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Brain tissue is one of the softest tissues in the human body and the quantification of its
mechanical properties has challenged scientists over the past decades. Associated
experimental results in the literature have been contradictory as characterizing the
mechanical response of brain tissue not only requires well-designed experimental
setups that can record the ultrasoft response, but also appropriate approaches to
analyze the corresponding data. Due to the extreme complexity of brain tissue
behavior, nonlinear continuum mechanics has proven an expedient tool to analyze
testing data and predict the mechanical response using a combination of hyper-,
visco-, or poro-elastic models. Such models can not only allow for personalized
predictions through finite element simulations, but also help to comprehensively
understand the physical mechanisms underlying the tissue response. Here, we use a
nonlinear poro-viscoelastic computational model to evaluate the effect of different intrinsic
material properties (permeability, shear moduli, nonlinearity, viscosity) on the tissue
response during different quasi-static biomechanical measurements, i.e., large-strain
compression and tension as well as indentation experiments. We show that not only
the permeability but also the properties of the viscoelastic solid largely control the fluid flow
within and out of the sample. This reveals the close coupling between viscous and porous
effects in brain tissue behavior. Strikingly, our simulations can explain why indentation
experiments yield that white matter tissue in the human brain is stiffer than gray matter,
while large-strain compression experiments show the opposite trend. These observations
can be attributed to different experimental loading and boundary conditions as well as
assumptions made during data analysis. The present study provides an important step to
better understand experimental data previously published in the literature and can help to
improve experimental setups and data analysis for biomechanical testing of brain tissue in
the future.
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1 INTRODUCTION

In recent years, it has increasingly been recognized that
mechanical signals play an important role for brain
development (Budday et al., 2015b; Koser et al., 2016;
Thompson et al., 2019), injury (Meaney et al., 2014; Hemphill
et al., 2015; Keating and Cullen, 2021), and disease (Murphy et al.,
2016; Barnes et al., 2017; Gerischer et al., 2018; Park et al., 2018).
In silico modeling based on the theory of nonlinear continuum
mechanics has therefore proven a valuable tool to, on the one
hand, computationally test hypotheses that complement
experimental studies and provide a predictive understanding
of processes in the brain under physiological and pathological
conditions (Goriely et al., 2015; Budday et al., 2020). On the other
hand, computational modeling can assist diagnosis and treatment
of neurological disorders through personalized predictions
(Angeli and Stylianopoulos, 2016; Lytton et al., 2017;
Weickenmeier et al., 2017).

A major challenge when aiming to explore the role of brain
mechanics in health and disease is reliably quantifying the
mechanical properties of brain tissue. Brain tissue is
ultrasoft—arguably softer than any other tissue in the human
body—and deforms noticeably when it is taken out of its
physiological environment within the skull, e.g., for ex vivo
mechanical testing. In addition, it has an exceptionally high
water content, 0.83 g/ml in gray matter and 0.71 g/ml in white
matter (Whittall et al., 1997). From the total of about 80% water,
approximately 20–40% is free-flowing cerebrospinal fluid, while
the rest resides inside the cells. The extreme softness and biphasic
nature of brain tissue pushes mechanical testing and modeling
approaches to their limits. Early studies had therefore
significantly overestimated the stiffness of brain tissue (Galford
and McElhaney, 1970; Chatelin et al., 2010), but more recent
studies indicate that the stiffness lies on the order of 1 kPa
(Budday et al., 2020). Still, the exact values have varied
notably depending on the testing setup (Chatelin et al., 2010;
Budday et al., 2020). It is thus difficult to control specimen
geometry, local deformation states, and their relation to the
recorded forces (Rashid et al., 2012).

Partially, the observed discrepancies can be attributed to
the fact that different testing techniques measure the
properties on different length scales (cell, tissue, organ)
and different time scales (quasistatic, dynamic). But even
on a seemingly similar spatial and temporal resolution,
experimental observations may differ, both qualitatively
and quantitatively. For instance, gray matter shows a stiffer
response than white matter during large-strain compression,
tension, and shear experiments (Budday et al., 2017a), while
one observes the opposite regional trends during tissue-scale
indentation (Van Dommelen et al., 2010; Budday et al.,
2015a). Here, we hypothesize that these observations may
be attributed to different boundary and drainage conditions in
combination with the biphasic, poro-viscoelastic nature of
brain tissue (Franceschini et al., 2006; Comellas et al., 2020).
Depending on the testing setup, the fluid is trapped within the
tissue or free to escape, which may largely affect the recorded
reaction forces. Therefore, realistic computational predictions

and the profound understanding of brain tissue behavior
require sophisticated mechanical models that capture the
complex and unique characteristics of this ultrasoft and
biphasic tissue.

Several poroelastic models have been proposed to reproduce
the biphasic nature of brain tissue, but with specific applications
in mind, e.g., drug delivery (Ehlers and Wagner, 2015),
hydrocephalus (Kim et al., 2015), tumor growth and treatment
(Angeli and Stylianopoulos, 2016), decompressive craniotomy
(Fletcher et al., 2016), or tissue fracture (Terzano et al., 2021).
Early numerical studies that specifically focused on elucidating
the mechanisms behind the observed mechanical properties of
brain tissue studied its nonlinear ultrasoft viscous behavior
without incorporating the biphasic nature of the tissue
(Bilston et al., 2001; Prevost et al., 2011; Budday et al., 2017b,c).

Initial models incorporating both porous and viscous
responses aimed at fitting a single experimental setup (Cheng
and Bilston, 2007) or included important analytical
simplifications and were tailored to particular applications
related to cerebrospinal fluid circulation (Mehrabian and
Abousleiman, 2011; Hasan and Drapaca, 2015; Mehrabian
et al., 2015). To our knowledge, the formulation proposed by
our group (Comellas et al., 2020) and the model described by
Hosseini-Farid et al. (2020) are the only approaches to date with
the potential of capturing the wide range of characteristics
observed in the response of brain tissue under different
biomechanical loading scenarios.

In this study, we use a finite poro-viscoelastic model to
evaluate the individual porous and viscous contributions in
numerical simulations of quasi-static unconfined compression
and tension as well as indentation experiments (with loading
frequencies on the order of 0.01 Hz). Through systematic
parameter studies, we identify parameter ranges that can
explain the phenomenon observed when comparing the
mechanical properties of gray and white matter brain tissue,
where indentation yields the opposite regional trend than large-
strain compression experiments. By exploring the effects of
permeability, shear moduli, nonlinearity, and viscosity on the
numerical response during the different experimental loading
conditions, we discuss their individual physical meaning by
closely considering the underlying poro-viscoelastic modeling
framework.

2 MATERIALS AND METHODS

2.1 Human Brain Experiments
As a reference and to confirm the validity of seemingly
contradictory results in the literature, we performed
indentation and large-strain compression and tension
experiments on exactly the same sample extracted from
human gray and white matter tissue, respectively, as illustrated
in Figure 1. Human brain tissue was extracted from a body donor
(female, age 77) who had given her written consent to donate her
body to research. The study was additionally approved by the
Ethics Committee of Friedrich-Alexander-University Erlangen-
Nürnberg, Germany, with the approval number 405_18 B.
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For indentation experiments, we used the ZHN-
Nanoindenter by ZwickRoell GmbH and Co. KG (Ulm,
Germany), as shown in Figure 1A, and closely followed
the indentation procedure established in Budday et al.
(2015a). We prepared tissue slices in a 120 mm-diameter
Petri dish and stabilized the samples using a 10 mm-
diameter stainless steel washer (see Figures 1C,D). To
ensure a homogeneous specimen response, we used a
circular flat punch indenter with a diameter of 1.8 mm and
a ceramic shaft extension. We conducted all indentation tests
at room temperature under displacement control using a
trapezoidal loading-holding-unloading profile with a
maximum indentation depth of 50 μm, as illustrated in
Figure 2, bottom right, and recorded the corresponding
force (see Figure 1G).

For compression and tension experiments, we extracted
cylindrical samples with a radius of r � 4 mm (see Figures
1E,F) and used a Discovery HR-3 rheometer from TA
instruments (New Castle, Delaware, United States), as shown
in Figure 1B. We fixed the specimens to the upper and lower
specimen holder using sandpaper and superglue. After a waiting
period of 30–60 s to let the glue dry, we immersed the specimen in
PBS to keep it hydrated during the experiment. We conducted all
rheometer tests at 37°C. We note that previous studies have
indicated that the mechanical response of brain tissue is not
significantly affected by temperature in the range between 22°C

and 37°C (Rashid et al., 2012). We first applied three cycles of
compression and tension with a loading velocity of 40 μm/s, and
minimum andmaximum overall vertical stretches of λ � [h +Δz]/
h � 0.85 and λ � 1.15, where h denotes the initial specimen height
and Δz the displacement in the direction of loading (see
Figure 1I). Subsequently, we performed a compression
relaxation test at λ � 0.85 with a loading velocity of 100 μm/s
and a holding period of 300 s (see Figure 1J). We recorded the
corresponding force fz and determined the nominal stress as
Pexp � fz/A, where A � πr2 is the undeformed cross-sectional area
of the specimen. For more details on the testing procedure, we
refer to Linka et al. (2021).

2.2 Nonlinear Poro-Viscoelastic Model
We model brain tissue as a poro-viscoelastic material where the
viscoelastic solid represents the network of cells embedded within
the extracellular matrix (ECM) and the free-flowing pore fluid is
the interstitial fluid bathing the ECM. We use the numerical
framework based on the Theory of Porous Media presented in
our previous work (Comellas et al., 2020). In this section we
summarize the main characteristics of the formulation, which
assumes a fully-saturated compressible biphasic material, and
that the solid and fluid constituents are separately incompressible.
A detailed description of the derivation of all equations presented
here can be found in Comellas et al. (2020) and its supplementary
material.

FIGURE 1 | Experimental evidence for the effect of the testing setup on the recorded regional mechanical response of human brain tissue. During indentation
measurements (A), white matter (D) shows higher forces (G) and a higher effective modulus (H) than gray matter (C). During rheometer measurements (B) under large-
strain cyclic compression and tension (I) as well as compression relaxation (J), white matter (F) yields lower stresses than gray matter (E).
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2.2.1 Continuum Kinematics
Following the Theory of Porous Media, the same spatial position
x in the current configuration at a given time t is occupied
simultaneously by the solid and fluid components. However,
the material particles of each component originate from
different reference positions at time t0. Then, the constituent
deformation map is x � χS(XS, t) � χF(XF, t), where XS and XF

indicate the reference position of the solid and fluid components,
respectively. The displacement of the solid component is, thus,

uS � x − XS, (1)

and

FS � zx / zXS (2)

is its material deformation gradient.

2.2.2 Governing Equations
The weak form of the governing equations in the reference
configuration is

∫
B0

∇(δu): τ dV0S � 0 ∀δu, and (3)

∫
B0

δp JṠ dV0S − ∫
B0

∇(δp) · wJS dV0S � 0 ∀δp. (4)

The linear momentum balance Eq. 3 introduces the
viscoelastic solid displacement test function δu while the mass
balance Eq. 4 introduces the fluid pore pressure test function δp.
Both equations are defined in the reference configuration B0 of
the biphasic material, where dV0S refers to the volume element of
the material in the reference configuration of the solid. The
Kirchhoff stress tensor τ is given by the constitutive equation
of the solid component while the constitutive equation of the fluid
provides the volume-weighted seepage velocity w. The Jacobian JS
is the determinant of the material deformation gradient of the
solid component JS � det(FS) > 0, and J

̇
S indicates its material

time derivative. We neglect volumetric forces due to the effect of
gravity and do not prescribe any external traction vector in Eq. 3.
Forced fluid flow across the boundaries in Eq. 4 is not prescribed
either. Note that the time dependencies of the mass balance
equation result in a nonstationary nature of the governing
equations, even though they are formulated in a quasi-static
framework.

2.2.3 Constitutive Equations
The deformation gradient of the solid component is split
multiplicatively into elastic and viscous parts, FS � Fe

S · Fv
S,

such that the “extra” part of the stress tensor is the sum of the
equilibrium (eq) part, the non-equilibrium (neq) part, and a
volumetric (vol) contribution,

FIGURE 2 | Numerical setup for the three experimental studies described in Figure 1 simulated with the poro-viscoelastic model. Finite element discretization of
sample geometries, predicted deformed states using the base material parameters, and loading curves applied for each.
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τ � τSE − pJS1 � τeqE + τneqE + τvolE − pJS1. (5)

Based on previous studies (Budday et al., 2017a, Budday et al.,
2020), we select a one-term Ogden material model for both the
equilibrium and non-equilibrium parts. Then,

τeqE � ∑3
A�1

β∞,A nS,A ⊗ nS,A with β∞,A

� μ∞ λ ̃
α∞
S,A − 1

3
λ ̃
α∞
S,1 + λ ̃

α∞
S,2 + λ ̃

α∞
S,3[ ][ ], (6)

where α∞ and μ∞ are the equilibrium Ogden shear and
nonlinearity parameters, λ ̃S,a for a ∈ 1, 2, 3{ } are the isochoric
principal stretches, and nS,A are the eigenvectors of the left
Cauchy-Green tensor bS � FS · FT

S , such that
bS � ∑3

A�1λ
2
S,A nS,A ⊗ nS,A. Note that the Ogden shear parameter

μ∞ is related to the classical shear modulus, known from the
linear theory, through μ0∞ � 1

2μ∞α∞.
The non-equilibrium counterpart is

τneqE � ∑3
A�1

β1,A ne
S,A ⊗ n

e
S,A with β1,A

� μ1 λ ̃
e
S,A( )α1[ − 1

3
λ ̃
e
S,1( )α1 + λ ̃

e
S,2( )α1 + λ ̃

e
S,3( )α1[ ]], (7)

where α1 and μ1 are the non-equilibrium Ogden shear and
nonlinearity constitutive parameters, which again are related
to the corresponding classical shear modulus through
μ01 � 1

2μ1α1. The terms λ ̃
e
S,a for a ∈ 1, 2, 3{ } are the isochoric

elastic principal stretches, and neS,A are the eigenvectors of the
elastic part of the left Cauchy-Green tensor beS � Fe

S · (Fe
S)T , such

that beS � ∑3
A�1[λeS,A]2 neS,A ⊗ neS,A.

An evolution equation is required to complete the definition of
the viscous solid behavior. To this aim, we introduce

−Lvb
e
S · beS( )−1 � 1

η
τneq, (8)

which assumes isotropy and introduces the viscosity of the solid
component, η, such that we a priori satisfy a non-negative viscous
dissipation term, i.e.,

Dv � 1
2η
τneq: τneq ≥ 0 for η> 0. (9)

The viscous dissipation density rate Dv derives from the
Clausius–Duhem inequality and represents the dissipation due
to internal processes occurring within the viscous solid
component.

Finally, the definition of the solid stress tensor 5) is completed
with the volumetric contribution,

τvolE � λ* 1 − nS
0S[ ]2 JS

1 − nS0S
− JS
JS − nS

0S

[ ]1, (10)

where λ* is the first Lamé parameter of the solid component and
nS0S is the volume fraction of the solid component with respect to
the solid reference configuration at the initial time. The term τvolE
accounts for the compressibility effects of the deforming biphasic
material. It ensures the correct modeling of the compaction point,

which occurs when all pores are closed such that no fluid remains
in the material. Further volume deformations are not possible at
this point due to the incompressibility constraint of the solid
component (Ehlers and Eipper, 1999).

The constitutive behavior of the fluid component follows a
Darcy-like law,

w � − 1
μFR

JS − nS0S
1 − nS

0S

[ ]KS
0 · ∇p, (11)

where μFR is the effective shear viscosity of the pore fluid andKS
0 is

the initial intrinsic permeability tensor, which is assumed to be
isotropic, i.e., KS

0 � K01. Here, we have neglected the effect of
gravity on the fluid behavior.

Like its counterpart Dv in Eq. 9, the porous dissipation rate
density derives from the Clausius-Duhem inequality and
represents the dissipation due to the seepage process related to
the material porosity. It is defined as

Dp � μFR
1 − nS0S
JS − nS

0S

K01( )−1 · w[ ] · w ≥ 0, (12)

which will always be non-negative, given that μFR and K0 are
necessarily positive and nS0S ∈ (0, 1).

2.2.4 Finite Element Implementation
We implemented the discretized governing equations using the
open source finite element library deal.ii (Arndt et al., 2020).
A detailed derivation of the constitutive equations and dissipation
terms as well as the discretization and numerical implementation
details are available in Comellas et al. (2020) and its associated
supplementary material.

2.2.5 Numerical Setup
We investigate the behavior of the poro-viscoelastic
formulation for three distinct loading scenarios
corresponding to the experimental studies in Section 2.1: 1)
cyclic compression-tension (see Figure 1I) and 2) compression
relaxation (see Figure 1J) of a cylindrical specimen (see Figures
1E,F) using a rheometer (see Figure 1B) as well as 3)
indentation with a flat punch (see Figures 1A,C,D,G,H).
Figure 2 summarizes the numerical setup for the three test
cases. A quarter of the cylindrical specimen is spatially
discretized with 384 full integration Q2P1 elements for the
cyclic loading and compression relaxation studies. That is, we
approximate the solid displacement with quadratic shape
functions and the pore pressure with linear ones. A
quadrature of order 3 is considered. The degrees of freedom
at the bottom of the geometry are fixed in space, while the
vertical displacement shown in the right-most column is
prescribed to the top surface. Symmetry boundary
conditions are applied to the flat lateral surfaces. Solely the
cylinder hull is drained, i.e. fluid can only leave the solid
through the curved lateral surface. The deformed geometry
depicts the local vertical stretch distribution on the fully
compressed and extended states of the specimen for the
cyclic loading, and the fully compressed state for the
compression relaxation test. These states correspond to a
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15% overall vertical strain. The spatial discretization to
simulate the indentation experiments is composed of 2048
full integration Q2P1 elements. Again, in order to save
computational effort, the computations are carried out only
on one quarter of the real geometry. The finite element mesh is
refined towards the center of the sample to approximate the flat
punch indentation as accurately as possible, while maintaining
a feasible computational cost. The bottom of the geometry is
fixed in space and a vertical load shown in the bottom right of
Figure 2 is applied to the degrees of freedom within the radius
of the flat punch. Symmetry boundary conditions are applied to
the inner lateral surfaces. All surfaces are undrained, except the
unloaded part of the top surface, which is drained.

The material parameters used are given in Table 1. The
initial solid volume fraction is set to 0.75. The first Lamé
parameter λ* is fixed to a value large enough that the quasi-
incompressibility of the solid component is correctly
enforced. The effective shear fluid viscosity of the free-
flowing fluid in the brain tissue is assumed to be that of
water at room temperature. Based on our previous findings
(Budday and Steinmann, 2018; Budday et al., 2020), the same
nonlinearity Ogden parameter is used for the equilibrium and
non-equilibrium parts α � α∞ � α1. Throughout our
simulations, we vary the equilibrium shear modulus μ0∞,
the non-equilibrium shear modulus μ01, the nonlinearity
Ogden parameter α, the solid viscosity η and the initial
intrinsic permeability K0. The ranges considered are given
in Table 1.

The numerical implementations of the three new experimental
setups in the original code available from the deal.ii code
gallery website and an exemplary input file for each type are
provided in Supplementary Material.

2.3 Data Analysis
We derive a series of useful quantities based on the experiments
and our finite element results with the aim of analyzing the effect
of different material parameters on computational measures with
a direct experimental counterpart or numerical quantities that
have a recognizable physical meaning.

The total reaction force on the loaded surfaces is computed at
each integration point of the element faces of the loaded
boundary zB0,l , given in the reference configuration, from

r � ∫
zB0,l

σ · N dA0S. (13)

Here, σ � τ/JS is the total Cauchy stress and N is the outward
unit vector of the loaded surface with area element dA0S, which is
defined in the reference configuration of the solid component.
Based on the definition of the Kirchhoff stress (5), the reaction
force can also be split into a solid and a fluid contribution,

rS � ∫
zB0,l

σE · N dA0S and rF � ∫
zB0,l

− pN dA0S. (14)

For the cyclic loading and compression relaxation tests, we
calculate the total, solid, and fluid contributions to the nominal
stresses as the vertical component of the corresponding reaction
force divided by the original cross-section of the sample. The total
reaction force and total nominal stress are measures that are
comparable to those typically obtained in experimental setups, as
shown in Figure 1. Our modeling approach allows us to break
them into solid and fluid contributions, and, in this way, explore
how they respond to different loading scenarios and material
parameters.

We compute numerically the values of the viscous and porous
total dissipation rates in the whole sample at each time step from
the corresponding dissipation density rates defined in Eq. 9 and
Eq. 12, respectively. In particular,

Dtotal
i � ∫

B0

Di dV0S, (15)

where i � {p, v} for the porous and viscous contributions,
respectively. Here, B0 refers to the domain of the biphasic
material in the reference configuration and dV0S is the volume
element of the material in the reference configuration of the solid
component. To obtain the accumulated dissipation over time, we
determine the product Dtotal

i Δt at each time step, and sum over
time. These dissipation terms are a measure of the porous and
viscous contributions to the overall deformation process
simulated in our numerical examples.

The solid volume of the sample is numerically computed as

VS � ∫
B0

nS
0SJS dV0s, (16)

where the term nS0SJS is known as the (current) solid volume
fraction nS at a given integration point. As in the previous
equation, both B0 and dV0S correspond to the reference
configuration. Ideally, the total solid volume should be
constant due to the incompressibility assumption, but we
compute it as a means of measuring how well the
incompressibility has been enforced in our simulations.

Similarly to the reaction forces, the fluid flow across the
drained boundaries zB0,d , given in the reference configuration,
is computed as

Q � ∫
zB0,d

w · N dA0S. (17)

Here, w is the volume-weighted seepage velocity as defined in
Eq. 11 and N is the outward unit vector of the drained surface

TABLE 1 | Poro-viscoelastic material parameters used in the simulations
described in Figure 2.

Parameter Value

Solid component
nS0S 0.75
λ* 1 MPa
μ0∞ {0.12, 0.32, 0.84} kPa
μ01 {1.2, 3.2, 8.4} kPa
α {−5, −8, −13}
η {14, 28, 56} kPa·s
Fluid component
μFR 0.89 Pa·s
K0 {10–8, 10–10, 10–12} mm2
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with area element dA0S, which is defined in the reference configuration
of the solid component. The fluid flow predicted in our simulations
provides additional insights into the porous behavior of the material
and can potentially be related to experimental measures, e.g., fluid
collected after confined compression of a sample.

Finally, following the procedure described in Budday et al.
(2015a), we compute the effective modulus for the indentation
simulations as

Eeff � 3
4

k
2ri

(18)

from the contact stiffness k and the punch radius ri. The contact
stiffness k is defined as the average slope of the upper 50% of the
reaction force curve during loading, as commonly used for the
analysis of indentation experiments (Oliver and Pharr, 2004;
Gupta et al., 2007; Budday et al., 2015a).

3 RESULTS

To evaluate the influence of different material properties on the
response of human brain tissue during different quasi-static
biomechanical experiments, we perform parameter studies in
the following and systematically vary the intrinsic permeability,
equilibrium and non-equilibrium shear moduli, nonlinearity, and
viscosity. We simulate the tissue behavior during cyclic
compression–tension experiments, stress relaxation in
compression, and indentation measurements, and analyze the
corresponding behavior. The parameter ranges are chosen to
represent different brain regions, e.g., cortex and corona radiata,
with the aim to explain the contradictory results between large-
strain compression and indentation experiments illustrated in
Figure 1 based on the complex poro-viscoelastic model
introduced in Section 2.2 with the setup-dependent boundary
conditions introduced in Section 2.2.5.

3.1 The Effect of the Intrinsic Permeability
Figure 3 illustrates the effect of varying initial intrinsic
permeabilities K0 on the response during cyclic
compression–tension experiments. The total nominal stress is

plotted on the left, the solid contribution in the middle and the
fluid contribution on the right. While the total stress is only
marginally affected by the intrinsic permeability, the individual
contributions of the solid and fluid component change
significantly. The solid nominal stress decreases with
decreasing permeabilities, while the fluid nominal stress
increases: A lower permeability results in a higher fluid
contribution to the total nominal stress. For intrinsic
permeabilities of K0 ≥ 10–6 mm2, the contribution of the fluid
is negligible, while it makes up about one sixth of the total
nominal stress under compressive loading and about one
fourth under tensile loading for smaller permeabilities.

Depending on the intrinsic permeability, the stress-stretch
curves for the fluid nominal stress change notably. This can
be directly related to the fluid’s ability to move through the
solid faster or slower, which may generate inertial-like effects
due to a delayed response or resistance to change of the fluid
flow. For high permeabilities, the fluid moves easily through
the solid structure such that, after overcoming inertia effects
when the loading rate or direction changes, the fluid stress
decreases rapidly. In contrast, for low permeabilities, the fluid
moves slower through the solid experiencing more resistance.
For the case with the smallest permeability, the fluid stress
increases throughout the entire loading time before a delayed
response to the change of loading direction takes place,
resulting in stress-stretch curves more similar to the
viscous solid itself.

Figure 4 shows the accumulated viscous dissipation over the
set of three cycles on the left, the accumulated porous dissipation
in the middle and the volume change of the solid component on
the right. For the present choice of parameters, the viscous
dissipation is distinctly larger than the porous dissipation. In
addition, changing the intrinsic permeability barely influences the
viscous dissipation. Interestingly, for the porous dissipation, we
observe a maximum for an intrinsic permeability of K0 �
10−10 mm2. This effect is associated with Eq. 12, which
indicates that a decreasing initial intrinsic permeability leads
to an increase in the porous dissipation but also a decrease in
the volume-weighted seepage velocity w, which results in the
observed maximum.

FIGURE 3 | Cyclic compression–tension test up to 15% strain. Total nominal stress (left), solid nominal stress (middle) and fluid nominal stress (right) versus
overall stretch for μ0∞ � 0.32 kPa, μ01 � 8.4 kPa, α � −8, η � 14 kPa ·s and different initial intrinsic permeabilities K0 � {10–6, 10–8, 10–9, 10–10, 10−12} mm2.
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The slight variations in the solid volume in Figure 4, right,
show that the intrinsic permeability affects how strictly the
incompressibility is enforced. As the formulation has a
volumetric stress defined in terms of the first Lamé parameter
λ* (see Eq. 10), we have selected a constant λ* instead of a
constant Poisson’s ratio ] in our parameter study. Enforcing a
constant ] when exploring variations of the shear modulus and

nonlinearity parameter in the Ogden model would result in
different λ* values for each combination of parameters, given
that λ* � 2μ0]/(1 − 2]), where μ0 is the classical shear modulus. By
selecting a constant λ*, we ensure that the volumetric part of the
stress is independent of these parameters and, hence, avoid
unwanted interference in the sensitivity study. In addition,
initial attempts to explore the effect of the Poisson’s ratio on

FIGURE 4 | Cyclic compression–tension test up to 15% strain. Accumulated viscous dissipation (left), accumulated porous dissipation (middle) and solid volume
(right) over time for μ0∞ � 0.32 kPa, μ01 � 8.4 kPa, α � −8, η � 14 kPa ·s and different initial intrinsic permeabilities K0 � {10−6, 10−8, 10−9, 10−10, 10−12} mm2.

FIGURE 5 | Compression relaxation test up to 15% strain. Left: Normalized fluid nominal stress (top left) and fluid flow over the boundary (bottom left) over time
for μ0∞ � 0.32 kPa, μ01 � 8.4 kPa, α � −8, η � 14 kPa ·s and different initial intrinsic permeabilities K0 � {10−8, 10−10, 10−12} mm2. Right: Corresponding finite element
results of the seepage velocity at the end of loading (t � 6 s) and for the subsequent time step (t � 6.5 s). The depicted arrows on the selected vertical plane of the sample
are sized proportional to the magnitude of the seepage velocity, given in mm/s, scaled by the factor indicated below each colorbar legend. Corresponding videos
with the full simulation results are available in Supplementary Material.
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the predicted material response resulted in numerical instabilities
around peak loading times for the compression relaxation tests,
even with values above 0.49. In these simulations we converted
the Poisson’s ratio to λ* using the equilibrium shear modulus,
i.e., with μ0 � 1

2μ∞α. Upon closer inspection we realized that the
sum of the equilibrium and non-equilibrium shear moduli should
be used instead, μ0 � 1

2 (μ∞ + μ1)α, to avoid the instabilities. We
realized conversion from ] to λ* is not straightforward for the
viscoelastic case, supporting our decision of selecting a constant
λ* to remove any unsought effect of changes in the parameter
used to enforce the quasi-incompressibility. Yet, even with a
constant λ*, we note that a lower permeability results in a better
quasi-incompressibility of the solid component. This could be
attributed to the fact that a lower permeability results in more
fluid “trapped” in the pores of the biphasic material, which then
exerts a larger hydrostatic pressure on the solid component.

During stress relaxation and indentation experiments, trends
in fluid flow over the boundary can directly be tied to the behavior
over time of the fluid nominal stresses, as illustrated in Figures 5,
6. For high permeabilities, we observe that the fluid stresses adopt
positive values as soon as the loading rate is zero (holding period).
This can be attributed to the fact that fluid immediately starts to
flow back into the sample. For lower permeabilities, in contrast,
fluid continues to flow out, but at smaller rates. Therefore, we
suppose that there is a longer period of inertial-like effects. It is
interesting to note that we may observe a negative fluid flow over

the boundary, i.e., overall fluid is entering the sample, but locally
have fluid flowing outwards. This can, for instance, be seen during
indentation experiments in Supplementary Figure S1. Another
interesting effect we observe is that when the biphasic material
deforms and occupies new volume in space, it can potentially
incorporate new fluid. This occurs when the loading inertia
forcing fluid outwards is negligible or does not offer enough
resistance to the potential inward flow. In summary, as the sample
is immersed in fluid during the experiments to avoid dehydration,
small and slow displacements may result in fluid flow into the
sample across drained boundaries.

In the sequel, we will evaluate the effects of the equilibrium
and non-equilibrium shear moduli, nonlinearity, and viscosity
on the tissue response for different initial intrinsic permeabilities
K0 � {10−8, 10−10, 10−12} mm2.

3.2 The Effect of the Shear Modulus
Figure 7, first column, shows the effect of varying shear moduli
μ0∞ and intrinsic permeabilities K0 on the maximum overall
nominal stress with individual solid and fluid contributions
during cyclic compression (A1) and tension (A2), the
corresponding accumulated viscous (A3) and porous (A4)
dissipation, the maximum stress during stress relaxation (A5),
and the effective modulus during indentation experiments (A6).
Under compressive loading, the maximum overall nominal stress
increases for increasing shear modulus and also increases slightly

FIGURE 6 | Indentation test with an indentation depth of 50 μm. Left: Reaction force due to the fluid (top left) and fluid flow over the boundary (bottom left) over
time for μ∞ � 0.32 kPa, μ1 � 8.4 kPa, α � −8, η � 14 kPa ·s and different initial intrinsic permeabilities K0 � {10−8, 10−10, 10−12} mm2. Right: Corresponding finite element
results of the seepage velocity at the end of loading (t � 10 s) and for the subsequent time step (t � 11 s). Results are shown for the whole sample and for the indicated
vertical cross-section. The depicted arrows are sized proportional to the magnitude of the seepage velocity, given in mm/s, scaled by the factor indicated below
each colorbar legend. Corresponding videos with the full simulation results on the vertical cross-section are available in Supplementary Material.
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for increasing permeability (see Figure 7 A1 and A5). The
effective modulus from indentation also increases for
increasing μ0∞, but is only marginally affected by a change in
the permeability (see Figure 7 A6). Under tensile loading, the
maximum nominal stress shows the opposite trend and decreases

for increasing equilibrium shear modulus (see Figure 7 A2). It
reaches a maximum for K0 � 10−10 mm2, which can be attributed
to the significant increase in the fluid contribution between
K0 � 10−8 mm2 and K0 � 10−10 mm2. In general, the fluid
contribution is higher in tension than in compression.

FIGURE 7 | Effect of (A) the equilibrium shear modulus μ0∞, (B) the non-equilibrium shear modulus μ01, (C) the nonlinearity Ogden parameter α, and (D) the solid
viscosity η for different initial intrinsic permeabilities K0 � {10−8, 10−10, 10−12} mm2 on the maximum stresses, and viscous and porous dissipations during cyclic
compression–tension (rows 1-4), maximum stresses and the total/solid/fluid contributions to stress relaxation after 300 s in percent for compression relaxation (row 5),
and the effective modulus from indentation (row 6). For nominal stress plots, the fluid contribution to the total stress is indicated in a darker shade.
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The viscous dissipation remains almost constant for different
shear moduli and permeabilities (see Figure 7 A3). The porous
dissipation, in contrast, shows a coupled dependency on the shear
modulus and the intrinsic permeability (see Figure 7 A4). It
increases with increasing shear modulus and again shows its
maximum for an intrinsic permeability of K0 � 10−10 mm2. These
results demonstrate that the stiffness of the solid has a strong
influence on the fluid response. Varying the shear modulus also

noticeably affects the stress-stretch curves for the fluid nominal
stress, as illustrated in Figure 8, first row. We note that,
depending on the shear modulus, the maximum tensile stress
is not necessarily reached for the maximum stretch.

The stress relaxation experiments in Figure 7 A5 reveal that
the stress relaxed after 300 s of holding time decreases with
increasing shear modulus. Independent of the shear modulus and
permeability, the fluid stress relaxes faster than the solid stress.

FIGURE 8 | Effect of the equilibrium shear modulus μ0∞ (first row), the non-equilibrium shear modulus μ01 (second row), the nonlinearity Ogden parameter α (third
row), and the solid viscosity η (fourth row) on the stress-stretch response during cyclic compression–tension for an initial intrinsic permeability K0 � 10−10 mm2.
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While for higher permeabilities, the fluid stress has fully relaxed
after five minutes, it still contributes to the total stress for the
lowest intrinsic permeability of K0 � 10−12 mm2 as only between
75 % and 95% of the fluid nominal stress have relaxed. Still, the
overall stress relaxation remains almost constant, as the
increasing fluid contribution takes over some part of the solid
relaxation.

Figure 7, second column, shows the effect of the non-
equilibrium shear modulus μ01 on cyclic compression–tension,
compression stress relaxation, and indentation experiments. The
maximum nominal compressive stress increases with increasing
shear modulus (see Figure 7 B1 and B5), but this effect is less
pronounced than for the equilibrium shear modulus. In contrast
to the influence of μ0∞, the maximum nominal tensile stress also
increases with increasing μ01 (see Figure 7 B2). The opposite effect
on the total tensile stresses is also well visible in the stress-stretch
curves in Figure 8. When comparing the first and second row, the
trends are similar in compression, but differ in tension. Both
viscous and porous dissipation strongly depend on the non-
equilibrium shear modulus (see Figure 7 B3 and B4): the
dissipation increases with increasing μ01. Consequently, while
the effect of a varying non-equilibrium shear modulus on the
maximum stress during the stress relaxation experiments is
similar to the effect of the equilibrium shear modulus (see
Figure 7 B5), the total stress relaxed after 5 min holding time
increases instead of decreasing. In addition, the effective modulus
from indentation simulations shows significantly different trends
(see Figure 7 B6). Here, the effective modulus reaches a
maximum for an intermediate non-equilibrium shear modulus
but decreases again, when the shear modulus is further increased.

3.3 The Effect of the Nonlinearity
Figure 7, third column, shows the effect of the nonlinearity
parameter α on cyclic compression–tension, compression
stress relaxation, and indentation experiments. We chose
negative values for α to capture the stiffer response under
compression than under tension, which is an important
feature of brain tissue behavior, as shown in Figure 1I. Under
compressive loading, increasing α values result in an increase of
the maximum nominal stress, both in cyclic loading and stress
relaxation (Figure 7 C1 and C5). Under tensile loading, we
observe the opposite trend (Figure 7 C2), similar to the effect
of μ0∞. This can be attributed to similar stress-stretch curves
during cyclic loading in Figure 8 for α (third row) and μ0∞ (first
row). We further observe increased fluid nominal stresses under
both compressive and tensile loading, showing that the fluid
response also depends on the nonlinearity of the viscous solid.
The accumulated viscous dissipation increases with increasing
nonlinearity (see Figure 7 C3) and this effect is even more
pronounced for the porous dissipation (see Figure 7 C4). This
clearly shows that the nonlinearity not only affects the viscous
response but also the behavior of the fluid. A high nonlinearity of
α � −13 not only produces larger stresses associated to the solid
part (“extra” Cauchy stress τSE in Eq. 5, see Figure 9, bottom left),
but also largely affects the pore fluid values and distributions (see
Figure 9, bottom right). Higher nonlinearities result in a longer
porous relaxation (the pore pressure takes much longer to relax to

zero). These individual components add up to the total Cauchy
stress shown in Figure 9, top left. We observe that higher
nonlinearities yield higher stresses during loading and,
additionally, stress relaxation progresses more slowly. The total
stress relaxed after 5 minutes decreases for increasing α (see
Figure 7 C5). Larger “extra” stresses can be associated with
the larger solid volume fraction values (see Figure 10, top
left), which in turn are linked to the fluid flowing out of the
sample (see seepage velocities in Figure 10, top right). This is
another example of how the behavior of the solid and fluid
components is linked and, thus, the coupling of porous and
viscous contributions. For larger α values the viscous (see
Figure 10, bottom left) and porous (see Figure 10, bottom
right) dissipation rates are slightly higher at the end of
loading. However, the viscous dissipation reduces faster for
α � −13 than for lower nonlinearities, while we observe the
opposite trend for the porous dissipation. We note that the finite
element results in Figures 9, 10 also demonstrate that all values
are inhomogeneously distributed in the vertical cross-section of
the sample due to the loading conditions not being purely
uniaxial.

Since the nonlinearity parameter has an exponential character,
its influence becomes more pronounced for larger deformations.
Therefore, the indentation results (see Figure 7 C6), which are
associated with smaller strains than the compression and tension
experiments, are only marginally affected by changes in α.
Interestingly, the effective modulus is lowest for the
intermediate α, and increases for higher or smaller values.
This shows that the relation between α and the indentation
modulus is not linear.

3.4 The Effect of the Viscosity
Figure 7, fourth column, shows the effect of the viscosity η on
cyclic compression–tension, compression stress relaxation, and
indentation experiments. Increasing the viscosity leads to a
significant increase in the maximum nominal stress during
both compression and especially tension (see Figure 7 D1, D2,
and D5). Interestingly, increasing the viscosity leads to a less
nonlinear and less compression–tension asymmetric response
(see Figure 8, bottom left). In addition, the fluid contribution to
the total nominal stress increases notably. The effect of the
viscosity on the fluid nominal stress can also be seen in the
corresponding stress-stretch curves in Figure 8, bottom right.
Depending on η, the amount of stretch at which the maximum
fluid stress is reached shifts. In addition, both viscous and porous
dissipation increase significantly for increasing viscosity (see
Figure 7 D3 and D4). As expected, also the stress relaxed
after 5 min during stress relaxation experiments increases with
increasing η (see Figure 7D5). Finally, the viscosity largely affects
the effective modulus from indentation simulations (see Figure 7
D6)—more than any other material parameter.

4 DISCUSSION

In this work, we have used a poro-viscoelastic computational
model for brain tissue behavior to systematically analyze the
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viscous and porous contributions to the quasi-static response
recorded during common biomechanical testing setups,
i.e., large-strain compression and tension as well as
indentation experiments. Through systematic parameter
studies, we have demonstrated the effects of the initial
intrinsic permeability, shear moduli, nonlinearity, and viscosity
on the test-setup-dependent recorded mechanical response and
associated read-outs. Our analyses allow us to evaluate and
explain differences in the reported data on human brain tissue
mechanics that stem from poro-viscoelastic effects in
combination with different drainage and loading conditions
that differ greatly depending on the experimental procedure.

4.1 The Poro-Viscoelastic Nature of Brain
Tissue Explains Discrepancies Between
Indentation and Compression Experiments
Common biomechanical testing techniques to quantify the quasi-
static, continuum scale, region-dependent mechanics of brain
tissue include indentation experiments (Van Dommelen et al.,
2010; Chen et al., 2015; Budday et al., 2015a; MacManus et al.,
2017, 2018) and large-strain measurements under multiple
loading modes, i.e., compression (Galford and McElhaney,
1970; Miller and Chinzei, 1997), tension (Miller and Chinzei,

2002), shear (Donnelly and Medige, 1997; Prange and Margulies,
2002; Chatelin et al., 2012), or combinations thereof (Jin et al.,
2013; Budday et al., 2017a). Strikingly, while white matter tissue
shows a “stiffer” response than gray matter during indentation
measurements, we observe the opposite trend during large-strain
compression, tension, and shear. To confirm this trend, we have
tested one and the same human brain tissue specimens with both
indentation and large-strain compression–tension experiments,
as illustrated in Figure 1. While the effective modulus from
indentation is higher for white matter (see Figures 1G,H), the
maximum stresses reached during cyclic compression–tension
and compression relaxation are higher for gray matter tissue (see
Figures 1I,J).

In this study, we have made an effort to trace this observation
to the poro-viscoelastic nature of brain tissue—and the
differences in the permeability, shear moduli, nonlinearity, and
viscosity in different regions—through systematic numerical
simulations. Our results show the tight coupling between the
properties of the viscoelastic solid and the fluid behavior; the
porous dissipation is highest for intermediate permeabilities and
largely depends on the shear moduli, nonlinearity, and viscosity
of the solid. Naturally, these complex and nonlinear dependencies
cannot be captured by a single effective modulus determined
from indentation experiments at relatively low strains or

FIGURE 9 | Compression relaxation test up to 15% strain. Finite element results for K0 � 10−10 mm2, μ0∞ � 0.32 kPa, μ1 � 8.4 kPa, η � 14 kPa ·s and different
nonlinear Ogden parameters α � {−5, −8, −13}. Results are shown for the selected vertical plane (top right) at the end of loading (t � 6 s), for the subsequent time step
(t � 6.5 s) and at t � 30.5 s. Vertical component of the total Cauchy stress (top left), vertical component of the ‘extra’ Cauchy stress (bottom left), and fluid pore pressure
(bottom right), all given in Pa. Additional results provided in Figure 10. Corresponding videos with the full simulation results are available in Supplementary Material.
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maximum stresses during large-strain loading. Such values may
change depending on the loading and boundary conditions and
do not necessarily represent the actual stiffness of the material.
Since the nonlinearity parameter α has an exponential character,
for instance, its influence becomes more pronounced for larger
deformations during compression and tension experiments than
during indentation measurements. Therefore, certain material
properties may affect the maximum stresses during large-strain
compression differently than the effective modulus from
indentation. Our results demonstrate that increasing μ01 from
3.2 to 8.4 kPa leads to an increase in maximum compressive and
tensile stresses, while—for the same sets of parameters—it leads
to a decrease in the effective modulus from indentation. We
observe a similar but less pronounced effect when increasing the
nonlinearity from α � −5 to α � −8. These computationally-
observed phenomena can explain the experimental results in
Figure 1, which might seem contradictory at first sight.
Interestingly, our previous results indeed suggest that the non-
equilibrium shear modulus is higher for cortical gray matter than
for white matter (Budday et al., 2017b; Budday and Steinmann,
2018) in agreement with the results in Figure 7B. In summary,
the different trends for compression and indentation experiments
can, on the one hand, be attributed to the complex coupling
between porous and viscous effects and the material nonlinearity.

On the other hand, these trends can result from different methods
used to analyze experimental data. Here, we determined the
effective modulus from the averaged contact stiffness over the
region between 50 and 100% of the maximum indentation force
(as introduced in Section 2.3), similar to previous approaches in
the literature (Oliver and Pharr, 2004; Budday et al., 2015a). This
ensures to minimize the influence of adhesion (Gupta et al.,
2007), but can significantly affect the results for highly nonlinear
materials. Figure 11 illustrates that the numerically-predicted
indentation curve changes with varying non-equilibrium shear
modulus and that it might make a difference to use a different
portion of the curve to determine the effective modulus.

These considerations emphasize that when testing ultrasoft
and biphasic materials such as brain tissue, one needs to be
particularly careful when post-processing recorded experimental
data. Our simulations further show that the fluid flow within and
across the boundaries of the sample is key to the overall response
of the tissue (as measured by traditional methods). Therefore, also
experimental setups should be carefully designed in the future to
avoid unwanted effects and measure the particular property
relevant for a certain application. In this respect, finite element
modeling provides a useful tool to explore the complex behavior
under different loading conditions and better understand the role
of individual material properties, such as permeability, stiffness,

FIGURE 10 | Additional finite element results corresponding to the simulation described in Figure 9. Solid volume fraction (top left), seepage velocity (top right),
viscous dissipation rate (bottom left) and porous dissipation rate (bottom right). Dissipation rates are given in nJ/s. The depicted arrows representing the seepage
velocity are sized proportional to its magnitude, given in mm/s, scaled by the factor indicated to the left of each row. Corresponding videos with the full simulation results
are available in Supplementary Material.
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nonlinearity, and viscosity, on the measured response, as
discussed in detail in the following.

4.2 The Role of the Intrinsic Permeability on
the Tissue Response
Although the initial intrinsic permeability K0 barely affects the
total nominal stress and effective modulus (see Figures 3, 7), the
individual fluid and solid contributions change noticeably. The
permeability regulates how “fast” the fluid flow reacts to loading.
In addition, our results demonstrate that there are significant
local variations in the fluid flow within the sample for the
different testing setups investigated here (e.g., see Figures 5,
6). We consistently observe that the amount of fluid “trapped”
in the viscoelastic solid network is proportional to the
contribution of the fluid part to the biphasic tissue response:
Lower intrinsic permeabilities result in a larger fluid contribution
to the total nominal stresses (see rows 1,2 and 5 in Figure 7).
From a physical perspective, one can explain these trends
considering that lower intrinsic permeabilities result in smaller
relative movement between solid and fluid phases and, hence, less
overall fluid flowing out of the loaded sample. Therefore, the
incompressible fluid is “trapped” inside the sample and notably
contributes to the stress response. For higher permeabilities, in
contrast, there is a smaller proportion of fluid component in the
biphasic material, so that the solid part must take on a larger part
of the load.

Interestingly, our simulations further show that variations in
the intrinsic permeability can result in extreme differences in the
temporal course of the response, as observed in Figures 5, 6.

Here, we see for both compression relaxation and indentation
loading that abrupt changes in loading rate, e.g., from loading to
the holding period, can completely reverse the fluid flow and
increase its magnitude (K0 � 10−8 mm2) or only reduce the
magnitude without changing the flow direction (K0 �
10−10 mm2 and K0 � 10−12 mm2). As the fluid flow has a
direct impact on the global material response, reliably and
accurately assessing the permeability of tissue samples in
experiments is key to thoroughly understand how brain tissue
deforms under different loading scenarios. This becomes an
imperative under ‘“real-life” loading conditions that are not
homogeneous, where we see complex local interactions of the
biphasic tissue deformation, seepage velocity and resulting fluid
flow directions.

Our results demonstrate that for the testing setups considered
here, unconfined large-strain compression and tension as well as
indentation experiments, the fluid flow within the sample and
across the boundary is not well controlled. Therefore, it may be
important to redesign experimental setups in the future in order
to avoid unwanted effects of the fluid flow on the measured
response, especially when comparing different regions of brain
tissue where there seem to be local differences in permeability.
This becomes even more relevant as we observed that the fluid
flow also depends on the viscoelastic properties (as discussed in
detail in the next section) and such coupling effects can lead to
additional effects during experiments that are rather related to
different boundary conditions than the actual material properties.

4.3 Coupling Between Viscous and Porous
Effects
The thorough exploration of the poro-viscoelastic parameters in
our computational model confirms that the viscous and porous
responses to loading are highly interrelated. Typically, we
associate the fluid constituent behavior to the porous response,
while the solid component is linked to the viscous one. Yet,
changes in a single parameter, either linked to the viscoelastic
solid (μ0∞, μ01, α, η) or the pore fluid (K0) have considerable effects
on both porous and viscous features of the tissue behavior (see
rows 3 and 4 in Figure 7). For all loading cases studied here, the
fluid response depends on the stiffness and nonlinearity of the
viscoelastic solid in addition to the initial intrinsic permeability.
While the latter is evidently the main determinant in the fluid part
of the biphasic response, (Figures 5, 6), interestingly, also
different combinations of the solid parameters μ0∞, μ01, α, and
η have a noticeable effect (see fluid nominal stress in Figure 8,
pore pressure in Figure 9 and seepage velocity in Figure 10).
These observations agree well with our previous findings (Reiter
et al., 2021), showing that cells inside brain tissue still keep
moving in the direction of loading during the holding period
of compression relaxation experiments—only with decreasing
velocity. This further supports the idea that the porous and
viscous contributions to the response of brain tissue are
strongly coupled, i.e., the moving fluid might exert a drag
force on cell bodies and thereby displace them.

Porous dissipation results, surprisingly, are not directly
proportional to the initial intrinsic permeability (see Figure 4

FIGURE 11 | Indentation test with an indentation depth of 50 μm. Total
reaction force versus indentation depth for K0 � 10−10 mm2, μ0∞ � 0.32 kPa,
α � −8, η � 14 kPa ·s and different μ01 � {1.2, 3.2, 8.4} kPa. The effective
modulus shown in Figure 7 B6, corresponds to the slope of the fitted
lines shown here in red.
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center and Figure 7, row 4), but rather peak for intermediate
values of K0. This hints at complex interactions between the
deforming viscoelastic solid and the fluid flow behavior under
loading. From a numerical perspective, and considering the
definitions (11) and (12), the unexpected response can be
attributed to the coupling between the pressure and
displacement variables. Solid deformation and stresses are
affected by a hydrostatic component due to the fluid
constituent exerting pressure on the solid. At the same time,
seepage velocity incorporates the effect of the deformations in the
changing intrinsic permeability value to account for the “closing”
of the pores under loading. However, for different values of the
solid parameters and loading conditions, we observe important
variations in local pressure distributions and, hence, in the
gradients of pressure, which determine seepage velocity
together with the intrinsic permeability. Consequently, from a
computational perspective, the pressure variable is the key—and
its effects are nuanced as we have repeatedly observed in our
simulations.

Our results indicate that the viscoelastic solid influences the
porous response to a much larger extent than the fluid
constituent affects the viscous response. While the solid
nominal stress shows a slight dependence on the intrinsic
permeability (Figure 3 center), the accumulated viscous
dissipation remains unaltered by the change in K0 (see
Figure 4, left, and Figure 7, row 3). These observations are
highly relevant when aiming to design experimental
procedures and protocols to reliably determine poro- and
viscoelastic material parameters for brain tissue. We could
previously show that a combination of cylic and stress
relaxation experiments under multiple loading modes are
well suited to calibrate viscoelastic material parameters
(Budday et al., 2017b; Budday and Steinmann, 2018). By
considering multiple loading modes simultaneously, one can
avoid that the optimization problem is ill-posed. To reliably
calibrate poro-viscoelastic models for brain tissue, however,
experimental designs need to be adopted to test the unique
property of interest. Ideally, experimental setups are optimized
under close consideration of the modeling framework and with
the help of computational simulations. This has the advantage
that the effects we have observed in the current study can be
taken into account.

4.4 Perspectives and Future Directions
In this study, we have performed computational parameter
studies to systematically understand the individual viscous
and porous contributions to brain tissue behavior under
different biomechanical testing conditions, but have not
aimed at calibrating material parameters through an
inverse parameter identification scheme. The reason for
that is that current experimental setups and data available
in the literature are not sufficient to reliably determine the
model parameters. For the setups investigated here, for
instance, which have previously been successfully used to
calibrate viscoelastic material parameters (Budday et al.,
2017b; Budday and Steinmann, 2018), porous and viscous
effects are strongly coupled. This makes it difficult to

uniquely identify poro-viscoelastic parameter sets. Also,
previously reported viscoelastic parameters are not readily
transferable. As an example, the first Lamé parameter in our
poro-viscoelastic model is not equivalent to the first Lamé
parameter in a single-phase viscoelastic material because
ours only represents the solid component behavior, while
the latter implicitly incorporates the whole tissue behavior,
including the fluid contribution to the material bulk
behavior. Therefore, in the future we plan to design new
experimental setups and protocols, e.g., to determine the
intrinsic permeability of brain tissue, under close
consideration of the continuum mechanics modeling
framework and systematic predictions from finite element
simulations. The latter are a valuable tool to evaluate the
sensitivity of certain parameters towards specific loading
conditions and, like this, optimize experiments. This will
eventually allow us to develop more realistic simulations for
personalized medicine.

We note that we only focused on quasi-static experiments in
the current work, which are relevant for applications on
intermediate time scales, such as the well-known phenomenon
of brain shift: When the skull is open during a neurosurgery,
brain tissue immediately undergoes large deformations and
“shifts” compared to the situation on preoperative images.
This is a major issue in neuronavigation (Gerard et al., 2017).
In the future, the model can also be adopted to study effects
during further experimental setups, for instance magnetic
resonance elastography (MRE) and ultrasound elastography
(USE), where the brain is loaded under small strains at high
frequencies. Importantly, these techniques allow for in vivo
measurements. Therefore, it will be interesting to investigate,
on the one hand, the capability of the model to capture the tissue
behavior in this small-strain high-frequency regime, and, on the
other hand, to evaluate the suitability of in vivomeasurements for
the calibration of biphasic, large-strain mechanical models as the
one presented here. Expanding our numerical inquires to
additional experimental setups will also provide a more
comprehensive set of data to analyze the general sensitivity of
the model parameters.

From a purely modeling perspective, it would be interesting to
challenge certain assumptions made in the current form of the
formulation. In particular, an alternative to Darcy’s law for the
fluid behavior would likely have a significant impact on the
results, especially the effect of the intrinsic permeability. For
example, one could introduce a direct solid-dependence in the
definition of the volume-weighted seepage velocity (11) to model
stress-assisted diffusion. Regarding the well-known regional
differences in brain tissue, these could be numerically
investigated in several ways, e.g., with a non-isotropic
permeability tensor and/or viscous evolution equation that
better reflect the local microstructure of the tissue. In addition,
adhesion effects could be introduced. Finally, for certain
applications, it may be necessary to incorporate the effects of
gravity as well as an osmotic pressure to predict swelling in the
brain. The computational approach presented in this study
provides a robust numerical framework on which to build
increasingly sophisticated models tailored to specific applications.
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