
Boundary Reflections of Rolling
Waves in Cubic Anisotropic Material
Peng Zhang and Pai Wang*

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, United States

Rolling waves have unconventional circular polarizations enabled by the equal-speed
propagation of longitudinal and transverse waves in elastic solids. They can transport non-
paraxial intrinsic (i.e. spin) mechanical angular momentum in the media. In this work, we
analyze the rolling wave reflections and their effects on the non-paraxial spins in a cubic
elastic half-space with an elastically supported boundary. Reflected waves from both
normal and general oblique incidences are investigated. We show that, by adjusting the
stiffness of the elastic boundary, we can precisely control the spin properties of the
reflected waves, paving the way towards a broad category of spinmanipulation techniques
for bulk elastic waves.
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1 INTRODUCTION

Recent advances in mechanical and acoustic metamaterials have made it possible to manipulate the
general intrinsic spin angular momentum (Holanda et al., 2018; Zhu et al., 2018; An et al., 2020;
Burns et al., 2020; Rückriegel et al., 2020; Shi and Yang, 2020) carried by elastic waves in the bulk
(Long et al., 2018; Wang et al., 2018; Shi et al., 2019; Toftul et al., 2019; Long et al., 2020). Our
previous work (Zhang et al., 2020) demonstrated that, when longitudinal and transverse elastic waves
propagate at the same speed, rolling waves may emerge, carrying a spin that is orthogonal to, and in
general not parallel to, the wave vector. This is only possible in anisotropic materials that satisfies
certain equal-wave-speed criteria (Zhang et al., 2020). As the simplest anisotropic material
characterized by only three independent elastic constants, cubic materials have been investigated
in many studies (Stoneley, 1955; Borcherds, 1973). Thomas (1966) analyzed the longitudinal wave
velocity at different directions using orientation components, and Mielnicki (1972) studied both
longitudinal and transverse waves using approximation method. The bounds of elastic wave speeds
(Zuo and Hjelmstad, 1997), surface wave polarizations (Chadwick and Wilson, 1992), and
supersonic surface waves (Every, 2015) have all been the topics of an active line of research.
Benefited from the fast development in additive manufacturing technology, cubic symmetric
metamaterials can now provide us with a broader range of possible elastic constants (Favre
et al., 2018; Tancogne-Dejean and Mohr, 2018; Lohmuller et al., 2019) even to the higher-order
elasticity effects, such as the compression torsion metamaterial (Frenzel et al., 2017; Wang and Liu,
2020), hyper-stress tensor with second-gradient elasticity (Weeger, 2021), and chiral-micropolar
metamaterials (Chen et al., 2021).

Although the stable propagation of rolling waves with non-paraxial spins have been demonstrated
(Zhang et al., 2020), effects of boundary reflections on the wave spin angular momenta have yet to be
investigated. The elastic wave reflection process is often both rich in physics and useful in
applications (Schoenberg, 1980; Bedford and Drumheller, 1994; Vavrycuk and Psencík, 1998;
Lee et al., 2017; Chen et al., 2019). However, studies on reflections from elastically supported
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boundaries of cubic materials are lacking. This further motivates
us to analyze the reflection of rolling waves in a cubic material
incident either normally or obliquely at such boundaries. The
present work fills the gap in understanding and predicting rolling
reflections and offers a new technique to manipulate the spin of
elastic bulk waves.

In this paper, we first review the general governing equations
for plane waves in an anisotropic medium. Next, the equal-wave-
speed criteria in cubic materials are derived. Furthermore, we
provide a general formulation for the spin angular momentum of
bulk elastic waves. Lastly, the normal and oblique incident rolling
waves are analyzed with different boundary conditions, where
both spin-preserving and spin-flipping phenomena may emerge.

2 PLANE WAVES IN ANISOTROPIC
MEDIUM

With consideration of long-wavelength limit (i.e. quasi-static
limit) only, we focus on the plane wave with wavelength much
larger than any micro-structure size, which implies the dispersive
behavior from geometry is negligible. The general bulk elastic
wave equation without body force is,

∇ · σ � ρü, (1)

where σ is the stress tensor and u is the displacement vector.
The general solution of plane waves is

u � u0 exp[i(k · x − ωt)], (2)

where u0 denotes wave amplitude, and k the wave vector. We
consider a plane wave propagating along an arbitrary direction
specified by the unit vector,

k ̂ � l1e1 + l2e2 + l3e3, (3)

where l1, l2, l3 are direction cosines, and e1, e2, e3 are the standard
orthonormal basis vectors of Cartesian coordinates. Then, we
have

k � kk ̂, (4)

where k is the wavenumber.
The time derivative of eq. 2 gives us,

z

zt
u � −iωu. (5)

With the definition of a matrix L,

L �
l1 0 0 0 l3 l2
0 l2 0 l3 0 l1
0 0 l3 l2 l1 0

⎛⎜⎝ ⎞⎟⎠. (6)

We have the spatial derivative in Voigt notation (Carcione,
2007),

∇ � ikL. (7)

Combining the above equations, we arrive at

k2Γ · u � ρω2u, (k2Γijuj � ρω2ui) (8)

where

Γ � L · C · LT , (Γij � LiICIJLJj) (9)

is the Kelvin-Christoffel matrix.
Here, we consider the phase velocity v and its amplitude, wave

speed v given as,

v � vk ̂, v � ω

k
. (10)

Then, we obtain the governing equation for bulk elastic wave
speeds in a general anisotropic material,

Γ · u − ρv2u � (Γ − ρv2I) · u � 0. (11)

The expressions of elements in Γ are given below as,

Γ11 � C11l
2
1 + C66l

2
2 + C55l

2
3 + 2C56l2l3 + 2C15l1l3 + 2C16l1l2,

Γ22 � C66l
2
1 + C22l

2
2 + C44l

2
3 + 2C24l2l3 + 2C46l1l3 + 2C26l1l2,

Γ33 � C55l
2
1 + C44l

2
2 + C33l

2
3 + 2C34l2l3 + 2C35l1l3 + 2C45l1l2,

Γ12 � C16l
2
1 + C26l

2
2 + C45l

2
3 + (C46 + C25)l2l3 + (C14 + C56)l1l3 + (C12 + C66)l1l2,

Γ13 � C15l
2
1 + C46l

2
2 + C35l

2
3 + (C45 + C36)l2l3 + (C13 + C55)l1l3 + (C14 + C56)l1l2,

Γ23 � C56l
2
1 + C24l

2
2 + C34l

2
3 + (C44 + C23)l2l3 + (C36 + C45)l1l3 + (C25 + C46)l1l2,

(12)

where Cij are components of the stiffness matrix in Voigt notation
(Carcione, 2007).

3 CONSTITUTIVE RELATION OF CUBIC
MATERIALS

Next, we focus our discussions on cubic materials characterized
by the cubic crystallographic point groups. As illustrated in
Figure 1, the symmetry conditions include four axes of three-
fold rotational symmetry that can be identified with the body
diagonals of a cubic unit cell (Bückmann et al., 2014;
Dirrenberger et al., 2013; Authier, 2003). Rather counter-
intuitively, this symmetry requirement does not include any
axis of four-fold (90 degree) rotational symmetry (Ashcroft
and Mermin, 1976, p. 121). The stiffness matrix of cubic
material is given as (Authier, 2003; Norris, 2006; Zhang et al.,
2020),

C(Cubic) �

C11 C12 C12 0 0 0
C11 C12 0 0 0

C11 0 0 0
C44 0 0

Sym C44 0
C44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, 3 constants( )

(13)

For waves propagating along the z-direction, the direction
cosines are

l1 � 0, l2 � 0, l3 � 1. (14)

Then, the Kelvin-Christoffel matrix components become,

Γ11 � Γ22 � C44, Γ33 � C11, Γ12 � Γ13 � Γ23 � 0. (15)

Therefore, the governing eq. 11 becomes,
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0 � (Γ − ρv2I) · u

�
C44 − ρv2 0 0

0 C44 − ρv2 0
0 0 C11 − ρv2

⎛⎜⎜⎝ ⎞⎟⎟⎠ ·
u1

u2

u3

⎛⎜⎝ ⎞⎟⎠.
(16)

We note that u3 represents the longitudinal wave, while u1 and
u2 represent the transverse waves. Therefore, from eq. 16, we
obtain the longitudinal and transverse wave speeds as,

vL �
���
C11

ρ

√
, vT �

���
C44

ρ

√
. (17)

Thus, for waves traveling in the z-direction of a cubic material,
in order to have a rolling wave with non-praxial spin polarization
(Zhang et al., 2020), we need the equal-speed criterion:

C11 � C44. (18)

By symmetry, for the waves propagating in x− or y−direction,
the equal-speed criterion is exactly the same as eq. 18.

4 INTRINSIC SPIN ANGULAR MOMENTUM
OF BULK ELASTIC WAVES

To calculate the spin density of the bulk elastic waves, we consider
the displacement field of a general plane wave u �
~uexp[i(k · x − ωt)] with

~u �
m
n
l

⎛⎜⎝ ⎞⎟⎠. (19)

Importantly, here m, n and l are complex-valued, so that they
contain the information not only about amplitudes but also about
the relative phase differences among displacement components of
the traveling wave. The spin angular momentum density, as a
real-valued vector, can be calculated as (Berry, 2009; Long et al.,
2018; Burns et al., 2020):

s � ρω

2
< ~u|Ŝ|~u> � ρω

2
Im[~u* × ~u], (20)

where (·)* denotes complex conjugation, and the spin-1 operator
is a third-order tensor defined as

S ̂ �
0 0 0
0 0 −i
0 i 0

⎛⎜⎝ ⎞⎟⎠,
0 0 i
0 0 0
−i 0 0

⎛⎜⎝ ⎞⎟⎠,
0 −i 0
i 0 0
0 0 0

⎛⎜⎝ ⎞⎟⎠⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (21)

Hence, the spin density for a general traveling wave is

s � ρω Im
n*l
l*m
m*n

⎛⎜⎝ ⎞⎟⎠. (22)

We note that the above formulation makes physical sense only
if all displacement components propagate at the same wave speed.
Particularly for cubic materials, the equal-speed criterion eq. 18
needs to be true. In this case, we can have stable propagation of
spins pointing at any direction by adjusting the complex
amplitudes m, n and l. This can be realized by simply
changing the relative phase differences. Hence, the direction of
the spin vector s can be completely independent from the
direction of the wave vector k.

5 NORMAL INCIDENCE AND REFLECTION

We now investigate normal reflections of a rolling wave at a
general elastic boundary. This serves as an example non-paraxial
spin manipulation. Considering a rolling wave along the z-
direction normally incident on a flat surface, we have the
instantaneous wave displacement fields at time t � 0 as uI �
~uI exp(ikz) and uR � ~uR exp(−ikz) with

~uI �
mI

nI

lI
⎛⎜⎜⎝ ⎞⎟⎟⎠ and ~uR �

mR

nR

lR
⎛⎜⎜⎝ ⎞⎟⎟⎠, (23)

where the superscripts, I and R, denote the incident and reflected
waves, respectively.

For the displacement with small amplitude, the linear strain
terms are dominant. In this case, by neglecting higher-order
strain terms, the strains can be calculated from displacements by

εij � 1
2
(ui,j + uj,i), i, j � x, y, z (24)

where the comma “,″ in subscripts denotes the derivative
operation.

FIGURE 1 | The symmetry requirement for cubic materials: Body
diagonals (orange solid lines) of a cubic unit cell serve as the four axes of three-
fold rotational symmetry. They are the sufficient and necessary conditions for
the cubic crystallographic point groups. On the contrary to some
common misconceptions, cubic materials do not need to have any four-fold
rotational symmetry.
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The reflection occurs at z � 0. So we have eikz � e−ikz � 1, and
the strain vector in Voigt notation becomes

εI �

εIxx
εIyy
εIzz
2εIyz
2εIxz
2εIxy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0
0
lIik
nIik
mIik
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, εR �

εRxx
εRyy
εRzz
2εRyz
2εRxz
2εRxy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0
0

−lRik
−nRik
−mRik

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (25)

The cubic constitutive relations are

σxx

σyy
σzz

σyz

σxz

σxy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·

εxx
εyy
εzz
2εyz
2εxz
2εxy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(26)

It is easy to compute the stress components for incident and
reflection waves, respectively:

σIxx
σ I
yy

σ I
zz

σIyz
σ I
xz

σIxy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

C12l
Iik

C12l
Iik

C11l
Iik

C44n
Iik

C44m
Iik

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

σR
xx

σRyy
σRzz
σR
yz

σRxz
σR
xy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

−C12l
Rik

−C12l
Rik

−C11l
Rik

−C44n
Rik

−C44m
Rik

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (27)

For a elastically supported cubic half-space, the boundary
conditions are

σ0
zx � Kxu

0
x, σ0

zy � Kyu
0
y , σ0

zz � Kzu
0
z . (28)

where (Kx, Ky, Kz) are components of the distributed stiffness per
unit area (Zhang et al., 2017) representing a general elastic
foundation supporting the solid surface, and the total stress
and displacement are

σ0
zx � σIzx + σRzx, σ0zy � σIzy + σR

zy, σ0zz � σIzz + σR
zz. (29)

u0x � uI
x + uR

x , u0y � uI
y + uRy , u0

z � uIz + uR
z . (30)

Substituting the displacement and stress components into
elastic boundary conditions, we get

C44m
Iik − C44m

Rik � Kx(mI +mR), (31)

C44n
Iik − C44n

Rik � Ky(nI + nR), (32)

C11l
Iik − C11l

Rik � Kz(lI + lR). (33)

Solving the above system of equations, we obtain

mR � C44ik − Kx

C44ik + Kx
mI, (34)

nR � C44ik − Ky

C44ik + Ky
nI, (35)

lR � C11ik − Kz

C11ik + Kz
lI. (36)

Because of the equal-speed requirement of rolling wave (C11 �
C44), the amplitude of reflection wave becomes,

mR � Rxm
I, nR � Ryn

I, lR � Rzl
I, (37)

with the generalized amplitude ratio of normal reflection given as

Rj � C11ik − Kj

C11ik + Kj
, j � x, y, z. (38)

We can also write in the form of a reflection matrix (Zoeppritz,
1919; Ursin and Tjäland, 1996):

mR

nR

lR
⎛⎜⎜⎝ ⎞⎟⎟⎠ �

Rx 0 0
0 Ry 0
0 0 Rz

⎛⎜⎝ ⎞⎟⎠ ·
mI

nI

lI
⎛⎜⎜⎝ ⎞⎟⎟⎠. (39)

with the reflection matrix R̂ � diag(Rx,Ry,Rz). This complex-
valued non-dimensional parameter Rj is the key connection
between the incident and reflected waves and deserves further
analysis. We note that |Rj| � 1 is consistent with the fact that all
wave energy is reflected. Hence, we have

Rj � eiϕ with tan ϕ � 2Kj/C11k

1 − (Kj/C11k)2
. (40)

Here, the phase angle ϕ of Rj corresponds to the phase
change during the reflection, and it dependents on the
boundary-bulk stiffness ratio Kj/C11 and the wave number
k, as shown in Figure 2. Therefore, by adjusting the elastic
stiffness at the boundary, one can manipulate the spin of the
reflected waves.

Although all properties of both the bulk and the reflection
surface are assumed to be independent of the incidence wave
frequency, here the reflection phase change can be frequency-
dependent, as the angular wave number k appears in the ratio.
The emergence of frequency dependency can be intuitively

FIGURE 2 | The complex-valued amplitude ratio of normal reflection, Rj,
is determined by the boundary-bulk stiffness ratio, Kj/C11, and wave
number k.
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explained by the role of wavelength during reflection. We note
from eq. 25 that k first appears in the strain calculations since, for
a given wave displacement amplitude, the strains in the
propagation direction, εzj, are actually inversely proportional
to the wavelength: Longer wavelength gives rise to a smaller
strain and vice versa. Consequently, the stresses, σzj, and the force
acting on the boundary springs are wavelength-dependent as well.
If the boundary is supported by an elastic foundation with finite
stiffness per area, Kj, we have the following: At the low-frequency
and long-wavelength limit, the force per area acting on the
boundary, |σzj|∝ C11k → 0. So, the boundary hardly moves,
and the incidence wave effectively “sees” a rigid surface; At the
high-frequency and short-wavelength limit, the force per area
acting on the boundary, |σzj|∝ C11k → ∞. So, the boundary
moves a lot, and the incidence wave effectively “sees” a free
surface.

Next, we consider some special cases and focus on the in-xz-
plane rolling waves with nI � nR � 0. We note that the elastic
boundary condition degenerates into traction-free boundary
condition (Neumann type) when the boundary stiffness Kj →
0. Then, the amplitudes of reflected wave become

mR � mI, lR � lI. (41)

Similarly, the elastic boundary condition degenerates into the
fixed rigid boundary condition (Dirichlet type) when the stiffness
Kj → ∞. Then, the amplitudes of reflected wave become

mR � −mI, lR � −lI. (42)

In both cases above, by the definition of spin given in eq. 22, we
can conclude sR � sI, as shown in Figures 3B,C. So, the spin is
unaffected by the reflection process.

In addition, for the fixed-free hybrid boundary (Kx → ∞ and
Kz → 0, Figure 3D), we have

mR � −mI, lR � lI 0 sR � −sI. (43)

Similarly, for the free-fixed hybrid boundary (Kx → 0 and Kz

→ ∞, Figure 3E), we have

mR � mI, lR � −lI 0 sR � −sI. (44)

Thus, both hybrid boundaries will flip the spin for any incident
rolling wave.

Summarizing different cases for the normal incidence, we note
that, for Kx → 0 and Kz → 0, the boundary becomes traction-free
(Neumann type) and we have ~u

R � ~u
I
with no phase change. For

Kx → ∞ and Kz → ∞, the boundary becomes rigid (Dirichlet
type) and we have an out-of-phase reflected wave with ~u

R � −~uI.
In both cases, we have sR � sI, so the spin is preserved. In contrast,
for hybrid boundaries (Kx →∞, Kz → 0) and (Kx→ 0, Kz →∞),
we get sR � −sI, so the spin is flipped due to the difference in phase
change between the longitudinal and transverse displacement
components during the reflection process.

Figure 3 illustrates the results using the example of an incident
rolling wave carrying a non-paraxial spin of sIy � −1. The
reflection process is spin-preserving in both rigid and free
boundaries, while being spin-flipping for both hybrid free-
fixed and hybrid fixed-free boundary conditions.

6 THE OBLIQUE INCIDENCE AND
REFLECTION AT 45 DEGREE

Next we investigate the scenario in which the boundary plane is
oblique to the incident rolling wave at the 45° angle. We focus on
the incident rolling wave propagating towards the positive
z−direction,

uI �
mI

nI

lI
⎛⎜⎜⎝ ⎞⎟⎟⎠eik

Iz (45)

As shown in Figure 4A, the incidence angle here is αI � 45°.
Importantly, we note that, due to material anisotropy, the

FIGURE 3 | (A) Rolling wave reflections with normal incidence at a general elastic boundary. In all sub-plots, the incidence wave carries a spin angular momentum,
sIy � −1. Here sI and sR indicate the spin density of incidencewave and reflection wave, respectively. They can be calculated using the eq. 22. The reflection process is (B)
spin-preserving at the fixed rigid boundary, (C) spin-preserving at the free boundary, (D) spin-flipping at the fixed-free boundary, and (E) spin-flipping at the free-fixed
boundary.
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reflection angle(s) will not necessarily be equal to the incidence
angle. In fact, a single incidence wave, in general, may result in
multiple reflected waves towards different directions (Achenbach,
2012; Graff, 2012). Hence, the reflection angle(s) need to be
determined by a detailed analysis on boundary conditions and
material properties. In this case, we can write the reflection wave
as a general form in xz-plane,

uR �
mR

nR

lR
⎛⎜⎜⎝ ⎞⎟⎟⎠eik

R[cos(θ)x+sin(θ)z] (46)

where θ is the angle of wave vector with respect to the x-axis. It
follows that the reflection angle can be expressed as αR � θ + 45°, θ
∈ (−45°, + 45°).

Next, we look into the general conditions for rolling waves
propagating in the xz-plane. The normalized wave vector, as
given in eq. 3, is now characterized by cosine directions l2 � 0 and
l21 + l23 � 1. The element expressions of matrix Γ become,

Γ11 � C11l
2
1 + C44l

2
3,

Γ22 � C44,
Γ33 � C44l

2
1 + C11l

2
3,

Γ12 � 0,
Γ13 � (C12 + C44)l1l3,
Γ23 � 0.

(47)

Therefore, the governing eq. 11 becomes,

0 � (Γ − ρv2I) · u

�
C11l

2
1 + C44l

2
3 − ρv2 0 (C12 + C44)l1l3

0 C44 − ρv2 0
(C12 + C44)l1l3 0 C44l

2
1 + C11l

2
3 − ρv2

⎛⎜⎜⎝ ⎞⎟⎟⎠ ·
u1
u2
u3

⎛⎜⎝ ⎞⎟⎠.

(48)

Combining with the equal speed criterion in eq. 18, i.e., C11 �
C44, we obtain

0 � (Γ − ρv2I) · u

�
C11 − ρv2 0 (C12 + C11)l1l3

0 C11 − ρv2 0
(C12 + C11)l1l3 0 C11 − ρv2

⎛⎜⎜⎝ ⎞⎟⎟⎠ ·
u1

u2

u3

.

(49)

This shows that the in-plane waves (u1, u3) are in general coupled
together, and the out-of-plane wave u2 is decoupled from the two
in-plane polarizations.

For non-trivial solution to exist for in-plane wave velocities in
eq. 49, the determinant must vanish. This leads to the following

ρ2v4 − 2C11ρv
2 + C2

11 − (C12 + C11)2l21l23 � 0. (50)

This is a quadratic polynomial with respect to v2. It has the
discriminant as Δ � 4ρ2(C12 + C11)2l21l23 ≥ 0, and the roots are

v2 � C11 ± |(C12 + C11)l1l3|
ρ

. (51)

For any linear material to be statically stable, it needs a positive
strain energy function, and hence a positive-definite stiffness
matrix (Ting, 1996), which leads to the following conditions:

C11 > 0 and − C11 <C12 <C11 (52)

Then, in order to determine the reflection angle(s) in this case, we
apply Snell’s law for reflection

ωI

vI
sin(αI) � ωR

vR
sin(αR). (53)

Here, the incidence angle is αI � 45°. Combining it with ωI � ωR

and vI � �����
C11/ρ

√
, we arrive at

1����
2C11

√ � sin(αR)����������������
C11 ± |C12 + C11|l1l3

√ � sin(θ + 45°)����������������
C11 ± |C12 + C11|l1l3

√ (54)

with the cosine directions,

l1 � cos(θ), l3 � sin(θ). (55)

Further simplification gives us,

sin(θ)cos(θ)(2C11 ± |C11 + C12|) � 0. (56)

For θ ∈ (−45°, + 45°) with the positive-definite conditions of eq.
52, the only solution to above equation is

θ � 0 (57)

which implies αR � 45°. Therefore, there can be one reflection wave
vector only, and the reflected wave will propagate along x-direction
at the speed vR � vI. Hence, we can rewrite the reflection wave as,

uR �
mR

nR

lR
⎛⎜⎜⎝ ⎞⎟⎟⎠eik

Rx with kR � kI. (58)

For brevity, denoting the wave number as kI � kR � k, we
obtain

uI �
mI

nI

lI
⎛⎜⎜⎝ ⎞⎟⎟⎠eikz , uR �

mR

nR

lR
⎛⎜⎜⎝ ⎞⎟⎟⎠eikx. (59)

The corresponding strain wave amplitudes are

εI �

εIxx
εIyy
εIzz
2εIyz
2εIxz
2εIxy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0
0
lIik
nIik
mIik
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, εR �

εRxx
εRyy
εRzz
2εRyz
2εRxz
2εRxy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

mRik
0
0
0
lRik
nRik

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (60)

And the stress wave amplitudes are

σIxx
σ I
yy

σIzz
σIyz
σIxz
σ I
xy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

C12l
Iik

C12l
Iik

C11l
Iik

C11n
Iik

C11m
Iik

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

σR
xx

σRyy
σR
zz

σR
yz

σR
xz

σRxy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

C11m
Rik

C12m
Rik

C12m
Rik

0
C11l

Rik
C11n

Rik

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (61)

To analyze the normal and transverse elastic boundary
condition, we introduce a local coordinate system x′ � Ψx
specified by the transformation matrix,
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Ψ �
cos(φ) 0 sin(φ)

0 1 0
−sin(φ) 0 cos(φ)

⎛⎜⎝ ⎞⎟⎠ �
�
2

√
2

1 0 1
0

�
2

√
0

−1 0 1

⎛⎜⎝ ⎞⎟⎠ (62)

where the φ � 45° as shown in Figure 4.
The general elastic boundary conditions in the local

coordinate system are

σ0z′x′ � Kx′u
0
x′ , σ0

z′y′ � Ky′u
0
y′ , σ0z′z′ � Kz′u

0
z′ . (63)

where (Kx′, Ky′, Kz′) are components of distributed stiffness per
unit area, and

σ0
z′x′ � σ I

z′x′ + σRz′x′ , σ0
z′y′ � σIz′y′ + σR

z′y′ , σ0
z′z′ � σIz′z′ + σRz′z′ . (64)

u0
x′ � uIx′ + uR

x′ , u0y′ � uI
y′ + uRy′ , u0

z′ � uI
z′ + uRz′ . (65)

are components of total stress and total displacement on the
boundary surface.

We next perform coordinate transforms using

σ ′ � Ψ · σ ·ΨT , u′ � Ψ · u. (66)

In the local coordinates, x′, we obtain

σ ′I � ik
2

(C11 + C12)lI + 2C11m
I

�
2

√
C11nI (C11 − C12)lI�

2
√

C11n
I 2C12lI

�
2

√
C11nI

(C11 − C12)lI
�
2

√
C11nI (C11 + C12)lI − 2C11mI

⎛⎜⎜⎝ ⎞⎟⎟⎠,

(67)

u′I �
�
2

√
2

lI +mI�
2

√
nI

lI −mI

⎛⎜⎜⎝ ⎞⎟⎟⎠. (68)

Similarly, the local stress and displacement of reflection
wave are,

σ ′R � ik
2

(C11 + C12)mR + 2C11l
R

�
2

√
C11nR (C12 − C11)mR�

2
√

C11n
R 2C12mR − �

2
√

C11nR

(C12 − C11)mR − �
2

√
C11nR (C11 + C12)mR − 2C11lR

⎛⎜⎜⎝ ⎞⎟⎟⎠,

(69)

u′R �
�
2

√
2

lR +mR�
2

√
nR

lR −mR

⎛⎜⎜⎝ ⎞⎟⎟⎠. (70)

Substituting the stress and displacement components eqs 67 –eqs
70 into the boundary conditions eqs 64,65, we obtain

ik
2
[(C11 − C12)lI + (C12 − C11)mR] � Kx′

�
2

√
2

(lI +mI + lR +mR),
(71)

ik
�
2

√
2

[C11n
I − C11n

R] � Ky′(nI + nR), (72)

ik
2
[(C11 + C12)lI − 2C11m

I + (C11 + C12)mR − 2C11l
R]

� Kz′

�
2

√
2

(lI −mI + lR −mR). (73)

Then, we can solve the system of eqs 71–73 for the complex-
valued amplitude components of the reflected wave:

mR � − Kx′(κ+ − Kz′ ) − Kz′ + 2C11
ik�
2

√( )(κ− − Kx′)[ ]lI + 2Kx′Kz′m
I

Kx′(Kz′ + κ+) + Kz′ + 2C11
ik�
2

√( )(κ− + Kx′ )
,

(74)

nR �
ik�
2

√ C11 − Ky′

ik�
2

√ C11 + Ky′
nI, (75)

lR � 2(κ+κ− − Kx′Kz′ )lI + Kz′ − 2C11
ik�
2

√( )(κ− + Kx′ ) − Kx′(κ+ + Kz′ )[ ]mI

Kx′(Kz′ + κ+) + Kz′ + 2C11
ik�
2

√( )(κ− + Kx′ )
,

(76)

where

κ+ � ik�
2

√ (C11 + C12), κ− � ik�
2

√ (C11 − C12). (77)

We can also write in the form of a reflection matrix (Zoeppritz,
1919; Ursin and Tjäland, 1996).

FIGURE 4 | (A) Illustration of rolling wave reflections at 45° incidence. In all sub-plots, the incidence wave carries a spin angular momentum, sIy � +1. Here sI and sR

indicate the spin density of incidence wave and reflection wave, respectively. They can be calculated using the eq. 22. The reflection process is (B) spin-preserving at the
fixed rigid boundary, (C) spin-preserving at the free boundary, (D) spin-flipping at the fixed-free boundary, and (E) spin-flipping at the free-fixed boundary. Note that the
free boundary in (C) has the specially effect of giving rise to an additional linearly polarized reflected wave. Although the spin is still exactly preserved, the overall
reflected wave has an elliptical rolling polarization.
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FIGURE 5 | The amplitude and phase of reflection matrix elements under different wave numbers k at Cr � C12/C11 � 0. (A,B) Amplitude and phase at k � 0.001,
(C,D) Amplitude and phase at k � 1, (E,F) Amplitude and phase at k � 1,000.
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mR

nR

lR
⎛⎜⎜⎝ ⎞⎟⎟⎠ �

Rmm 0 Rml

0 Rnn 0
Rlm 0 Rll

⎛⎜⎝ ⎞⎟⎠ ·
mI

nI

lI
⎛⎜⎜⎝ ⎞⎟⎟⎠. (78)

where

Rmm � −2Kx′Kz′

D

Rml � Kz′κ− − Kx′κ+ +
�
2

√
C11ik(κ− − Kx′)

D

Rnn �
ik�
2

√ C11 − Ky′

ik�
2

√ C11 + Ky′

Rlm � Kz′κ− − Kx′κ+ −
�
2

√
C11ik(κ− + Kx′ )

D

Rll � 2(κ+κ− − Kx′Kz′ )
D

(79)

with denominator D � Kx′(Kz′ + κ+) + (Kz′ + 2C11
ik�
2

√ )(κ− + Kx′ ).
We note that Rml ≠ Rlm, which means that the complex-valued
reflection matrix is not Hermitian. A closer scrutiny reveals that the
amplitudes of Rml and Rlm are always the same. The two complex-
valued reflective coefficients only differ in their phase angles.

We also note that the term Rnn for the out-of-xz-plane wave is
independent and very similar to the normal incidence scenario, as
shown in eqs 38,40 and Figure 2. All other terms in eq. 79 are
illustrated in Figure 5 to show how they change with the wave
number, k, and the boundary stiffness ratio, Kz′/Kx′. We observe
in Figure 5B that both Rml and Rlm shows a phase jump of 180°.
This is because of two reasons: 1) The small wave number k �
0.001 leads to the fact that both Rml and Rlm are almost purely
imaginary; and 2) At the boundary stiffness ratio of Kz′/Kx′ � 3,
values transition from a negative imaginary number to a positive
imaginary number. This results in the 180° phase jump.

Clearly, the out-of-xz-plane wave nR only depends on nI:

nR � nI for Ky′ � 0, (80)

nR � −nI for Ky′ � ∞. (81)

The four extreme cases for in-xz-plane wave polarizations are:

Case I (Figure 4B), Kx′ → ∞, Kz′ → ∞:

mR � −mI, lR � −lI, 0 sR � sI. (82)

Case II (Figure 4C), Kx′ → 0, Kz′ → 0:

mR � lI, lR � −mI + C11 + C12

C11
( )lI

� −mI + 1 + Cr( )mR 0 sR � sI (83)

with Cr � C12/C11. Here, the second term in lR is associated with lI,
and mR � lI. So, this term does not have any contribution to the
circularly rolling polarization, and it gives rise to an additional
linearly polarized wave. Consequently, the spin is still exactly
preserved, but the overall reflected wave has a elliptically rolling
polarization.

Case III (Figure 4D), Kx′ → ∞, Kz′ → 0:

mR � −lI, lR � −mI 0 sR � −sI. (84)

Case IV (Figure 4E), Kx′ → 0, Kz′ → ∞:

mR � lI, lR � mI 0 sR � −sI. (85)

As illustrated in Figure 4C, the results in eq. 83 for Case II are
special and remarkable. The reflected wave from the free
boundary is different from all other cases. However, the
reflected spin density is indeed still the same to that of the
incidence wave. The reason is that the additional term in lR

does not contribute to the circularly rolling polarization. To
further investigate this especially interesting case, we calculate
the polarization of reflected waves with different ratios of Cr �
C12/C11 and plot the result in Figure 6. Note that the ratios of Cr �
−1 in Figure 6A and Cr � 1 in Figure 6E are actually extreme
scenarios not attainable in statically stable materials due the
positive definite conditions listed in eq. 52.

7 THE OBLIQUE INCIDENCE AND
REFLECTION AT ARBITRARY ANGLE

Next, we look into the situation with an arbitrary incidence angle.
From Snell’s law eq. 53, we can obtain

sin(αI)���
C11

√ � sin(αR)�����������������
C11 ± (C12 + C11)l1l3

√ (86)

where l1 � cos(θ), l3 � sin(θ). Noticed from Figure 4A that the
incidence angle is identical to the rotation angle, i.e., αI � φ and

FIGURE 6 | In the oblique reflection at 45°, elliptically rolling polarizations of the reflected waves from the free boundarymay appear due to different material stiffness
constants C11 and C12. An incident spin which is the same of that shown (A) is assumed throughout. (A) also represents the purely circularly rolling polarization for Cr �
−1. (B–F) show the elliptically rolling polarizations for the cases ofCr � −0.5, Cr � 0, Cr � 0.5 and Cr � 1, respectively. Note that all polarizations are scaled for the purpose
of clearly demonstrating differences in elliptical eccentricity.
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FIGURE 7 | The reflection angle αR of twomodes with respect to the incidence angle αI. (A) Cr � 0.9, (B) Cr � 0.1, (C) Cr � 0, (D) Cr � −0.1, (E) Cr � −0.149452, (F)
Cr � −0.9.
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then the reflection angle αR � π/2 − φ + θ. The reflection angle
αR is the solution of the transcendental equation depending
on the incidence angle αI and the material constant ratio
Cr � C12/C11:�����������������������������������������
1 ± (1 + Cr) sin(αR + αI − π/2) cos(αR + αI − π/2)√

sin(αI) � sin(αR)
(87)

where “±” gives rise to two different reflected wave modes. In
general, those two modes have two different reflection angles.

Next, we numerically solve eq. 87 for the reflection angle αR

and illustrate the results in Figure 7. The points P1 and P2 in the
plots indicate the cases of the normal incidence and the 45°

incidence, respectively. Both cases have been thoroughly
discussed in previous sections. The next critical point P3 is
where the reflection angle αR → π/2 for Mode 1. Plugging αR

� π/2 into eq. 87, we obtain:

(1 + Cr)2 sin6(αI
3) + sin2(αI

3) − 1 � 0. (88)

Thus, we arrive at the analytical solution of the above
equation,

αI
3 � arcsin

����������������������������������������������
1

2(1 + Cr)2 +
��
Δ

√
3

√
+

��������������
1

2(1 + Cr)2 −
��
Δ

√
3

√√√⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠ (89)

with

Δ � 1

4(1 + Cr)4 + 1

27(1 + Cr)6 > 0. (90)

We know that, with Δ > 0, the cubic function always has one
real root and two complex conjugate roots. In this case, we can
only obtain one critical angle αI3. Therefore, we conclude that, for
incidence angle larger than the critical angle αI3, the reflection
wave of Mode 1 will no longer exist.

Here, from eq. 52 we have the constraint −1 < Cr � C12/C11 <
1. Hence, we investigate all values of Cr within this range and find
the following four representative scenarios for Mode 2 of the
reflected waves:

• For 0 < Cr < 1, as shown in Figures 7A,B, we have one local
maximum (point P4) and no local minimum for Mode 2.
The reflection angle αR will increase together with the
incidence angle αI until it reaches to the maximum at
point P4. Then, the anomalous trend appears, and the
reflection angle αR will decrease if we further increase the
incidence angle αI. Consequently, for Mode 2, we may have
two different incidence angles with the same reflection angle.

• For −0.149 < Cr ≤ 0, as shown in Figures 7C,D, we have one
local maximum (point P4) and one local minimum (point
P5). Remarkably, as shown in the inset of Figure 7D, we may
have three different incidence angles with the same reflection
angle for Mode 2. Also, we note that, with the decreasing value
of Cr, point P4 and point P5 move closer to each other.

• For Cr � −0.149, as shown in Figure 7E, we have no local
maximum, no local minimum, but a saddle point (point P6).
This saddle point P6 is the result of point P4 and point P5
merging together.

• For −1 < Cr < −0.149452 as shown in Figure 7F, we have a
monotonic curve for Mode 2. The reflection angle αR always
increases with the increasing incidence angle αI. And this is
the normal phenomenon generally understood.

In the first two scenarios listed above, we have the anomalous trend
phenomenon: The reflection angle αR does not have a monotonic
relationship with the incidence angle αI. This may provide us with
a new technique to control the direction of reflected waves.

Furthermore, we can take the derivative of both sides of eq. 87
with respect to the incidence angle αI and obtain the changing
rate of reflection angle αR of Mode 2,

dαR

dαI
� 1 − 1+Cr

2 sin(2αR + 2αI)[ ]sin(2αI) − (1 + Cr)sin2(αI) cos(2αR + 2αI)
sin(2αR) + (1 + Cr) sin2(αI)cos(2αR + 2αI)

(91)

We note that this derivative of αR with respect to the αI is the root
of another transcendental equation and rarely has closed-form
solution. Thus, we solve it numerically and plot the results in
Figure 8. The same four represented scenarios discussed above
can be easily categorized here as different number of roots of

FIGURE 8 | The derivative of reflection angle αR with respect to the incidence angle αI. (A) Whole range of Cr, (B) Zoom-in range of Cr with two zero roots.
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eq. 91. The results shown in Figures 7, 8 are consistent with
each other.

8 CONCLUSION

Cubic materials are anisotropic elastic materials that satisfy the
symmetry requirements illustrated in Figure 1, and their stiffness
matrix is given by eq. 13. If the equal-speed criteria for
longitudinal and transverse waves, as given in eq. 18, also
holds in a cubic material, then we can have stable propagation
of any spin angular momentum carried by bulk elastic waves. In
this paper, we focus on rolling waves, which have a spin vector
orthogonal to its wave vector, in cubic materials. We investigate
the reflections of rolling waves incident either normally or
obliquely at an elastically supported flat boundary. Behaviors
of spin-preserving, spin-flipping, and general arbitrary phase
shifts are shown by adjusting the boundary conditions. This
work provides a new approach to manipulating bulk elastic
wave spins. Several other key findings are summarized below:

1) For the normal incidence of rolling waves, the reflection is
spin-preserving at both the fixed rigid boundary and the free
boundary, while being spin-flipping at both the fixed-free and
free-fixed boundaries. Most generally, we can even introduce
the arbitrary phase shifts between reflection and incidence
waves by adjusting the elastic boundary conditions.

2) For oblique incidence at 45°, we prove that, contrary to the
general anisotropic case, there will be only 1 reflected wave
with a unique reflection angle of 45°.

3) With the 45° incidence, the reflection is spin-preserving at a
fixed rigid boundary, while being spin-flipping at both fixed-free
and free-fixed boundaries. The free boundary is a uniquely
special case here: While the reflection is still spin-preserving,
depending on the cubic material constant ratio, C12/C11, it will
also introduce an additional linearly polarized part. Hence, an
incidence wave with circularly rolling polarization will result in a
reflected wave with elliptically rolling polarization.

4) For an arbitrary incidence angle, we showed that each
incidence wave will in general result in two reflected wave
modes with different reflection angles. One of the mode
(Mode 1 in Figure 7) exists only when the incidence angle
is less than a critical value αI3. Also, The other mode (Mode 2
in Figure 7) may show anomalous trend.

5) We developed a new way to manipulate the elastic wave spin.
Further, the present study can be extended to more general
cases, i.e., arbitrary incidence angle for reflection and
refraction problem, the reflection matrix properties of
arbitrary incidence angle, visco-elastically supported
boundary condition, or breaking the limit of statically
stable materials by using metamaterials.
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