% 55.76% 40.24% 53.18% 38.80% 38.97% 71.26% 9.41%

Rescheduling every 2 days 42.10% 22.42% 62.37% 37.63% 56.77% 37.59% 34.70% 79.09% 17.66%

Rescheduling every 3 days 24.72% 7.88% 44.42% 19.94% 39.00% 19.01% 16.10% 59.60% 5.26%

to MSP and PC, the proposed method reached the lowest value
and was 5.3% better than the next policy. The characteristics
of set 8 are not observed in other weight factor sets. This set
gives significant attention to TRS and less attention to RFY
and RSC. For this weight factor set, the events management
algorithm provided the best solution, with only 3.6% relative
difference from the benchmark scenario. The results of the
proposed method showed almost double the error between the

individual simulation runs compared to the other rescheduling
policies, whereas the benchmark scenario had the smallest error.

CRITICAL DISCUSSION

The results from the design of experiments presented in
section Events Management Algorithm Analysis revealed some
profound insights regarding the behaviour of the proposed
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methodology and the defined control parameters. The most
important outcome is that the DRT time does not influence the
performance of the solution at all, except the NPDRT, which has
a 3.9% influence. On the one hand, this result shows that the
developed method has significant levels of robustness, because
DRT does not affect the final solution and provides flexibility
for manufacturers. In addition, this result is aligned with the
dynamic calculation of the DRT times that is proposed, whereas
if the DRT times affected the solution significantly it would be
impossible, or it would require additions, to add boundaries to
the calculated DRT times. On the other hand, the small (3.9%)
influence of NPDRT is also reasonable and expected, because
when predicting an event the production should act before the
occurrence of the predicted event to prevent it, as ZDM states.
If the DRT is not aligned with the NPRT and PH, then the
preventive action might be scheduled after the occurrence of the
event, contradicting the purpose of the prediction. Additionally,
regarding the occurrence of defects and the repairing of parts,
it is encouraging that both NDRT and NDDRT do not affect
the solution, which also provides some flexibly to manufacturers.
This can be explained because the new repair tasks are inserted
in the existing schedule, causing minimal changes to the previous
schedule. For the same reason as with the NPDRT, the strongest
interaction observed was the NPRT∗PH, which was expected
since these parameters are tightly connected. The NPRT must be
smaller than the PH, otherwise there is no reason for predicting:
the production is unable to act before the occurrence of the
event to avoid it. The proposed methodology presented a strong
influence of 87.5% from the NORT, NPRT, and PH parameters.
This result is encouraging because manufacturers can control
these parameters, although it is difficult.

The developed events management algorithm showed an
impressive performance compared to the five alternative
rescheduling policies, proving that it can efficiently handle and
calculate the next rescheduling time. Furthermore, the selection
of a heuristic-based approach achieved very fast and high-
quality results, with a decision time of less than a second. This
is compared to an optimisation method that was developed
for comparison that required 45min to calculate the optimal
rescheduling scenario, with only 4.8% increased performance
compared to the proposed events management algorithm. The
optimisation algorithm that was developed examined all the
possible rescheduling scenarios given the same events.

Zero defect manufacturing is an emerging concept
and therefore not many studies have been conducted on
implementing ZDM concepts in the scheduling problem. To
the authors’ best knowledge, there are no studies combining
traditional production disruption events, such as new orders
or machine breakdowns, with ZDM-oriented events. More
specifically, traditional rescheduling policies do not have the
flexibility that is required by ZDM events and particularly the
predict–prevent approach. This approach requires by default
that rescheduling is performed frequently, due to the nature
of the events that require rapid responses to avoid quality
issues. This is the main issue with rescheduling at specific time
intervals; these methods do not have the required flexibility to
handle prediction events or capture the dynamics of production.

However, rescheduling after each event could potentially be a
good alternative in an ideal manufacturing environment. The
experiments showed that when importance was given to the
RSC, this policy produced the worst solution. This is without
considering the costs that might arise due to mistakes because of
the operators’ confusion with the high number of reschedules,
which is very difficult to calculate. Furthermore, the dynamic
behaviour and rapid changes of the market require dynamic
approaches, and more importantly holistic methods, that
integrate many different aspects into one model, providing the
required flexibility to make future modifications without causing
problems. Efficient rescheduling is crucial for the competence
of a manufacturing company. Although in the event of reliable
processes and a low frequency of orders there is no need for
rescheduling, and therefore most of the rescheduling policies
will converge at the same results, this is not the case in the
contemporary manufacturing landscape.

Events that disrupt production are the main causes of disorder
at the shop-floor level and could create huge costs if they
are not managed correctly. Theoretically, it is better to act
immediately when events occur and avoid accumulating them to
satisfy demand without incrementing supply chain costs (such as
inventory costs for raw materials). Furthermore, a quick reaction
to events indicates that production is very flexible and has the
capability to handle efficiently this type of unexpected event. It
also has a positive impact on the customers’ experiences and
satisfaction, since manufacturers are able to meet the customers’
demands at the agreed time. The proposed methodology would
help production to become more resilient and thus to stand out
in the market. For instance, during the COVID-19 pandemic,
the demand for medical instruments received an incredible
boost, which consequently has led companies to receive many
new orders per day alongside all the other unexpected events
that can arise in a manufacturing environment. A flexible and
resilient system for managing events at the production level
would help them to meet the demand and increase their market
share with minimal performance losses and a more sustainable
production system.

CONCLUSION AND FUTURE WORK

The current study proposed an events management algorithm
to dynamically calculate the next rescheduling time. In an era
of high-quality standards and a need for sustainable production
systems, ZDM is gaining ground rapidly, and the proposed
method can assist on the successful implementation of ZDM in
manufacturing systems leading to the minimisation of negative
environmental impact of the production contributing to the first
pilar of sustainability. Additionally, the proposed methodology
contributes also to the second pillar of sustainability which is
the accomplishment of an economically sound manufacturing
process, by balancing the events to schedule with the designed
KPIs using the dynamic rescheduling model.

The proposed methodology was designed to consider both
traditional events, such as new orders or machine breakdowns,
and events created by ZDM when calculating the next
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rescheduling time. Furthermore, the developed methodology
is flexible and can be expanded to accommodate other types
of events, without modifications to the method, by adding
the control parameters of the new event to the algorithm.
The algorithm utilises RT and DRT as master control
parameters, which are customised for each event. Furthermore, a
methodology for dynamically calculating the DRT was presented
to minimise rescheduling frequency as much as possible.

The developed methodology was analysed using the Taguchi
method to design the experiments. This analysis provided great
insights into the influence of the algorithm’s control parameters
on the final solution. More specifically, the method proved
sufficiently robust. As DRT times did not influence the solution,
a dynamic calculation of the DRT could be used and could
provide an extra level of flexibility and ease in utilising the
proposed methodology. Additionally, the proposed algorithm
was compared to five alternative rescheduling policies, and the
results showed that the current approach could effectively and
efficiently handle different types of events and at the same time
make possible the implementation of the ZDM concept in a
production system. Furthermore, such methods can also help the
ZDM implementation to handle situations with high a number
of orders in a more efficient way, such as in the phenomenon
observed because of the COVID-19 pandemic.

Future work will focus on the integration of predictive
maintenance events into the scheduling tool and events
management algorithm and consider if the same trends for the
new control parameters are observed as with those presented in
the current work.
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