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Among the so-called analytical models of friction, the most popular and widely used one,
the Prandtl-Tomlinson model in one and two dimensions is considered here to numerically
describe the sliding of the tip within an atomic force microscope over a periodic and
atomically flat surface. Because in these PT-models, the Newtonian equations of motion
for the AFM-tip are Langevin-type coupled stochastic differential equations the resulting
friction and reaction forces must be statistically correctly determined and interpreted. For
this, it is firstly shown that the friction and reaction forces as averages of the time-resolved
ones over the sliding part, are normally (Gaussian) distributed. Then based on this, an
efficient numerical scheme is developed and implemented to accurately estimate the
means and standard deviations of friction and reaction forces without performing too
many repetitions for the same sliding experiments. The used corrugation potential is the
simplest one obtained from the Fourier series expansion of the two-dimensional (2D)
periodic potential, e.g., for an fcc(111) surface, which permits sliding on both
commensurate and incommensurate paths. In this manner, it is proven that the PT-
models predict both frictional regimes, namely the structural superlubricity and stick-slip
along (in)commensurate sliding paths, if the ratio of mean corrugation and elastic
energies is properly set.
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1 INTRODUCTION

Frictional experiments in an atomic force microscope can be straightforwardly simulated by using
either molecular dynamics (MD) or ab-initio (first-principles) methods, see for example, Refs.
(Kobayashi et al., 2016; Wolloch et al., 2015). From a computational point of view, however, these
numerical calculations are extremely demanding and time consuming. Therefore, the so-called one-
dimensional (1D) and two-dimensional (2D) analytical models of friction, such as the Prandtl-
Tomlinson and Frenkel-Kontorova models, (Dong et al., 2011) are still remaining to be highly
efficient alternatives to the atomistic models and hence very popular because of their simplicity with
which they are capturing the main undergoing mechanisms within nanotribological AFM-
experiments. (Pawlak et al., 2016)

The Prandtl-Tomlinson model (PT-model), in its original formulation, (Prandtl, 1928) was
introduced by Prandtl while developing a kinetic theory of solids assuming a periodic interaction
between the bodies. Curiously, in the other paper ascribed to the PT-model, (Tomlinson, 1929)
Tomlinson was not dealing at all with these concepts, since he was outlining a molecular theory of
friction based on the findings by Lennard-Jones. Despite this historical inaccuracy, (Popov and Gray,
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2012) within a 1D or 2D PT-model, one can clearly distinguish
between various frictional regimes by considering a single
parameter, namely the ratio between the average interaction
and elastic energies. (Socoliuc et al., 2004)

Traditionally, if the coefficient-of-friction (CoF) observed for a
tribological system is less than or equal to 0.01 that system is said
to evolve within a superlubric frictional regime. (Martin and
Erdemir, 2018) Superlubricity was predicted theoretically in 1990
by Hirano and Shinjo, (Hirano and Shinjo, 1990) and its
occurrence was shown experimentally 1 year later. (Hirano
et al., 1991) Nowadays, beyond this structural superlubricity
discovered in the nineties as caused by the
incommensurability of interacting surfaces, one speaks also
about thermolubricity (Krylov et al., 2005) and chemolubricity
(Erdemir and Martin, 2007) which are two other forms of
superlubricity caused by the temperature acting as lubricant
and due to chemistry, respectively. For further information on
superlubricity, the reader is recommended to consult the excellent
reviews in the newest book edited by J.-M. Martin and A.
Erdemir. (Erdemir et al., 2021)

In this contribution, the structural superlubricity will be
addressed numerically by using the most popular and hence
widely applied analytical model of friction, namely the PT-
model in one-dimension and two-dimensions, in its well-known
form from the kinetic theory of solids and solid mechanics, see
Section 2. For this, the periodic corrugation of interest is
explicitly derived in Section 4 and directly introduced into
the corresponding 1D/2D PT-model. Since the resulting
Newtonian equations of motion are forming a set of
stochastic differential equations (SDEs), they are solved
numerically by applying an adequate fourth-order Runge-
Kutta method as presented in Section 3. Due to the
randomness of the thermally induced force mimicking the
impact of temperature on the sliding, both frictional regimes,
either stick-slip or superlubric, must be statistically evaluated
and interpreted, for example, in terms of distributions as shown
in Secion 5. Beyond the development of a statistically proper
numerical scheme for comparing the calculated frictional
performance along various paths on periodic atomic surfaces,
the ultimate goal of this contribution is to elucidate in which
circumstances, i.e., range of various parameters such as
materials, elastic coupling of AFM-tip to the drive, sliding
velocity or absolute temperature, one could detect the
superlubric frictional regime with high accuracy, see Section 6.

2 PRANDTL-TOMLINSON MODELS

In an atomic force microscope, the movement of the tip on a
corrugated surface of a substrate in dry contact conditions is
described within the kinetic theory of solids by the Langevin
equation of motion, (Filippov et al., 2010)

m
d2r(t)
dt2

+mc
dr(t)
dt

+ ∇V(r, t) � ζ(t) , (1)

with r(t) being the time-dependent position of the AFM-tip of
mass m and c is characterizing the damping proportional to the

velocity of the AFM-tip. Here the first force on the left-hand side is
that which accelerates the AFM-tip, the second one acts against
the former and it is proportional to the velocity of the AFM-tip,
whereas the last, third force on the left-hand side is due to the
interaction of the AFM-tip with the surface and with the drive.

If the total potential energy consists of the time independent
corrugation potential U(r) and the elastic potential of the tip-
drive subsystem, respectively, then

V(r, t) � U(r) + 1
2
kc vst − r( )2 , (2)

where kc stands for the effective stiffness of the linear coupling (e.g.,
via spring) between the AFM-tip and drive. Note that the drive is
supposed to move with a constant sliding velocity vs, such that

vs � vs (i cosΦ + j sinΦ) , (3)

withΦ defining the orientation of the sliding path with respect to
the Cartesian x-axis, whereas i and j being the in-plane unity
vectors along the Cartesian axes. The relative direction of vs also
sets the commensurability/incommensurability of the sliding
path versus the periodicity of corrugation U(r), for more
details see Secion 4 below. For example, for a 2D corrugation
one can consider the same functional form as for the 1D, such
that the latter 1D corrugation provides a periodic atomic chain
according to Φ, whereas in the 2D case it represents the simplest
2D periodic potential corresponding to the crystalline orientation
of substrate’s surface.

In Eq. 1, a normal (Gaussian) distribution is assumed for the
amplitude of the thermal-noise-induced random force ζ(t), thus
for its ensemble averaged auto-correlation function holds that

〈ζ(t)ζ(t′)〉 � 2mc kBT δ t − t′( ) , (4)

where δ denotes the Dirac delta-function, kB is the Boltzmann
constant and T stands for the absolute temperature, and its
random orientation is given by

ζ(t) � ζ(t) (i cos θ + j sin θ) (5)

with θ being a uniformly distributed random angle.

3 RUNGE-KUTTA METHODS

In the following, some details on the implementation are given,
which can be directly used for a 1D PT-model as well as for a 2D
PT-model where ξ(t) is measured along the sliding path. In this
case, the second-order stochastic differential equation in Eq. 1 is
equivalent to a system of two coupled first-order differential
equations,

dξ(t)
dt

� v(t)

dv(t)
dt

� 1
m
ζ(t) − cv(t) − 1

m

zV(ξ, t)
zξ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ , (6)

which, once numerically solved, yields simultaneously the
position ξ(t) and velocity v(t) of the AFM-tip along the sliding
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path for ∀t ≥ t0, if the initial position ξ0 and velocity v0 of the
AFM-tip are both known at the starting time t0, i.e.,

ξ(t0) � ξ0

v(t0) � v0

⎧⎪⎨⎪⎩ . (7)

The Runge-Kutta (RK) methods for solving differential
equations numerically were independently developed by Runge
(Runge, 1895) and Kutta (Kutta, 1901) more than a century ago.
During their long history, (Butcher and Wanner, 1996) they were
continuously improved, (Kalogiratou et al., 2014) such that also
RK-methods exist for solving SDEs, one of which will be here
applied as follows. The fourth-order Runge-Kutta method
applied for the coupled SDEs in Eq. 6, i.e., when T > 0, means
that one knowing ξn � ξ(tn) and vn � v(tn) for tn � n Δt (∀n � 0, 1,
2, . . .), computes for i � 1, 2, 3, 4

ti � tn +∑i−1
j�1

aijΔt

ξi � ξn +∑i−1
j�1

aijki,ξ

vi � vn +∑i−1
j�1

aijki,v

wi � Gi

�����
qi
ΔtW

√

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

ki,ξ � Δt vi

ki,v � −Δt cvi + 1
m

zV(ξi , ti)
zξ

[ ]+Δt wi

m

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ ,

to finally get

ξn+1 � ξn + b1k1,ξ + b2k2,ξ + b3k3,ξ + b4k4,ξ

vn+1 � vn + b1k1,v + b2k2,v + b3k3,v + b4k4,v

⎧⎪⎪⎨⎪⎪⎩ +O(Δt 4) , ∀n � 0, 1, 2, . . . ,

where all the involved real-valued coefficients as derived in Ref.
(Kasdin, 1995), Gi (i � 1, . . ., 4) are Gaussian random numbers
and W � 2mc kBT in accordance with Eq. 5. Due to this latter
randomness at finite absolute temperature, Eq. 6 admits not only
a single exact solution, but a set of differently valued solutions
which, however, are all statistically equivalent down to T �
1 mK–as we found. On the other hand, in accordance with
Eq. 5, the thermal-noise-induced random force ζ(t) is
vanishing at absolute zero temperature, since W � 0 when T �
0 K, and hence the first-order SDE in Eq. 6 turns at T � 0 K into
an ordinary differential equation (ODE) and therefore the
‘classical’ fourth-order Runge-Kutta method for ODEs can be
immediately applied. Formally, this means that one considers the
former expressions with wi � 0 (i � 1, . . ., 4) and the following
tableaux of Runge-Kutta coefficients, (Press et al., 2007)

a21
a31 a32
a41 a42 a43
b1 b2 b3 b4

�

1
2

0
1
2

0 0 1
1
6

1
3

1
3

1
6

.
(8)

4 CORRUGATION POTENTIAL AND
FRICTIONAL REGIMES

In the following, the corrugation potential of fcc(111)–the conceptual
model considered in this contribution–is derived from the Fourier
series expansion of the 2D translational invariant potential. For this,
consider the 2D primitive lattice vectors for an fcc(111) crystalline
surface as being

a1 � a (1, 0)

a2 � a
1
2
,

�
3

√
2

( )
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ , (9)

with a � afcc /
�
2

√
denoting the 2D lattice constant, where afcc is the

lattice constant of the 3D fcc crystal. Accordingly, the 2D translation
vectors are given byTn � n1a1 + n2a2, with n1, n2 ∈ Z and correspond
to a 2D hexagonal Bravais lattice with an angle c � π/3 rad between a1
and a2, since cosc � a1 ·a2� 1/2. The 2D reciprocal primitive vectors
bj (j � 1, 2), on the other hand, are directly obtained from Laue’s
equations, ai ·bj � 2πδij (i, j � 1, 2), where δij is the Kronecker symbol,
such that by using Eq. 9,

b1 � 2π
a

1,− 1�
3

√( )
b2 � 2π

a
0,

2�
3

√( )
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (10)

and hence the corresponding translation vector within the 2D
reciprocal space reads Km � m1b1 + m2b2 (m1, m2 ∈ Z).

Now, from the Fourier series expansion of the 2D periodic
potential U (r) � U (r + Tn),

U(r) � ∑
Km

UKm exp(iKmr),

written for r � x i + y j � ξ( i cosφ + j sin φ) and by also
using Eq. 10, the real part of the “first” Fourier expansion
terms

ReU(r)|±10
U±10

+ ReU(r)|0±1
U0±1

� cos
2π
a
ξ cosφ − sinφ�

3
√( )[ ]

+ cos
2π
a
ξ
2 sinφ�

3
√( ),

can be immediately considered as a proper model of the
interaction potential between the AFM-tip and fcc(111)
surface, e.g., by assuming for sake of simplicity that U±10 �
U0±1 � U00. In this manner, one could have any desired
sinusoidal corrugation as defined by φ, for example,

U(ξ) � −U0

2
cos

2π
a
ξ cosφ − sinφ�

3
√( )[ ] , (11)

providing the temperature independent force acting on the AFM-
tip in the form of
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zV(ξ, t)
zξ

� π

a
U0 cosφ − sinφ�

3
√( )sin 2π

a
ξ cosφ − sinφ�

3
√( )[ ]

− kc vst − ξ( ) . (12)

Indeed, when φ � 0, the most applied and simplest sinusoidal
corrugation of period equal to the lattice constant a results,

U(ξ)|φ�0 � −U0

2
cos

2π
a
ξ( ) and

zV(ξ, t)
zξ

∣∣∣∣∣∣∣∣φ�0 � π

a
U0 sin

2π
a
ξ( ) − kc vst − ξ( ) . (13)

Considering in these latter expressions ξ � Γ cosΦ, via Φ one
can easily select any commensurate/incommensurate path for
sliding, by letting Φ either to show or not to point along a high-
symmetry direction on fcc(111), for example, when Φ � 0 or Φ �
π/12 � 15◦.

The values for all the parameters entering Eqs 1–4, 13 are
from Ref. (Dong et al., 2011), e.g., a � 2.88 Å, and U0 � 0.6 eV,
and hence correspond to fcc Au(111). However, for the large-
parametric study presented in Seciton 6, both U0 and kc were
continuously varied to determine the impact of the substrate’s
material and that of the coupling strength on the friction. When
kc is kept unaltered, then its constant value is set to 1 N/m. As
already mentioned, it turned out that independently of the
sliding path, whether it is commensurate or incommensurate,
the realization of a normal stick-slip as illustrated in Figure 1,
or a superlubric frictional regime provided by Figure 2 indeed
is only depending on a single quantity,

η � π2U0

kca2
2

(14)

namely on the ratio between the mean interaction energy of the
AFM-tip with the surface and the elastic energy of spring
coupling the AFM-tip to the drive, (Socoliuc et al., 2004) see
also Section 6.

5 STATISTICS OF FORCES

From Eq. 13 it becomes immediately clear that the average of the
lateral force F(t) � kc[vst − ξ(t)] taken over the sliding time or
distance, for example,

Fi � 1

N(i)
t

∑N(i)
t

j�1
F tj( ) (15)

is a proper measure for the friction force and completely in
accordance with the experimental practice. (Schwarz and
Hölscher, 2016; Peng et al., 2020) Note, however, that
accordingly the calculated friction force could be either
positive or negative valued, depending on whether the drive is
more times in advance with respect to the AFM-tip or the other
way around during the entire sliding period. In this Eq. 15, N(i)

t

denotes the number of time moments considered during the ith
repetition of the same sliding experiments, normally, a couple of

thousands time moments up to 104. Here and in the following for
producing reference data, at a non-vanishing absolute
temperature between 1 mK and the room-temperature (RT) of
300 K, for example, the mean of a force

〈F〉n � 1
n
∑n
i�1

Fi (16)

either frictional or reaction one (the latter only within the 2D PT-
model), and its standard deviation

σn �
���������������
1
n
∑n
i�1

Fi − 〈F〉n( )2
√

(17)

are both calculated using numerical results from n � 104 times
repeated “identical” sliding experiments, since it is assumed that
after such an amount of repetitions 〈F〉n and σn are fairly
approximating their exact values

〈F〉 � lim
n→∞

〈F〉n

σF � lim
n→∞

σn

⎧⎪⎪⎨⎪⎪⎩ . (18)

As can be directly seen from Figure 3A, the distribution of
time-averaged friction force within a PT-model is a normal
(Gaussian) one,

N F | 〈F〉, σ2
F( ) � 1�����

2πσ2
F

√ exp −(F − 〈F〉)2
2σ2F

[ ] , (19)

of an almost perfect shape in view of its third (skewness) and
fourth (kurtosis) central moments,

skn � 1

σ3n

1
n
∑n
i�1

Fi − 〈F〉n( )3⎡⎣ ⎤⎦
kun � 1

σ4n

1
n
∑n
i�1

Fi − 〈F〉n( )4⎡⎣ ⎤⎦
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

. (20)

Furthermore, by inspecting the normal probability plot given
in Figure 3B which per definition identifies graphically the
departure of random data from normality, i.e., from the
Gaussian behavior, it can be observed that the ordered time-
averaged friction force shows against the theoretical quantiles qi
(i � 1, . . ., n − 1) indeed a perfect linear correlation in terms of the
Pearson’s coefficient,

r � 1
σF σq

1
n
∑n
i�1

Fi − 〈F〉( ) qi − 〈q〉( ) , (21)

where 〈q〉 and σq denote the mean and standard deviation of qis.
Note that theoretical quantiles are grid-points dividing the range
of a probability density function, in our case the Gaussian one,
into adjacent intervals of equal probabilities, thus the qis are
values of the inverse cumulative Gaussian density function at i/
n. This normal distribution of friction forces persists in all
frictional regimes, i.e., in both stick-slip and superlubric
regimes, for any material pairing (arbitrary U0-value), and
any strength of the elastic coupling (arbitrary kc-value)
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between the AFM-tip and drive as detailed in the
Supplementary Material. Even more, also the reaction force
aiming the AFM-tip perpendicularly to the friction force to

follow the straight sliding path is perfectly normally (Gaussian)
distributed, recall Figure 4. Probably, all these statistical features
are less surprising for somebody knowing that averages of
random numbers of an arbitrary distribution are always

FIGURE 2 | As in Figure 1, for an η-value leading to a superlubric sliding
of the AFM-tip on an fcc(111) substrate.

FIGURE 1 | Stick-slip movement of the AFM-tip at RT of 300 K along an
incommensurate sliding path Φ � 15 deg for an η set accordingly, when U0 is
kept constant and kc is adjusted, recallEqs 3, 14. The trajectories of drive (black)
and AFM-tip (green) are shown in the top panel, whereas the friction and
reaction forces (green) at each position of the drive are given in themiddle and
bottom panels together with their means (blue) over the entire sliding path.
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normally distributed. Accordingly, as further detailed in the
Supplementary Material when applying the 1D PT-model for
sake of simplicity, independently of the frictional regime, also
the block-averaged time-dependent friction force is normally
(Gaussian) distributed. Formally, this is still a direct
consequence of the averaging and not necessarily of the fact
that the time-dependent friction force is normally distributed
too due to the Gaussian-shape of the thermal-noise-induced
random force in Eq. 4.

Since our main goal is to numerically study the occurrence of
structural superlubricity as function of various parameters, such
as temperature and velocity, for example, a 104 times repetition
of the sliding for a single parametric configuration is too
demanding computationally and therefore one should
develop a numerical scheme to achieve accurate
approximations of F and σF, recall Eq. 18, by performing
much fewer repetitions n ≪ 104. In a first attempt, it was

taken advantage on the central limit theorem stating that the
composite variable zn � �

n
√ (〈F〉n − 〈F〉) / σF, with 〈F〉n as

introduced in Eq. 16, tends to be normally distributed with
zero mean and unity standard deviation, i.e., N (zn | 0, 1) in
accordance with Eq. 19, when the number of repetitions n goes
to infinity. This in terms of distribution means that the
probability P(zn ≤ zsup) tends to the cumulative Gaussian
density function at zsup, i.e., the supremum of zn, when n →
∞. Indeed, by setting the accuracy for fulfilling the latter
identity, one could have reasonable 〈F〉n and σn, recall Eq.
17, in comparison with 〈F〉 and σF for n in range of thousands as
presented in Supplementary Material. Unfortunately, for a
large-parametric study of structural superlubricity, thousands
of repetitions per configuration are still too high.

In a next attempt, it was iteratively attempted to achieve the
convergence of the mean force. 1) In a first step, one increases
step-by-step the number of repetitions n until the mean 〈F〉n
becomes zero or positive-valued. 2) Then the repetitions are
further increased step-by-step until the mean 〈F〉n+m will be
again zero or positive. 3) If the difference of these means |〈F〉n −
〈F〉n+m| is below a given positive threshold ϵF, then it is assumed
that the convergence is achieved, and one considers (〈F〉n +
〈F〉n+m) / 2 as being the accurate mean. 4) Otherwise, the

FIGURE 4 | As in Figure 3, for the reaction force.FIGURE 3 | In the top panel, the histogram of the time-averaged friction
force (blue) for the same sliding experiment repeated 104 times together with
the corresponding normal (Gaussian) distribution (solid red line) and the mean
(dashed red line). Here the skewness (sk) and kurtosis (ku), i.e., the third
and fourth central moments, are measuring the high quality of the normal
distribution for the time-averaged friction force. This is additionally also
quantified by Pearson’s linear correlation coefficient r2 in the bottom panel,
where the probability plot of the time-averaged friction force is given.
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algorithm is continued from 1) by setting n to n + m.
Unfortunately, in this iterative scheme too the number of
repetitions n remains to be of order of 103, see depicted in
Supplementary Material.

Finally, it was decided to realize the convergence of the mean
friction and/or reaction force by setting the accuracy ϵG > 0 with
which the normality of forces should be achieved. Namely,
increasing either step-by-step or blockwise the number of
repetitions, it is continuously verified whether 〈F〉n ≥ 0 and
simultaneously the skewness together with the kurtosis, recall
Eq. 20, are accurate enough, i.e.,

skn| |≤ ϵG & kun − 3| |≤ ϵG . (22)

If these criteria are satisfied, the mean of friction and reaction
forces are considered to be converged and the normality of their
distributions is additionally quantified by Pearson’s linear
correlation coefficient, recall Eq. 21. For the case that one of
the criteria in Eq. 22 and/or 〈F〉n ≥ 0 could not be fulfilled, a
predefined maximum number of repetitions nmax, e.g., 10

4, will
be performed by assuming that this nmax is large enough for
obtaining good mean values for the forces. What one observes in
Figure 5 is that by decreasing ϵG for the skewness and kurtosis,
the normality of friction force is increasing as quantified by
these moments and also by Pearson’s (linear) correlation
coefficient. However, after a while a further decease of ϵG
does not really improve the positive mean 〈F〉n in

comparison with 〈F〉104 taken as reference when n � 104.
From Figure 6 it becomes evident that a relatively large ϵG �
0.2 is recommended for using within the stick-slip regime
leading to a couple of tenths of repetitions and hence to a
fast convergence of the mean values for forces, whereas a ten
times smaller ϵG � 0.02 is suitable to achieve highly accurate
means of forces with the superlubric regime by performing a
couple of hundreds of repetitions.

6 LARGE-PARAMETRIC STUDIES

Having fixed the convergence criteria with ϵG � 0.02, large
parametric studies of sliding along (in)commensurate paths
were performed first using the 1D PT-model. By varying the
system and environment properties, we aim to gain
understanding on the dependence of the friction forces and
thus the frictional regime on any of these parameters. As
illustrated in Figure 7, the temperature values of T � 0 K and
T � 300 Kwere considered when solving the corresponding ODEs
and SDEs respectively. In these calculations, the η-dependence of
structural superlubricity was studied by keeping all parameters
entering Eq. 1 constant, except the corrugation potential
amplitude U0 and the spring constant of the coupling of the
AFM-tip to the drive kc, respectively, which were varied
independently. A different behaviour is observed in the case of
each variation.

FIGURE 5 | Convergence of the friction force skewness (blue) and kurtosis (green) within the 1D PT-model, together with the number n of repetitions needed (red
dashed line) to achieve a given accuracy εG, and to this accuracy corresponding Pearson’s linear correlation coefficient r2n . In addition, the mean of the friction force 〈 F 〉n
is compared with the reference mean 〈 F 〉104 obtained by repeating 104 times one and the same numerical AFM-experiment.
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When U0 is kept constant, one can observe a short region of
very low friction forces, followed by a quick increase with a
diminishing slope as the ratio η increases. The introduction
of thermal noise at non-zero temperatures leads to the
reduction of the friction forces in the stick-slip regime,
however, the region of the superlubric regime is not
significantly affected. At very low η values, which correspond
to very high spring constants kc, negative friction force values of
low magnitude are observed. This can be due to the non-
convergence of the average force, as it was already observed
that a larger number of statistically independent realisations is
typically required in the superlubric regime. On the other hand,
it could pinpoint to an incompatibility of the very high elastic
coupling energy for the given interaction energy of the AFM-tip
with the surface, where the assumptions of the PT-model may
not be valid.

In the opposite case where the spring constant kc is kept
fixed and the interaction potential is varied, only positive
friction forces are observed. The superlubric regime holds
for larger values of η, while the increase of forces is less
abrupt and shows a linear trend. Here, the introduction of
thermal noise also leads to a reduction of the friction forces,
however, it also leads to a significant expansion of the range of η
values which lead to a superlubric regime. It becomes clear,
therefore, from the analysis of Figure 7 that the value of η
uniquely determines the type of frictional regime, either stick-
slip or superlubric between the AFM-tip and any semi-infinite
crystalline substrate.

Note that all these numerical studies evidence significantly
larger intervals for η where the superlubric frictional regime
could occur than that of η < 1 assumed in the literature for both
U0 and kc kept constant, recall for example Ref. (Socoliuc et al.,
2004). This means that by varying the material and system
properties, the occurrence of superlubricity could be further
tuned and even extended on (in)commensurate sliding paths.
Furthermore, it seems also that the superlubricity for η < 1,
recall Figure 7, it is more pronounced than over its extension for
1 ≤ η < 20, probably because the former is energetically and the
latter symmetrically more favorable. Even small negative values
for friction force are obtained when η < 1 andU0 is varied, which
shows that probably a sliding distance of only 3.5 nm which was
considered here, is not enough to get in average the drive in front
of the AFM-tip.

All the same holds for the friction forces calculated using the
2D PT-model, cf. Figure 7 with the left panels of Figure 8.
What concerns the η-dependence of the reaction force, this
differs not too much from that of the friction force, as one
observes on the right column of Figure 8, and shows that
keeping the sliding on an incommensurate path needs in
magnitude higher reaction forces, when η increases.
Interestingly, the incommensurate paths are not equivalent,
since the η-dependence of the friction and reaction forces is
Φ-dependent too. Furthermore, both forces, i.e., the frictional
in both 1D and 2D PT-models, and the reaction force within
the 2D PT-model, feature a strong temperature dependence for
a given sliding velocity.

FIGURE 6 | As in Figure 5, for the friction (top row) and reaction force (bottom row) within a stick-slip (left panels) and a superlubric frictional regime (right
panels) obtained by applying the 2D PT-model.
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FIGURE 7 | η-dependence of structural superlubricity as predicted by the 1D PT-model at 0 K (solid line) and at RT of 300 K (full circles) along various
incommensurate sliding pathsΦ � 5, 10, 15, 20, 25 and 30 deg (depicted in violet as specified in the legend), recall Figures 1, 2, when eitherU0 (top row) or kc (bottom
row) is kept constant in Eq. 14.

FIGURE 8 | As in Figure 7, for three two-dimensional incommensurate sliding paths Φ � 5, 10 and 15 deg, when using the 2D PT-model.
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FIGURE 9 | Temperature and sliding velocity dependence of the friction force as predicted by the 2D PT-model within the stick-slip regime along the
incommensurate path for Φ � 15 deg, when either U0 (top row) or kc (bottom row) is kept constant in Eq. 14.

FIGURE 10 | As in Figure 9, but within the superlubric frictional regime.
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Apart from identifying the frictional regime according to
the material and system properties, the 1D and 2D PT-models
also enable us to study the temperature and velocity
dependence of friction and reaction forces in both stick-
slip and superlubric frictional regimes. In Figures 9, 10
only the calculated friction force for a large range of
temperature and sliding velocity values is given, because in
magnitude much smaller reaction force behaves pretty
similarly. It can be readily observed that the increase of
temperature leads to a monotonic decrease of friction
forces within both frictional regimes, as the increasing
thermal motion aids the AFM-tip to overcome the
interaction energy barriers and slide with a lower
mechanical energy. On the other hand, the increase of
sliding velocity results in increased friction forces strongly
depending on the frictional regime, probably due to different
impact of the damping. A linear dependence of the friction
and reaction force (although the latter is not shown explicitly
here) on the logarithm of the sliding velocity can be observed
within the stick-slip regime,

a1 kBT + a0( )ln vs
v(ref)s

, (23)

of which slope a1 kBT + a0 is linearly depending on the
absolute temperature T. In this Eq. 23 kB stands for the
Boltzmann constant and v(ref )s denotes the selected
reference sliding velocity, here and in the following, the
minimum of all considered sliding velocities. Within the
superlubric frictional regime, a similar functional
dependence as in Eq. 23 holds only when U0 is varied.
When kc is varied, then the quadratic form

a2 (kBT)2 + a1 kBT + a0[ ] ln
vs

v(ref )s

[ ]2

, (24)

provides the temperature and sliding velocity dependence of
the friction and reaction forces. For the values of the
polynomial coefficients ap (p � 0, 1, 2) and further
computational details, see the Supplementary Material.
All these are suggesting at least a power-law dependence of
friction reaction force on the sliding velocity with a
temperature-dependent exponent.

7 SUMMARY AND CONCLUSIONS

In summary, the PT-model was considered in one and two
dimensions for the numerical description of an AFM-tip
sliding over a periodic and atomically flat surface. A
system of SDEs was considered and implemented for the
inclusion of the effects of temperature on the motion of the
tip. The conditions for the derivation of statistically accurate
friction and reaction forces in a numerically efficient way
were defined. The proposed statistically proper scheme
can be applied for sliding on both commensurate and
incommensurate paths, while it allows the study of the

impact of both system and environmental conditions on
the resulting friction forces.

By the numerical study of the AFM-tip sliding using the PT-
models, it was concluded that the ratio between the mean
interaction energy of the AFM-tip with the surface and the
elastic energy of spring coupling the AFM-tip to the drive, can
uniquely determine the type of frictional regime, either stick-slip
or superlubric between the AFM-tip and any semi-infinite
crystalline substrate. In addition, the friction force in both
regimes is predicted to be a function of temperature and
sliding velocity.

All these findings can support the design of appropriate
experimental studies for the realization of structural
superlubricity, while they can also shed light into the design of
novel systems showing ultra-low friction which can be beneficial
in several engineering applications.
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