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Micro and Nano Electro Mechanical systems (M/NEMS) have a lot of potential to be used
for sensing in different schemes and operation modes. We focus here on the use of
coupled resonators for sensing and address the major limitation that these systems face,
which stems from a compromise between dynamic range and responsivity. When the
system becomes unbalanced, the responsivity drops. To solve this issue, we propose the
use of piezoelectric-based stress tuning of the stiffness of the resonators in order to
rebalance the system of resonators. With this approach we expect to be able to extend the
dynamic range of such systems by some orders of magnitude.
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INTRODUCTION

Microelectromechanical systems (MEMS) are nowadays an integral part of our society, and they are
present in most consumer electronic devices, particularly within mobile phones, wearables and
Internet of Things (IoT). They are essential in communications (Gong et al., 2021; Yandrapalli et al.,
2021), timing elements (Perrott et al., 2013), and sensing, as for example accelerometers (Plaza et al.,
2002; Park et al., 2006), gyroscopes (Tabrizian et al., 2013), fingerprint sensors (Lu et al., 2015; Jiang
et al., 2017), etc. Together with their smaller counterpart, Nanoelectromechanical systems (NEMS)
(Schmid et al., 2016), due to their small size, mass and stiffness, they have enormous potential to
expand their use as sensors for different applications, for example in bio-sensing. Multiple research
laboratories have been working on this for the past 20 years, ever since the first seminal work from
IBM (Fritz et al., 2000; Arlett et al., 2011; Boisen et al., 2011; Tamayo et al., 2013). M/NEMS can be
used for sensors in two main modes: Either static or dynamic detection. In the former, the deflection
of the mechanical device is directly proportional to the magnitude to be measured, which can be
biomolecules concentration in a solution (Mertens et al., 2008; Braun et al., 2009), different gases
(Baller et al., 2000; Hierlemann et al., 2000), and forces at the tip (Binnig et al., 1986; Tosolini et al.,
2010), among others.

When operating in dynamic mode, the devices are continuously moving at (or close to) their
resonance frequency and, typically, one monitors the frequency to observe changes in either the
stiffness or the mass of the resonator (Ramos et al., 2006; Ramos et al., 2008). Using the resonance
frequency as the tracking parameter is very interesting since the noise in the measurement can be
reduced significantly (Sadeghi et al., 2020). An alternative way of operating while using dynamic
mode is based on the use of coupled resonators systems (Zhao et al., 2016). Coupled resonators have
been known and studied for very long in classical mechanics, and only more recently in M/NEMS,
both in theoretical (Lifshitz and Cross, 2003; Bromberg et al., 2006; Lifshitz et al., 2008; Kenig et al.,
2012) and experimental works (Sato et al., 2006; Karabalin et al., 2009; Karabalin et al., 2011;
Matheny et al., 2014). It was around 15 years ago that they were first proposed as sensors in the
microscale (Spletzer et al., 2006). Themain original idea behind this concept was to use the symmetry
of a system composed of two perfectly identical coupled resonators, that then suddenly stop being
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identical when a given event happens only to one of them, e.g.,
molecule binding or mass landing in one of the resonators. In that
case, the symmetry is broken and the eigenmodes change. If the
coupling is small enough, this implies that the system transitions
from a situation where the motion is equally distributed over the
resonators, to a situation where modes are localized on individual
resonators (mode localization, Anderson localization)
(Zalalutdinov et al., 2006; Spletzer et al., 2008). This technique
is very interesting because it offers an intrinsic common mode
rejection (if both resonators undergo the same change, the overall
system will remain symmetric) and the changes can be very
significant, provided the coupling is small. This shows the main
limitation of this technique: on the one hand the coupling needs
to be small to provide a large change in the eigenmodes; while on
the other hand it needs to be large enough that it ensures a
distributed mode in the original state. This is in turn important
for two reasons mainly: Fabrication uncertainties or tolerances,
which will result in non-perfectly identical devices; and dynamic
range, since from the moment that events start to happen to a
particular resonator in the system, symmetry will be broken.
Many interesting systems have been presented even with this
limitation being present: Arrays of many resonators with small
(Stassi et al., 2017; Stassi et al., 2019) or large coupling (Marquez
et al., 2017); mass sensors (Thiruvenkatanathan et al., 2010a;
Wang et al., 2018), electrometers (Thiruvenkatanathan et al.,
2010b), accelerometers (Pandit et al., 2019; Wang et al., 2020;
Zhang et al., 2020; Zhang et al., 2021), etc.

In order to bypass the limitation, two approaches have been
suggested. One option is to stop looking into mode localization,
but still looking at the eigenmodes rather than the eigenvalues as a
sensing parameter. This has been routinely explored by using 3
coupled resonators, where there is a resonator that is only used to
make the overall sensing procedure more stable (Zhao et al.,
2015a; Zhao et al., 2015b; Zhao et al., 2016; Wang et al., 2018).
The other option has been to use electrostatic softening of the
resonance frequency (Schmid et al., 2016) in order to balance the
difference between the two resonators (Walter et al., 2016;
Rabenimanana et al., 2019).

In this paper, we present the concept of using piezoelectrically-
induced tension in order to tune the resonant frequency of the
individual resonators (Karabalin et al., 2012) and thus rebalance
the original system. The main advantages over electrostatic
tuning are the linearity of the effect and the fact that it is
linearly proportional to voltage, providing both softening and
stiffening depending on the sign of the applied electric field. We
start by providing a succinct revision of the theory behind
coupled modes. We then present the fabrication of the
proposed devices followed by some simulations of the
fabricated devices to compare their behavior with the theory.

THEORY

Mode Coupling
The first two coupled eigenfrequencies of a pair of coupled
clamped-clamped beam resonators depend not only on the
coupling factor D between them, but also on the respective

first eigenfrequencies of the individual beam resonators if they
were not coupled together.

A lumped-element model corresponding to Figure 1 can be
expressed in the following way, through the equation of motion:

€xa + ωa

Qa
_xa + ω2

axa + D

ma
(xa − xb) � fa

€xb + ωb

Qb
_xb + ω2

bxb − D

mb
(xa − xb) � fb

(1)

where ωi, for i � a, b; are the fundamental uncoupled
eigenfrequencies of the resonators a and b; mi are their
effective masses; �f � [fa, fb]T is the exciting force per unit
mass; and Qi is the quality factor for each resonator.
Assuming for simplicity that the quality factor is large enough,
which is the typical case for MEMS/NEMS resonators, the second
term in Eq. 1 can be left out, and the equation can be rewritten as
the following:

€x
→+ (ω2

a +Da −Da

−Db ω2
b +Db
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where Da � D
ma

and Db � D
mb
.

From Eq. 2, the eigenvalues λ correspond to the squares of the
coupled eigenfrequencies ωI and ωII such that λI � ω2

I and λII �
ω2
II (Eq. 3):
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and the eigenvectors correspond to the coupled eigenmodes eI
and eII (Eq. 4):
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In the particular case when δ � 0, we have that ω2
I � ω2

a � ω2
b

and ω2
II � ω2

I + 2Davg. In this case, it also holds that eI ∝( 1
1
)

and eII ∝⎛⎜⎝ 1

−ma

mb

⎞⎟⎠, which in the case where

Ddiff � 05ma � mb � m, then we find eII ∝( 1
−1).

Importantly, there exists another value for the offset of original
frequencies, δ, such that the second coupled eigenmode is
balanced:

δ � −2Ddiff5eII ∝( 1
−1) (5)
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However, ifDdiff ≠ 0 there does not exist any δ such that both
eI and eII are balanced simultaneously, as δ � 0 is the unique

solution to eI ∝( 1
1
).

As already mentioned in the introduction, when the two
individual resonators are identical and a perturbation happens
in only one of them, e.g. ε � Δm

m , we observe a change in the
eigenvectors:

eI∝(1
1
)→ eI∝⎛⎜⎜⎝ 1

1− 1
κ
ε
⎞⎟⎟⎠; eII∝( 1

−1)→ eII∝⎛⎜⎜⎝ 1

−1+ 1
κ
ε
⎞⎟⎟⎠
(6)

where κ � D
k is the relative coupling stiffness. It is then possible

to track the relative amplitude of either mode and thus observe
changes that are amplified by a factor 2

κ with respect to the
relative changes in the eigenvalues. This effect is maintained as
long as δ � 0, and thus the symmetric eigenmode is balanced. A
similar effect happens when operating at the point described by
Eq. 5. This shows the importance of having a small relative
coupling stiffness κ in order to maximize the responsivity of this
type of sensors. At the same time, it is important to keep in mind
that this only works in the proximities of δ � 0 or δ � −2Ddiff.
We could quantify this latter condition as: |δ|≲ |κ| or |δ +
2Ddiff|≲ |κ|.

Uncoupled Eigenfrequencies and the
Coupling Stiffness
When experimentally characterizing a system of two coupled
resonators, the experimental data includes the coupled modes
eigenfrequencies ωI and ωII as well as the amplitudes of both
individual resonators at each of the coupled eigenmodes I and II,
thus making it possible to determine eI and eII. However,
information about the uncoupled eigenfrequencies ωa and ωb,
and about the coupling stiffness, cannot be directly measured.

In the case where the resonators are identical (i.e., δ � 0 and
ma � mb), then the coupling stiffness can be easily extracted using
the coupled modes eigenfrequencies (Gil-Santos et al., 2011):

κ � D

k
� ω2

II − ω2
I

2ω2
I

(7)

However, in the general case the resonators are not identical,
and then one cannot estimate the coupling using Eq. 7. In the

general case, it is necessary to use Eqs 3, 4 to calculate the
frequencies of the individual resonators and the coupling. This is
rather important, so that we can act upon the system and bring δ
to one of the two optimum operational points. The frequencies
are given by:

ω2
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2
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2
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(8)

and the coupling by:
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II) − eratII ω

2
I

;

(9)

where we use the ratios between the first coordinate and the
second coordinate of each eigenvector, eratI � eI,1

eI,2
and eratII �

eII,1
eII,2

.

Effect of Piezoelectric Strain
As we have mentioned above, the optimal operating points once
the resonators are not identical are given by δ � 0 or δ � −2Ddiff.
What we propose in this paper is a way to re-balance the original
resonance frequencies so that we move to either of those optimal
operating points, by use of piezoelectrically induced strain and
stress.

To start with, we consider a system where each resonator
is a clamped-clamped beam. We know that each of these
beams has indeed an infinite number of normal modes, but
we will make the approximation that only the first one is
excited. The frequency can be written, provided that the
intrinsic stress is not very large, as (Lifshitz et al., 2008;
Schmid et al., 2016):

ω2
n �

〈EIx,z0〉
〈ρA〉

1
L4
β2n(1 + 〈σA〉

〈EIx,z0〉
L2cn); (10)

where EIx,z0 is the flexural rigidity of the beam, 〈ρA〉 is the mass
per unit length, and σA is the built-in tension in the beam. βn and
cn are defined in Eq. 11 as functions of the mode shape ϕn(ξ),
ξ ∈ [0, 1], which we calculate assuming that the tension in the
structures is not very large (so we use the mode shape for
unstressed beams.

FIGURE 1 | Lumped-element model of a pair of coupled resonators showing the different parameters in the system.
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(11)

In our case, as said above, we only consider the first mode of
each uncoupled resonator, which gives: 1

λ1
≈ 4.73, c1 ≈ 0.025 and

β21 ≈ 500.
To calculate the effect on the stress of the piezoelectric layer

when we apply a voltage, we assume that the dimensions of the
beam hold that the thickness is much smaller than the width, and
the width smaller than the length: t≪w≪ L. In this case, the
induced stress within the piezoelectric layer is given by:

σPZE � EPZE
d31

tPZE
V; (12)

where σPZE is the longitudinal stress along the piezoelectric layer,EPZE

is the Young’smodulus, andd31 is the relevant piezoelectric coefficient
that links the vertical electric field and the longitudinal strain.

The effect of the stress σPZE in the piezoelectric layer of Eq. 12
on the overall beam depends on the built-in stress of all the
materials in the beam (σ0). We can formalize as:

σA � ∫
A

σ(z)dA � ∑
i

σ0,iAi + σPZEAPZE; (13)

where the sum extends to all the layers in the beam cross section,
including: the piezoelectric layer, each layer having a built-in
stress σ0,i and an area Ai. The piezoelectric layer has a cross
sectional area of APZE.

Required Voltage to Balance Manufacturing
Errors
When we have two coupled beams that are not identical but
manufactured on the same wafer and with the same layers, we can
partially compensate this difference with the piezoelectric voltage.
Essentially:

ω2
a,b �

〈EIx,z0〉a,b
〈ρA〉a,b

1
L4
β21(1 + 〈σA〉a,b

〈EIx,z0〉a,b
L2c1); (14)

with both frequencies being slightly different and, for the sake of
simplicity, we can assume that only one of the beams (beam a)
will endure the piezoelectric effect. We can then calculate the δ
parameter as:

2δ � ω2
b − ω2

a ≈ ω2
b,σ�0 − ω2

a,σ�0 − ω2
a,σ�0(EPZEd31Vw

〈EIx,z0〉a
L2c1); (15)

where we use that the built-in stress effect in both beams is almost
identical, and that the width is constant within the cross section.

Thus, to balance the frequencies we must apply the following
voltage:

δ � 0↔Vbalance ≈
δσ�0
ω2
a,σ�0

〈EIx,z0〉a
EPZEd31wc1L

2
. (16)

From an experimental point of view, Eq. 16 cannot be directly
used since we do not have access to the uncoupled beams
frequencies. The voltage must be found experimentally by
applying DC voltage on beam a until you find a minimum of
ωI − ωII.

FABRICATION

A suggested process flow for the fabrication of the devices is shown
in Figure 2. At first, 200 nm of low stress silicon nitride are
deposited on a silicon wafer via low-pressure chemical vapor
deposition (LPCVD) at 840°C. This first layer is there because
themetal and piezoelectric layers show very large compressive stress
and thus, we need to ensure that buckling does not happen. Then,
the bottom contact of the electrodes is fabricated via lift-off. As
depicted in Figure 2A, the lithography is defined in a bilayer of LOR
5A (400 nm) and AZ 1512 (1.1 μm) before 15 nm of aluminum
nitride (AlN) and 25 nm of platinum (Pt) are sputtered at room
temperature. This combination of AlN and Pt, represented in
Figure 2C, gives the best conditions for the subsequent growth
of the active piezoelectric layer (Howell et al., 2019). Immersion of
the wafer in Microposit Remover 1165 for few tens of hours with
occasional sonication sessions dissolves the photoresist and defines
the bottom contact tracks (Figure 2C). The piezoelectric active layer
(AlN) is then sputtered at a temperature of 300°C, targeting either
50 or 100 nmdepending on the wafer, before depositing 25 nmof Pt
for the top contact with the same equipment, without breaking
vacuum (Figure 2D). As depicted in Figure 2E, the second mask is
defined in a 1.5 μm-thick layer of AZ ECI 3007. Dry etching is then
performed to pattern the top contact and the piezoelectric layer. A
chlorine-based chemistry is used for both layers, accelerating the
process (Figure 2F). After dicing the wafer into 1 × 1 cm2 chips, the
lithography to shape the beams and for their release is done with
3 μm of AZ ECI 3027 photoresist, as shown in Figure 2G. All three
layers (Pt, AlN, and SiN) are etched in the same step, with the same
recipe as for the previous etching (Figure 2H). The final release of
the devices, depicted in the last step of the process flow, is achieved
through a short Bosch process before an isotropic etching in SF6 to
suspend the devices.Figure 3 shows a scanning electronmicroscope
picture of coupled clamped-clamped beams at the end of the
fabrication, together with its thermomechanical noise measured
using a laser Doppler vibrometer (LDV) from Polytec (OFV-5000),
and that shows both normal modes.

FINITE ELEMENT MODELLING

In order to confirm the predicted behavior from our theoretical
analysis, we perform Finite Element Simulations using COMSOL
Multiphysics. We use a set of dimensions that are also used in the
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FIGURE 2 | Fabrication process flow: the fabrication starts with the definition of the bottom contacts in a bilayer coating of LOR and AZ1512 (A). Then, AlN and Pt
are sputtered at room temperature (B), before immersing the wafer in Remover 1165 for lift-off (C). The active layer of AlN and the Pt top electrode are subsequently
sputtered (D). The second lithography mask is used to pattern the top contacts and piezoelectric layer (E,F). The final mask defines the shape of the resonators (G). An
anisotropic etching of the bottom contacts is conducted (H), before the silicon nitride is etched and the devices are released in SF6 (I).

FIGURE 3 | (A) Scanning electron microscope image of coupled clamped-clamped beams. The top electrode is cut to allow for a better actuation of the motion.
Several designs are being considered, including changes in the dimensions and position of the coupling beam. The weakest coupling is achieved when the coupling
beam is removed altogether, and the coupling is attained via the ledge that joins the anchors of both beams (B) Thermomechanical noise of the two coupled modes
measured using laser Doppler vibrometry (LDV) on the structure shown on the SEM image.
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fabrication, with L � 50 μm and w � 5 μm, and the material
properties that are known from previous projects for the
materials in our clean room.

The simulation results when the beams are identical and the

coupling is very weak, yield eI ∝( 1
1
), eII ∝( 1

−1), and a small

(relative) difference in frequencies of the order of 100 parts per
million (ppm) (Fan, 2020). This is achieved when the coupling
bridge is removed. If the coupling bridge is kept, the relative
difference in frequencies goes up to 1–10%.

Unbalancing the Resonators’ Masses
To model a difference in the respective masses of both resonators
without significantly altering the other characteristics of the
resonators, we choose to slightly change the density of one of
the used materials in one of the beams. Figure 4A shows the
influence of an added mass on the two coupled eigenfrequencies
ωI and ωII. We observe that unbalancing the resonators by
adding a mass brings ωI apart from ωII, which is coherent
with Eq. 3. At the same time, this added mass lowers both
coupled eigenfrequencies. We also notice in Figure 4B that
unbalancing the resonators will affect the ratio between the
mode components (eratI , eratII ). The resonator that receives the
additional mass has a greater amplitude than the other resonator
in mode I, while it will have a smaller amplitude in mode II.

Figure 4 exemplifies, even with a not-so-small coupling, that
the effect of an asymmetry on the ratio of the modes is much
larger than the effect on the frequencies. With this particular
parameter values, when a 10% of relative mass difference, the
frequencies change between 2 and 3%. Alternatively, the
eigenmodes change either 20% (symmetric mode) or up to
80% (anti-symmetric mode).

Applying Voltage on One of the Resonators
It is also possible to study the effect of applying a voltage on one of the
individual resonators and observe the effect on the eigenfrequencies
and eigenvectors. To start with, we perform this simulation with the
resonators being initially identical. We observe that the voltage
unbalances the resonators in both ways, depending on the polarity
of the voltage (Figure 5A). In Figure 5Bwe can also see the impact of
the applied voltage on the ratio of the amplitudes in each eigenmode.
The resonator on which a positive voltage is applied, resonates at
greater amplitudes than the other resonator on the first coupled
eigenmode; while on the second coupled eigenmode, it has a lower
amplitude. Applying a negative voltage results in the opposite effect.
As in the case for the addition of mass, the effect of asymmetry on the
eigenmodes is indeed larger than on the eigenvalues.

Voltage Required to Compensate a Given
Added Mass
In order to determine which voltage is required to balance
coupled resonators that are not symmetric (initially

FIGURE 4 | FEM results showing (A) the shift in frequencies for both
eigenmodes and (B) the change in the amplitude ratios for both eigenmodes,
as a function of the relative mass added to one of the individual resonators.
With the particular set of parameter values that was used in this case, a
10% relative difference in the masses of the individual resonators provides a
change of 2–3% in the eigenvalues; whereas a change 20% or up to 80% in
the eigenmodes (this change defined as the modulus of the ratio between the
coordinates of each mode, erat ).

FIGURE 5 | FEM results showing (A) the shift in frequencies for both
eigenmodes and (B) the change in the amplitude ratios for both eigenmodes,
as a function of the voltage applied to one of the individual resonators.
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unbalanced), we perform a double parameter sweep of the
original mass difference and the applied voltage. For each
tested voltage, we identify the amount of mass difference that
can be compensated by finding balanced amplitudes in the first

coupled eigenmode, i.e., when eI ∝( 1
1
). Note that in these cases,

eII is not balanced. The results can be seen in Figure 6A, where
we show that (for the dimensions in the simulated system)
applying up to 10V to one of the resonators, one can
compensate up to 7% difference in the resonators masses. We
also show that the analytical estimation and the FEM results have
quite a good agreement. In the case of the analytical estimation,
the length used in the calculation includes also the undercut that
the system has in the FEM model. This is expected since the
dimensions used for the resonators yield a good agreement with
Euler-Bernoulli theory. Finally, in Figure 6Bwe show a particular
example of this balance. For a 10 pg of added mass in one
resonator, the system recovers balance when a voltage of 2 V
is applied on the other resonator.

CONCLUSION

In this paper, we have revisited the concept of coupled resonators
for sensing, and we have proposed a novel technique to bypass the
main limitation of this concept, which stems from having a non-
symmetrical system (for example due to a mass imbalance). Our
proposed approach is based on compensating the imbalance
between the couple of resonators by tuning the stress along
one of the resonators using piezoelectricity, i.e., applying a DC
voltage across a piezoelectric layer that is part of the resonators.

We first performed an analysis of the system, focusing on the
cases where the initial system is not symmetric. We then
highlighted the need to measure both the eigenfrequencies and
the eigenmodes in order to estimate the individual frequencies and
also the coupling. We then presented the analytical formulas that
explain the piezoelectric effect, as well as finite element simulations

that confirm the effect. We also presented a possible fabrication
process flow that can be used to obtain the type of devices we
propose, and even an example of the first generation of fabricated
devices. We are currently working on a second generation of
devices to experimentally test the predictions performed in this
paper. With this approach, we expect to be able to extend the
dynamic range of such systems by some orders of magnitude.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

JF designed, fabricated, and simulated the coupled resonators. JL
performed FEM simulations and developed the theoretical
analysis. MK performed FEM simulations. DM fabricated and
characterized the devices. LV conceived the project, and
supervised the design, fabrication, simulation, and
experimental work. All authors collaborated in the writing of
the manuscript.

FUNDING

Swiss National Science Foundation grants PP00P2_144695,
PP00P2_170590, 206021_177011, and IZSEZ0_186799.

ACKNOWLEDGMENTS

We would like to acknowledge the help and support in the
fabrication of the devices from the Center for Micro and
NanoTechnology (CMi) at EPFL.

FIGURE 6 | (A) Piezoelectric voltage required to be applied in one resonator (e.g., a) to balance the pair when an additional mass is distributed along the other
resonator (e.g., b). Comparison is shown between FEM results and analytical estimation (Vbalance inEq. 16) for the same dimensions andmaterial properties. (B) Particular
example of an operation. After an addition of distributed mass of 10 pg is made on resonator b, the system recovers the balance when the voltage applied on resonator a
is around 2 V.
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