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Bioinspired adhesives that emulate the unique dry and wet adhesion mechanisms

of living systems have been actively explored over the past two decades. Synthetic

bioinspired adhesives that have recently been developed exhibit versatile smart adhesion

capabilities, including controllable adhesion strength, active adhesion control, no residue

remaining on the surface, and robust and reversible adhesion to diverse dry and wet

surfaces. Owing to these advantages, bioinspired adhesives have been applied to various

engineering domains. This review summarizes recent efforts that have been undertaken

in the application of synthetic dry and wet adhesives, mainly focusing on grippers, robots,

and wearable sensors. Moreover, future directions and challenges toward the next

generation of bioinspired adhesives for advanced industrial applications are described.

Keywords: bioinspired adhesive, dry adhesion, wet adhesion, gripper, robot, attachable sensor, skin patch

INTRODUCTION

Numerous living organisms have evolved various adhesion systems. Robust and repeatable
adhesion that has been adapted to various environments is a key factor for survival as it enables
efficient activities, including climbing, clinging, and catching prey. Among the various species,
gecko lizards, beetles, octopuses, and remoras have attracted substantial attention owing to
their excellent adhesion properties, such as high adhesion to curved or rough target surfaces,
functionality in wet environments, reusability, and biocompatibility (Figure 1A) (Autumn et al.,
2000; Dirks and Federle, 2011; Baik et al., 2017; Wang et al., 2017). Extensive studies over
the past two decades have revealed that their superior adhesion properties originate from
their unique terminal structures (Wang L. et al., 2020). For example, gecko lizards and
beetles can walk freely on walls or ceilings with strong adhesion based on numerous pillar
structures with spatulated or mushroom-shaped tips on their toes (Autumn et al., 2000; Arzt
et al., 2003; Jeong et al., 2009b). Furthermore, they have an efficient self-cleaning property
in both dry and wet conditions so that contaminants rarely attach to or are maintained on
the adhesive surface (Hansen and Autumn, 2005; Lee and Fearing, 2008; Sethi et al., 2008;
Spinner et al., 2013). The self-cleaning capability enables easy removal of the contaminants
from the adhesive surfaces, i.e., the dry adhesive can quickly and fully recover a clean adhesion
that does not transfer contaminants to the substrate (Bhushan and Sayer, 2007; Sethi et al.,
2008). Moreover, underwater organisms, such as octopuses, remoras, and clingfishes, use a
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FIGURE 1 | Research schematic of bioinspired adhesive structures for reversible dry and wet adhesion. (A) Representative examples of adhesive structures in nature:

(i) gecko’s toes [reprinted with permission from ref Zhao et al. (2008)] (ii) beetle’s pads [reprinted with permission from ref Amador et al. (2017)]. (iii) octopus suction cup

[reprinted with permission from ref Baik et al. (2019)]. (iv) remora suction disk [reprinted with permission from ref Lee et al. (2019)]. (B) Application field of adhesion

structure (i) gripper (top), (ii) robot system (middle), (iii) wearable sensor system (bottom) [reprinted with permission from ref An et al. (2017)].

unique sucker structure to stably adhere to various wet surfaces
(Lee et al., 2016, 2019). Strong wet adhesion allows them
to grasp objects or to firmly adhere to slippery surfaces
with ease.

The unique adhesion systems that exist in nature offer high
potential in various advanced industries, such as grippers,
robots, and wearable sensors (Figure 1B) (Drotlef et al., 2017;
Shahsavan et al., 2017). These application fields require strong
and repeatable adhesion, particularly under harsh conditions,
such as rough surfaces, high humidity, or even underwater
environments. However, conventional contact methods,
including mechanical fixation and chemical adhesion, are
limited by their inferior adhesion performance. Mechanical
fixations, whereby friction or an interlocking force are primarily
applied, cause surface damage (Fuentes et al., 2015; O’Brien et al.,
2019; Ozaki et al., 2020). Chemical adhesives have limitations
such as low repeatability, surface contamination by residue, and
vulnerability to moisture (Yuk et al., 2016; Pan et al., 2020).
As a novel solution to these problems, bioinspired synthetic
dry and wet adhesives have been applied to adhesion systems
in advanced industries. For example, grippers integrated with
bioinspired adhesives have been used for the precise and safe

transportation of thin and fragile wafers (Zhou et al., 2013).
Similarly, bioinspired adhesive-based mobile robots that can
climb vertical walls, hang from the ceiling, or cling to underwater
surfaces have been presented (Seo and Sitti, 2013; Yu et al., 2018).
Moreover, adhesive microstructures enable wearable sensors
that strongly adhere to skin, where continuous deformation
and sweat may occur (Drotlef et al., 2017; Wi et al., 2017;
Chun et al., 2019). In recent years, bioinspired adhesives with
functional materials, such as conductive, biocompatible, and
stimuli-responsive polymers or nanocomposites, have been
proposed for advanced applications (Gu et al., 2018; Hwang
et al., 2020; Tian et al., 2020).

In this review, we provide an overview of the use of
bioinspired dry and wet adhesives in advanced applications.
The remainder of this paper is organized as follows. In the
first section, we briefly introduce the fundamental adhesion
mechanisms that can be classified as dry and wet adhesion. In the
second section, we describe how these novel adhesion systems
are currently applied in three specific applications: grippers,
robots, and wearable sensors. Finally, recent challenges and
future directions for bioinspired adhesives and their applications
are discussed.
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FIGURE 2 | Bioinspired dry adhesive structures. (A) Various animals’ tips and their properties [reprinted with permission from ref Arzt et al. (2003)]. (B) Schematic in

hairy structures, tip shapes, and hierarchy of dry adhesive. (C) Fabricated high aspect ratio nano hairs [reprinted with permission from ref Jeong et al. (2006)]. (D)

Experimental results in pull-off test of dry adhesive with different tips [reprinted with permission from ref Del Campo et al. (2007b)]. (E) Hierarchical pillar for high

efficiency of adhesion [reprinted with permission from ref Murphy et al. (2009)].

REVERSIBLE ADHESION MECHANISMS
OF LIVING SYSTEMS

Bioinspired Dry Adhesive Structures
Among the living organisms that exist in nature, beetles, flies,
spiders, and geckos have versatile adhesion mechanisms that
enable robust, reversible, repeatable, and clean adhesion on
various rough surfaces (Figure 2A) (Autumn et al., 2000, 2002;
Arzt et al., 2003; Geim et al., 2003). Many studies have revealed
that their superior adhesion originates from their nano- or
micrometer-scale hairy structures (Autumn et al., 2000, 2002;
Arzt et al., 2003; Varenberg et al., 2010). For example, the gecko
lizard has arrays of millions of microscale foot hairs, containing
hundreds of nanoscale projections terminating in spatula-shaped
tip structures (Niewiarowski et al., 2016). Similarly, beetles have
hierarchical hairy structures on their legs, which are composed
of numerous tiny setae with flattened and widened mushroom-
shaped plates (Gorb et al., 2010; Bullock and Federle, 2011).
These structures maximize the van der Waals interactions based
on the three common structural features, grouped as hairy
structures, extruded tips, and hierarchical structures (Figure 2B).

Hairy structures are one of the most important features of dry
adhesive systems. Numerous high-aspect-ratio hair structures
enable effective adaptation to rough surfaces, resulting in a
maximized contact area. Arzt et al. theoretically suggested that

the adhesion of the pillar structure is based on Hertzian theory
(Arzt et al., 2003). According to this study, when a single pillar
structure with a hemispherical tip contacts the target surface, a
finite pull-off force (FC) occurs, which is expressed as:

FC =
3

2
πRγ (1)

where γ is the adhesion energy per area and R is the hemisphere
radius. Assuming that the entire contact surface consists of n
pillars, each with a radius R/n0.5, the total adhesion force (F′C)
can be increased to:

F′C = FC n0.5 (2)

According to Equations (1) and (2), the adhesion resulting
from the pillar structure becomes stronger as the number of
pillars per unit area increases. Additionally, submicron- or
nano-scale structures significantly reduce the effective modulus
of the adhesives, enhancing the surface adaptability. The
effective modulus (Eeff ) of the pillar structures is given by
(Autumn et al., 2006):

Eeff =
3EID sin (θ)

L2cos2(θ)[1±µ tan (θ)]
(3)
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where E is the elastic modulus of the material, I is the moment
of inertia, D is the pillar density, L is the pillar length, µ is
the friction coefficient, and θ is the slanted angle of the pillar.
The effective modulus can describe how relatively hard materials
(Young’s modulus higher than 100 kPa) function as a pressure-
sensitive adhesive, emphasizing the need for high-aspect-ratio
hairy structures. However, the effective modulus needs to be
incorporated with proper contact geometry because the shape of
the tips (or caps) dominates the stress distribution on the contact
interfaces (Kroner and Arzt, 2012).

The extruding tip structure, such as spatula and mushroom
(symmetric spatulae), which can be observed at the end of
the pillar structure, has a significant effect on the adhesion of
the dry adhesive structure (Kim and Sitti, 2006; Del Campo
et al., 2007b; Bullock and Federle, 2011; Kwak et al., 2011a;
Heepe et al., 2012; Kroner and Arzt, 2012; Oh et al., 2019). The
extruding tip structures not only increase the contact area of the
hairy structures but also uniformly distribute the stress at the
contact interface until they are separated from the target substrate
(Carbone et al., 2011). As a result, the adhesives can be strongly
attached to the substrate with high stability, even over millions of
cycles of repeated attachment and detachment.

The hierarchical arrangement of gecko foot hair is also a
key element that can maximize adhesion performance (Murphy
et al., 2009; Bae et al., 2014). Various studies have revealed that
the hierarchy improves adaptability to surfaces with roughness
at different length scales (macro – nano). Furthermore, they
significantly improved the structural stability by effectively
distributing the stress between hierarchies during repeated
loading cycles.

Based on these mechanisms, many studies have been
conducted to mimic the superior adhesion performance of dry
adhesives in nature. Studies have been proposed that maximize
the van der Waals interactions of micro-and nanoscale hairy
structures by increasing the aspect ratio and reducing the
diameter (Geim et al., 2003; Mahdavi et al., 2008). Greiner
et al. developed microscale vertical pillars with high aspect ratios
using a soft molding method (Greiner et al., 2007). The pull-off
strength was measured up to 20 kPa in pillars with aspect ratios
above 5. Nanoscale hairy structures with a high aspect ratio of
over 20 and a small radius (∼80 nm) were proposed based on
the nanodrawing method (Figure 2C) (Jeong et al., 2006). Qu
et al. presented a carbon nanotube (CNT)-based dry adhesive to
achieve an extremely small radius (∼15 nm) and high aspect ratio
of the nanoscale hair array (Qu et al., 2008).

On the other hand, to realize adhesion enhancement, many
researchers have focused on controlling 3D tip geometries
(Del Campo et al., 2007a; Carbone et al., 2011; Kwak et al.,
2011b). For example, artificial dry adhesives with various 3D tip
structures, including spatulae, mushroom (symmetric spatulae),
and triangular shapes have been developed (Del Campo et al.,
2007b; Kwak et al., 2011a). Among them, mushroom-shaped
tip structures were reported to exhibit outstanding adhesion
performance (Figure 2D) (Del Campo et al., 2007b; Yi et al.,
2016). The diameter and thickness of the mushroom-shaped tip
structures are key factors in determining adhesion strength and
structural stability. Yi et al. demonstrated that the adhesion of

optimized tip structures was∼10 times stronger than that of non-
optimized tips (Yi et al., 2016). Several studies have presented
finite element analyses (FEA) incorporating contact geometry
optimization of dry adhesives for uniform stress distribution
within the tips (Zhang X. et al., 2021). Recently, Kim et al.
reported deep learning-based optimization of mushroom-shaped
structures composed of smoothly mixed convex and concave
parts and demonstrated improved uniformity in the interfacial
stress distribution (Kim et al., 2020).

Furthermore, various studies have reported improved
adhesion performance based on hierarchical structures. For
example, aligned CNT forests integrated with micro-sized
pillars were utilized as hierarchical adhesives exhibiting 9 times
stronger shear adhesion than that of a micropillar uncovered
with CNT forests (Rong et al., 2014). Jeong et al. developed
monolithic micro-and nanoscale hierarchical hairs using a
2-step UV-assisted molding technique, which has a robust shear
adhesion force even on a rough surface (Jeong et al., 2009b).
In addition, Murphy et al. proposed a novel adhesive structure
that integrates the structural advantages of hierarchical and
extruding tip structures (Figure 2E) (Murphy et al., 2009).
Hierarchical structures with mushroom-shaped tips fabricated
through the multilevel molding technique exhibited 5.3 times
higher adhesion than unstructured surfaces.

Bioinspired Wet Adhesive Structures
Organisms that live in wet and underwater environments
have different adhesive mechanisms than those living in dry
conditions. In particular, the octopus, tree frog, and clingfish
can achieve reversible adhesion with a strong attachment to
surfaces under wet conditions (Drotlef et al., 2013; Zou et al.,
2016; Wang et al., 2017; Zhao et al., 2017; Zhang et al., 2019;
Chen et al., 2020). These strong wet adhesions are derived from
special micro/nanostructures on the surface of organisms, such
as suction cups and polygonal patterns. Their unique structures
enable them to maintain strong wet adhesion to various curved
and rough surfaces through suction, which is driven by a pressure
difference and capillary adhesion. In recent years, extensive
research has been conducted to determine the principles of wet
adhesion and to emulate the adhesion mechanism (O’Brien et al.,
2019; Chen et al., 2020).

An octopus achieves adhesion using a mechanism that
causes a pressure difference through a suction cup in a wet
environment (Figure 3A) (Tramacere et al., 2014, 2015; Oh et al.,
2018). A hollowed space, known as the sucker cavity, exists
inside the suction cup. With an applied preload, a pressure
drop in the suction cup occurs with a volumetric change,
where the dome-like structure inside the cavity maximizes the
pressure difference between the inside and outside (Figure 3B)
(Tramacere et al., 2013). The pressure difference can serve as
a major mechanism underwater because of the higher external
pressure. The governing equation for the adhesion force (Fnormal)
that can be induced through the suction cup structure is
expressed as follows (Chen and Yang, 2017):

Fnormal = 1P × Atotal (4)
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FIGURE 3 | Bioinspired wet adhesive structures. (A) Octopus-inspired suction cup [reprinted with permission from ref Oh et al. (2018)]. (B) Adhesion mechanism of

suction cup under wet conditions [reprinted with permission from ref Tramacere et al. (2013)]. (C) Clingfish-inspired sucker and hexagonal microstructure mechanism

under wet conditions [reprinted with permission from ref Wainwright et al. (2013)]. (D) Tree frog-inspired regular hexagonal microstructure and adhesion mechanism

under wet conditions [reprinted with permission from ref Zhang et al. (2020)]. (E) Section of sucker cavity and adhesion strength under dry/underwater conditions

[reprinted with permission from ref Baik et al. (2018)]. (F) Organohydrogel-based sucker and adhesion strength under wet conditions [reprinted with permission from

ref Zhuo et al. (2020)]. (G) Lamella and spinule structure of suction and varying adhesion strength with lip height under wet conditions [reprinted with permission from

ref Lee et al. (2019)].

where 1P is the pressure difference between the inside and
outside of the suction cup, and Atotal is the total adhesion
area of the suction structure. According to this equation, the
pressure difference plays a significant role in adjusting the suction
cup adhesion.

Clingfish can strongly attach themselves to various wet
surfaces because of their hierarchical adhesion mechanism,
which consists of suction and friction (Wainwright et al., 2013).
The adhesive disc of the clingfish is composed of a suction
chamber and rows of papillae structures around the chamber.
The papillae structures divided into a polygonal shape increases
the friction, regardless of the roughness of the target surface.
When the suction chamber fails, the edges slide toward the
center of the chamber. However, the increase in friction at the
edges significantly improves the adhesion by resisting sliding.
Due to this hierarchical structure of the adhesive disc, clingfish
adhere well to surfaces of different roughness, developing pull-off
forces that are 80 to 230 times the bodyweight of the clingfish
(Figure 3C) (Wainwright et al., 2013; Sandoval et al., 2019, 2020).

Tree frogs exhibit different types of wet adhesive mechanisms
(Iturri et al., 2015; Langowski et al., 2018). Polygonal patterns
on the toe pads of the tree frog can strongly adhere
to the liquid-vapor interface. The wet adhesion principle
originates from the capillary force, whereby the attraction
between the surface and structure is transformed into an
adhesion force (Fnormal) (Figure 3D) (Zhang et al., 2020).
According to this principle, organisms can adhere to surfaces
by obtaining high adhesion/friction, even under wet conditions.
The capillary-force-based adhesion force is expressed as follows
(Chen et al., 2020):

Fnormal =−πRl
2η

cosθ1 + cosθ2

h
−πRlη (5)

where Rl is the liquid film radius, h is the liquid film thickness, θ1
and θ2 are the contact angles, and η is the viscosity coefficient of
the liquid.

Research on the superior adhesion mechanism of suction
cups and polygonal patterns has promoted the development of
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artificial wet adhesives. In particular, several strategies have been
reported to construct more complex 3D configurations and scale
down to submicron/nano. Nano-or microsuckers with cavity
structures were presented based on hole-patterned mold-assisted
soft lithography (Chen and Yang, 2017; Oh et al., 2018). In
addition, complex configurations of the suction cup components,
such as the orifice and protuberance, were successfully mimicked
for wet adhesives by controlling the meniscus of a liquid
precursor (Baik et al., 2017). They revealed that the combination
of the complex structures helps the adhesive to exert a strong
adhesion of up to 110 kPa under wet conditions (Baik et al.,
2018) (Figure 3E). Lee et al. developed a suction cup composed of
thermoresponsive polymers exhibiting enhanced adhesion of up
to 94 kPa (Lee et al., 2016). Zhou et al. also presented a pneumatic
sucker exhibiting excellent adaptable adhesion up to 3.75N on
a rough surface (with surface roughness Ra = 200µm) under a
sucker’s modulus of 1.29 MPa (Figure 3F) (Zhuo et al., 2020).
Recently, a 3D Printing based bottom-up approachwas applied to
amicro-suction disk, which exerts high friction of up to 266.8 kPa
(Figure 3G) (Lee et al., 2019). Furthermore, hexagonal-shaped
micropatterns were presented as strong wet adhesives, where the
synergistic effects of the low bending stiffness of the pillars and a
high number density of the pattern in the sliding direction exhibit
a robust friction force, even underwater (Chen et al., 2015; Iturri
et al., 2015; Ko et al., 2017a).

The gecko-inspired nano/microstructure can be utilized as
wet adhesives, where the surface wettability of both the gecko
adhesives and target substrates can also play a significant role
in wet conditions (Stark et al., 2014; Stark and Mitchell, 2019;
Mitchell et al., 2020). When the micropillars and wet substrate
come into contact, the interfacial water layer reduces adhesion
by causing van der Waals interference and the lubrication effect.
In the case of a hydrophilic substrate, the surface does not
effectively prevent or repel interfacial water, which significantly
reduces adhesion compared to dry conditions (Stark et al., 2014).
However, on a hydrophobic substrate, the interface between the
adhesive and substrate can repel water andmaintain dry adhesion
based on van der Waals interactions. Based on this principle,
Soltannia et al. presented mushroom-shaped microfibers with
strong and reversible underwater adhesion (Soltannia and
Sameoto, 2014), which can be applied to attachable gaskets in
microfluidic devices and microstrips (Wasay and Sameoto, 2015;
Zandvakili et al., 2017).

Research on the integration of dry and wet adhesives
has also been actively conducted. Representatively, Lee et al.
presented a dry-wet hybrid mechanism in which gecko-
inspired dry adhesives were integrated with mussel-inspired wet
adhesives of 3,4-dihydroxy-L-phenylalanine (DOPA) proteins
(Lee et al., 2007) that form non-covalent interactions (hydrogen
bonding, cation-pi interaction, metal coordination, hydrophobic
interaction) on diverse organic and inorganic substrates, both
in air and underwater (Hofman et al., 2018). Furthermore, the
hydrogel was combined with gecko adhesives for the synergistic
effect of mushroom-shaped micropillars and water-absorbing
properties with the hydrophilic nature of the hydrogel (Yi
et al., 2018). The combination enables strong van der Waals
adhesion under dry conditions and capillary adhesion under wet

conditions. Recently, Wang et al. proposed fibrillar adhesives
with angled tip structures (cupped microstructures), exhibiting
strong and reversible adhesion properties under both dry and
wet conditions (Wang et al., 2019b; Wang Y. et al., 2020).
The cup-shaped contact geometry enables strong adhesion
mechanisms attributed to van der Waals interactions under dry
conditions, while suction under wet conditions. Because the
wet adhesion of existing flat mushroom structures is feasible
under limited conditions (e.g., hydrophobic mating surfaces), the
hybrid approach is expected to be an effective solution for robust
adhesion in both dry and wet environments.

APPLICATIONS OF BIOINSPIRED DRY
AND WET ADHESIVES

Robust adhesion systems have been actively explored in
advanced industries. In particular, grippers, robots, and sensors
require reversible and versatile adhesion to dry/wet conditions.
Accordingly, many researchers have introduced bioinspired
dry/wet adhesive structures for advanced applications. In this
section, we discuss how dry/wet adhesives are applied to these
application fields in detail.

Bioinspired Adhesives on Advanced
Grippers
In recent years, gripper systems have been used in various
industrial fields to improve the efficiency of manufacturing
processes by transporting objects or assisting repetitive work (Tai
et al., 2016). With the development of various manufacturing
industries, industrial grippers with the ability to grasp fragile
or rough objects and to hold and release an object repeatedly
without residue or damage are highly required (Sinatra et al.,
2019). Wet adhesion capability is also required to allow grippers
to easily transport objects in wet or underwater environments
(Nishimura et al., 2017).

Bioinspired dry adhesives help grippers improve grasping
capability with excellent adhesion properties. Furthermore, the
switchable adhesion properties provide simple and efficient grip
control (Lee et al., 2008; Zhou et al., 2013; Seo et al., 2014).
For example, mushroom-shaped pillar arrays were integrated
into a transportation system for fragile wafers (Zhou et al.,
2013) (Figure 4A). The transportation system exhibited strong
adhesion to the objects without a high preloading force, as well
as controllable switchable adhesion properties by applying a
small shear force without the consumption of external energy.
Jiang et al. developed a gripper system with multiple patches
and angled microwedges (Jiang et al., 2017). The discrete
patches allow the gripper system to hold the curved objects by
allowing the patches to form conformal contact from micro-
to macroscale on the target surface. A gripper system with an
elastic microfibrillar membrane was presented, which could be
deformable under pneumatic control to exhibit robust adhesion
to curved or irregular objects (Figure 4B) (Song and Sitti, 2014;
Song et al., 2017).

Moreover, a gripper system with wet adhesives, such as
suction cup structures, is capable of grasping wet objects in
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FIGURE 4 | Dry and wet adhesion structure application in gripper system. (A) Gecko dry adhesive structure to obtain strong adhesion [reprinted with permission from

ref Zhou et al. (2013)]. (B) Dry adhesive structure applied to sucker structure [reprinted with permission from ref Song et al. (2017)]. (C) Wet adhesive structure applied

to gripper system [reprinted with permission from ref Mazzolai et al. (2019)]. (D) Control of gripper adhesion with dry adhesion structure at low voltage [reprinted with

permission from ref Tian et al. (2020)]. (E) Light-responsive adhesion control of dry adhesion structure [reprinted with permission from ref Wang X. et al. (2019)]. (F)

Electrothermal-based adhesion control of wet adhesion structure [reprinted with permission from ref Baik et al. (2021)].

various morphologies without slipping under wet environments.
Mazzolai et al. presented a soft arm with suction cups to
retrieve non-standard objects under various dry/wet conditions,
including themedium of air, water, and oil (Figure 4C) (Mazzolai
et al., 2019). Furthermore, the combined pneumatic-controllable
suckers enable the soft gripper to grasp objects with various
configurations (i.e., flat, spherical, and hexagonal shapes in wet
conditions) (Zhuo et al., 2020).

Dry/wet adhesive structures based on stimuli-responsive
materials have been applied to gripper systems to achieve
controllable adhesion strength. Tian et al. presented a gripper
that could control adhesion using a dry adhesive with an
electrically responsive characteristic (Figure 4D) (Tian et al.,
2020). In addition, photothermal polymers were adapted to
micropatterned soft grippers for a fast switchable dry adhesive,
where the adhesion strength could increase up to a maximum of
2.5 times after exposure to UV light (Figure 4E) (Wang X. et al.,
2019). A gripper system with an electrothermally controllable
sucker was presented, which was capable of fast underwater
adhesion control (Figure 4F) (Baik et al., 2021).

Bioinspired Adhesives on Advanced
Robots
In recent years, various robotic systems have been utilized to
perform tasks in extreme situations that are inaccessible to

humans, such as confined spaces or underwater (Jiang et al., 2017;
Ma et al., 2018). The adhesion system is considered an important
technical component: it enables the robotics to be highly mobile,
settle down safely, and sense the object through conformal
contact, even on a ceiling, steep slope, or underwater (Kwak
et al., 2011c). However, conventional adhesive methods, such as
vacuum or electrostatic adsorption, are not suitable for tuning the
adhesion of remote-controllable robots owing to the connection
of the pneumatic or electrical control system. Furthermore,
adhesion switching systems are quite energy-consuming because
they require a continuous supply of external energy to maintain
adhesion (Gu et al., 2018). As a solution to existing problems,
various approaches utilizing bioinspired adhesives have been
actively conducted.

The nano/micro-scale hairy structures of the gecko and beetle
have been applied to dry adhesive systems in robots. A four-
legged climbing robot with a bioinspired multi-toe with a dry
adhesive exhibited strong adhesion without high pressure during
attachment (Figure 5A) (Kim et al., 2008; Wang et al., 2018).
Furthermore, the adhesive structure enhanced the stability and
adaptability to a rough surface. The dry adhesive structure was
also integrated into a controllable locomotion wheel (Figure 5B)
(Liu J. F. et al., 2020). Depending on the rotational direction
of the wheel and belt, the anisotropic dry adhesive on the
belt can control the adhesion for continuous attachment and
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FIGURE 5 | Dry and wet adhesive applied to mobile robots. (A) Robot system with mushroom-shaped dry adhesive and locomotion by controlling adhesion strength

[reprinted with permission from ref Wang et al. (2018)]. (B) Wall-climbing robot with an adhesive belt and four-wheeled system [reprinted with permission from ref Liu J.

F. et al. (2020)]. (C) Wall and ceiling climbing quadruped robot with mushroom-shaped dry adhesive pads [reprinted with permission from ref Ko et al. (2017b)]. (D)

Space truss-crawling robot with multi-joint leg and dry adhesive [reprinted with permission from ref Tang et al. (2019)]. (E) Remora-inspired biorobot with suction disc

and locomotion under wet conditions [reprinted with permission from ref Wang et al. (2017)].

detachment. In numerous studies, a dry adhesive capable of
maintaining robust contact under peeling conditions has been
applied to robots for high mobility on ceilings, steep slopes, and
curved surfaces. Ko et al. presented a wall-and-ceiling-climbing

quadruped robot with mushroom-shaped dry adhesive pads
positioned on the foot (Figure 5C) (Ko et al., 2017b). This design
allowed the robot system to adhere firmly to the ceiling or wall
against its weight and reduce the peeling stress. In addition,

Frontiers in Mechanical Engineering | www.frontiersin.org 8 May 2021 | Volume 7 | Article 668262

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Kang et al. Applications of Bioinspired Adhesives: Review

FIGURE 6 | Bioinspired adhesive applied sensors. (A) Gecko-inspired dry adhesive applied to strain sensor exhibiting conformal contact on a flexible curved surface

[reprinted with permission from ref Seong et al. (2020)]. (B) Gecko-inspired dry adhesive applied to a wearable sensor with conductive nanocomposite for ECG signal

and motion detection [reprinted with permission from ref Kim et al. (2016)]. (C) Octopus-inspired microstructure adhesive applied to temperature sensor exhibiting

relative resistance changes according to skin temperature [reprinted with permission from ref Oh et al. (2018)]. (D) Octopus-inspired wet adhesive applied to a sensor

with conductive polymer composite for bio-signal detection under underwater conditions [reprinted with permission from ref Min et al. (2020)].

a bioinspired robot that mimicked the multi-joint leg and dry
adhesive footpad of a gecko has been reported (Figure 5D)
(Tang et al., 2019). The multi-joint leg with attachable and
deformable dry adhesive microstructures enabled the robots to
move vertically without slipping.

Moreover, numerous bioinspired wet adhesives have been
applied to robots to ensure stable contact with the target
object and settle down exactly on the target point in a wet
environment. The anatomical properties of suction disks in the
clingfish were applied to the marine robot (Figure 5E) (Wang
et al., 2017). Suction disks allowed clingfish robots to exhibit
wet adhesion of up to 436.6N, which is capable of adhering
to biological and non-biological target objects, such as fishes
and hulls. Iwasaki et al. presented a medical soft robot with a
millimeter-scale suction cup array integrated with a neodymium
magnet that could control the adhesion and locomotion via
external magnetic fields, enabling strong adhesion to the wet
surfaces of an internal organ (Iwasaki et al., 2020). Ma et al.
presented a robot system that can climb to a steep slope under
dry and wet conditions using a gecko dry adhesive coated
poly(dopamine methacrylate-co-2-methoxyethyl acrylate-co-
isopropyl acrylamide)(p(DMA-co-MEA-co-NIAAM))/iron
oxide (Fe3O4) composite (Ma et al., 2018). The superior
and reversible adhesion performance enables the robot to

move swiftly and adhere firmly on the slippery surface in
wet conditions.

Bioinspired Adhesives on Advanced
Sensors
Conformal contact without slip or peeling is fundamental for
the stable detection of advanced sensors (Wang C. H. et al.,
2019; Zhang C. et al., 2021). Conventional approaches, such
as a pressure-sensitive adhesive (PSA) and an ionic gel, can
adhere to the substrate with a tacky surface. However, these
methods not only cause damage or injury to a substrate but also
delaminate the sensors from the substrate under wet conditions
(Ameri et al., 2017; Park et al., 2020). The application of bio-
inspired dry/wet adhesives to sensors has superior advantages
compared to previous methods: (1) reversible and restorable
adhesion, (2) enhanced conformality to the rough surface, and (3)
versatility to diverse substrates with different surface properties
(Hwang et al., 2020).

In particular, it is challenging for sensors to adhere to the
skin because it is rough and deforms as the body moves (Hwang
et al., 2018). To enhance the adhesion of the sensor to the skin,
a high-aspect-ratio micro hair electrocardiogram (ECG) sensor
was developed, in which conformally adapted microstructures
can reduce the noise of the generated pulse signals from the body
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(Pang et al., 2015). Furthermore, several microfibrillar adhesives
have been applied to wearable sensors that allow conformal
contact with the microgroove of the skin and achieve stable
detection with a low signal-to-noise ratio even on deformed skin
(Drotlef et al., 2017; Liu X. J. et al., 2020).

In addition, various studies have been conducted on
smart devices for sensing human motion to maintain high
adhesion despite dynamic movements. Seong et al. showed
a self-attachable and flexible strain sensor with CNT-coated,
mushroom-shaped microstructures (Figure 6A) (Seong et al.,
2020). The protruding tips of the mushroom structures exhibited
robust adhesion to the target surface while the conductive
CNT layer was highly sensitive to strain, even for repeatable
detection cycles. Furthermore, a mushroom-shaped dry adhesive
based on a graphene/CNT/PDMS nanocomposite was utilized
as an attachable ECG sensor that sensed a fine electrical signal
and precisely distinguished various types of human movements
without detachment (Figure 6B) (Kim et al., 2016).

Furthermore, wet adhesives have been applied to sensors
to maintain strong adhesion and sensing performance on
sweaty skin or underwater (Wu et al., 2021). Many studies
have integrated octopus-inspired suckers into sensors. Octopus-
inspired suction cups have been demonstrated for medical
sensor applications to improve wet adhesion by inducing
negative pressure within the cavity under wet conditions, where
various vital signals — including body temperature, respiration,
electrocardiogram (ECG), pulse, and blood pressure — can be
detected stably (Choi et al., 2016). Furthermore, wet adhesive
microstructures mimicking octopus sucker rims were presented
as skin-attachable temperature sensors (Figure 6C) (Oh et al.,
2018). The octopus-inspired structures enhanced the sensing
accuracy of body temperature, even when sweating. Min et al.
developed a skin-attachable sensor with a dome-shaped sucker
that was drainable owing to mesh patterns, where the skin
patch showed high normal adhesion strength under wet and
underwater conditions (Figure 6D) (Min et al., 2020).

CONCLUSIONS

With the development of advanced industrial applications, such
as grippers, robots, and sensors, bioinspired adhesives have
become a promising solution to the low adhesion functionality
of existing adhesion systems. Accordingly, bioinspired adhesive
structures represented by pillar and sucker structures are
being actively studied owing to their extraordinary adhesion
with conformal, controllable, damage- and contamination-free
properties, even in wet environments. In this review, we
investigated the application of these adhesive structures in the
field. Bioinspired adhesives enable robotic systems to perform
efficient locomotion, such as climbing, clinging, and gripping.
In addition, they improve the sensing performance of attachable
sensors by allowing them to make close contact with the target
surfaces, even in wet environments. However, despite these
advances, certain problems remain to be solved.

First, although various studies have been conducted on dry
and wet adhesives for strong skin adhesion, it is still challenging
to adhere to skin that has various surface contaminants, such as
dead cells, hair, secreted oil, and sweat (Bae et al., 2013; Choi et al.,

2016; Kim et al., 2016; Baik et al., 2017; Stauffer et al., 2018). In
particular, repeated deformations, such as bending or stretching
of the joints (e.g., elbows and knees), hinder stable and long-term
attachment (Liu et al., 2017; Stauffer et al., 2018).

Second, bioinspired adhesives with actively and rapidly
switchable adhesion require further development. Controllable
adhesives that are responsive to external stimuli enable the
rapid transportation of industrial gripper systems, swift climbing
of robots, and easy detachment of skin patches. Although
various stimuli-responsive materials, such as heat, light, and
electricity have been suggested, several limitations restrict their
practical application to real industries. For example, thermo-
responsive polymers have been integrated into mushroom-
shaped adhesives for electrothermally controllable soft grippers,
which have a relatively slow response time of ∼10min per pick
and place cycle (Li et al., 2020). An electro-responsive adhesive
based on a dielectric elastomer was developed for the feet of
soft wall-climbing robots (Gu et al., 2018). Even though they
respond quickly (within a second per gait cycle), for adhesion
control they require an operating voltage of at least 6,000V for
fast movement, which is quite energy-consuming in terms of
industrial application.

Third, the hierarchy structure is an important factor because
it improves structural stability and adaptability to surfaces with
various roughnesses. However, most studies that mimic the
hierarchy of the adhesives tend to produce no net benefit because
of manufacturing defects. Various molding techniques, including
soft lithography (Jeong et al., 2009a), porous membrane base
molding (Kustandi et al., 2007; Bhushan and Lee, 2012), and dip
transfer (Murphy et al., 2009), have been applied to hierarchical
structures, whereas the dramatic change in geometries between
micro-and nanostructures produces concentrated stress in the
joints and impedes demolding with reduced yields (Chan-
Park et al., 2005). Rohrig et al. introduced a laser printing-
based bottom-up approach to fabricate hierarchical structures,
whereas the low resolution of laser printing resulted in
insufficient adhesion performance (Rohrig et al., 2012). To
solve manufacturing problems, various approaches, such as
geometrical optimizations (Chan-Park et al., 2005), chemical
modifications (Otto et al., 2004; Cortese et al., 2008), and
advanced manufacturing methods with high precision (Zhang
et al., 2010; Park et al., 2014; Wang et al., 2019a), are required.

Several efforts have been made to commercialize bioinspired
dry adhesives (Nanogriptech R©, Geckskin R©, and Gecko R©

Nanoplast R©). In particular, continuous fabrication techniques
based on a roll-to-roll process have been successfully applied
to the large-scale fabrication of bioinspired dry adhesives
(Sameoto and Ferguson, 2014; Yi et al., 2014; Lee et al., 2018; Yu
et al., 2019). Despite these efforts, the complex microstructural
features (e.g., suction cups, mushrooms with angled tips) (Wang
et al., 2019b) or additional chemical treatments (Lee et al.,
2007; Zhao et al., 2017) impede the fabrication process and
lower yields in continuous manufacturing, which need to be
overcome for the widespread use of bioinspired adhesives.
We expect that these limitations can be overcome in the near
future through multidisciplinary studies on functional materials,
optimal structural design, and precise manufacturing techniques,
enabling more versatile uses of bioinspired adhesives in various
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industries, including precision manufacturing, biomedical
devices, and flexible electronics.
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