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In this study, a new adhesive contact model is built upon a boundary element method
(BEM) model developed by Pohrt and Popov (2015). The strain energy release rate (SERR)
on the edge of the bonding interface is evaluated using Virtual Crack Closure Technique
(VCCT) which is shown to have better accuracy and weaker mesh-size dependency than
the closed-form SERR formula derived by Pohrt and Popov. A composite delamination
criterion is proposed for crack nucleation and propagation. Numerical results predicted by
the present model are in good agreement with the analytical solutions of two classic
problems, namely, the axisymmetric parabolic contact and the sinusoidal waviness
contact in the plane strain condition. The model of Pohrt and Popov can achieve a
similar accuracy for the axisymmetric parabolic contact where the mesh grid is non-
conforming to the crack front. Once the conformingmesh grid is used, the accuracy of their
model is significantly deteriorated, especially at high work of adhesion and high mesh
density. In both BEM models, however, the crack nucleation is found to be mesh-
dependent which may be solved by introducing an upper limit for the tensile normal
traction.
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1 INTRODUCTION

Two mating surfaces bond to each other through intermolecular attractions, even under the tensile
loading. In the idealized environment where the effect of humidity, surface charges, and
contaminants can be neglected, the short-range van der Waals force is dominant in the
intermolecular attractions. Besides the classic thermal dynamic approach used in the pioneering
work of Johnson, Kendall, and Roberts (Johnson et al., 1971) (JKR theory), fracture—adhesion
analogy plays a dominant role in finding the analytical solutions in the theoretical study of adhesive
contact (Maugis and Barquins, 1978; Greenwood and Johnson, 1981; Maugis, 1992; Johnson, 1995;
Persson, 2002; Carbone and Mangialardi, 2008; Xu et al., 2014; Ciavarella, 2015; Menga et al., 2016;
Ciavarella et al., 2018; Ciavarella et al., 2019; Jin and Yue, 2020). If the intermolecular attraction
outside the contact area is neglected (i.e., the JKR limit), the adhesive interface is equivalent to a
brittle crack whose static equilibrium is governed by the Griffith’s criterion (Maugis and Barquins,
1978; Greenwood and Johnson, 1981; Johnson, 1995). The intermolecular attractions outside the
contact area can be included through the cohesive zone modeling, and the closed-form solution may
be obtained if simplified cohesive laws are used [e.g., the Dugdale model (Maugis, 1992; Ciavarella
et al., 2019; Jin and Yue, 2020) or the double Hertzian/Westergaard model (Greenwood and Johnson,
1998; Jin et al., 2016)].

The theoretical models can only be applied to few problems with ideal contact geometries, e.g.,
parabolic (Maugis, 1992) and sinusoidal waviness surfaces (Johnson, 1995). Better accuracy can be
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achieved using numerical models [e.g., BEM (Greenwood, 1997;
Feng, 2000; Rey et al., 2017; Bugnicourt et al., 2018;
Ghanbarzadeh et al., 2020) and Green’s function molecular
dynamics (GFMD) (Pastewka and Robbins, 2014; Müser, 2016;
Khajeh Salehani et al., 2020; Wang et al., 2021)] where
intermolecular attractions are explicitly quantified using
various potentials and phenomenological cohesive laws. In
other numerical models, the intermolecular attractions are
introduced through the fracture-adhesion analogy where the
contact edges are assumed as a Griffith crack. Carbone et al.
(Carbone and Mangialardi, 2008; Carbone et al., 2009; Carbone
et al., 2015) solved the adhesive contact problem between a thin
elastic layer and a rigid rough profile using BEM where the
locations of contact edges can be determined based on Griffith’s
criterion. Pohrt and Popov (Pohrt and Popov, 2015) developed a
BEM adhesive contact model which is validated by various
adhesion tests (Popov et al., 2017; Popov et al., 2021). The
SERR in their model has a closed-form, which was derived
based on the Boussinesq solutions. By guessing an
overestimated real contact area, the adhesive contact problem
in their model becomes an interfacial crack problem where the
detachment is governed by a normal traction-based mesh-
dependent criterion. The solution is converged until the crack
fronts (i.e., contact edges) are rested.

In this study, a new adhesive contact model based on the work
of Pohrt and Popov (Pohrt and Popov, 2015) is developed. The
SERR is evaluated using VCCT which is a universal technique for
evaluating the SERR in finite element method (Krueger, 2004).
New algorithms are proposed for the delamination of the contact
edges and the crack nucleation inside the contact area. The rest of
this paper is structured as follows. In Section 2, the work of Pohrt
and Popov is briefly introduced, including the main BEM
algorithm, the mesh-dependent SERR formula, and the
delamination criterion. In Section 3, the accuracy of the
mesh-dependent SERR formula is explored by revisiting two
classic mode-I crack problems. In Section 4, the main
algorithm of the present model is given in detail. In Section 5,
three classic adhesive contact problems are revisited by the
present and previous BEM models.

2 THE PREVIOUS MODEL

Consider two linear elastic half-spaces in the purely normal
contact under a normal load F acting at the far end. The
Young’s modulus and Poisson’s ratio of two bodies are, Ei and
]i, where i � 1, 2. The geometries of two contact surfaces can be
represented by (x, y, hi (x, y)). As proved by Barber (Barber, 2003),
this problem is equivalent to a rigid flat in contact with an elastic
half-space where the interfacial geometry has a composite form h
(x, y) � h1 (x, y) + h2 (x, y), see Figure 1. The surface deflection
linearly depends on the plane strain modulus E*

1
E*

� 1 − ]21
E1

+ 1 − ]22
E2

The geometrical relation at the contact interface has the following
form

g(x, y) � uz(x, y) − h(x, y) + d, (x, y) ∈ Ω (1)

where g is the interfacial gap;Ω is the computational domain with
a finite size over z � 0 plane; uz is the normal surface deflection
which can be determined by the convolution between the
Boussinesq solution and contact pressure distribution p (x, y)
(Johnson, 1987); d is a load-dependent distance. The solutions at
the contact interface, p (x, y) and g (x, y), must satisfy the
following boundary conditions

g(x, y) � 0 where (x, y) ∈ Ωc (2)

g(x, y)> 0, p(x, y) � 0 where (x, y) ∈ Ωnc (3)

where Ωc and Ωnc are the contact and out-of-contact regions,
respectively. Since g is zero within the contact area, d can be
determined by d � 1

Ar
∫∫
Ωc

h(x, y) − uz(x, y) dxdy where real area

of contact Ar is the size of the contact region, Ωc. Finally, the load
equilibrium in the normal direction must be maintained

F � ∫∫
Ωc

p(x, y) dxdy. (4)

The original work of Pohrt and Popov in (Pohrt and Popov, 2015)
is slightly different from the one given above due to its
indentation-driven condition. The above formulation, in
contrast, adopts the normal load-driven condition.

Theirmodel can be divided into two parts, a normal contact BEM
solver and a mesh-dependent delamination criterion. The former
part solves Eqs. 1–4 iteratively with a given contact region Ωc using
the conjugate gradient (CG) method (Polonsky and Keer, 1999;
Pohrt and Li, 2014). The continuous convolution–fast Fourier
transform (CC-FFT) and discrete convolution–fast Fourier
Transform (DC-FFT) (Liu et al., 2000; Wang et al., 2020) can be
utilized to accelerate the calculation of the normal deflection, uz, for
periodic and non-periodic domains, respectively. The resultant p (x,
y) is a mixture of tensile and compressive tractions. The later part
delaminates the elements where the normal tractions violate the
Griffith criterion. Pohrt and Popov (Pohrt and Popov, 2015)
creatively developed an analytical solution of SERR (G) using the
Boussinesq solutions, and their derivation results in a mesh-
dependent form (Pohrt and Popov, 2015)

Undeformed shape
Deformed shape

FIGURE 1 | Schematic of an elastic half-space with an arbitrarily shaped
boundary in purely normal contact with a rigid flat.
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G � p2χ

ΔxΔyE*
(5)

where

χ � 1
3π

Δ3
x + Δ3

y − Δ2
x
�Δ − Δ2

y
�Δ( )

+ 1
2π

ΔxΔy Δx log
�Δ + Δy

�Δ − Δy
( ) + Δy log

�Δ + Δx

�Δ − Δx
( )[ ]

Δx and Δy are mesh sizes in the x and y directions, respectively;
�Δ �









Δ2
x + Δ2

y

√
. The analytical solution in Eq. 5 quantifies the

released strain energy due to the delamination of a rectangular
element per unit area. The Griffith’s criterion states that crack
propagates when G > w where w is the work of adhesion.
Substituting Eq. 5 into G > w, the energy-based delamination
criterion can be rewritten as a normal traction-based one,
i.e., p < − Σ where

Σ �









ΔxΔywE*

χ

√
(6)

For a given Ωc, the corresponding normal traction, p (x, y), is
solved using Algorithm 4 in Appendix A. In each iteration, the
potentially detached elements are identified using the normal
traction-based criterion in Eq. 6, and are considered as part of
Ωnc. Implementation of the above delamination criterion is given
in Algorithm 5. This process iterates until the convergence
criterion is satisfied. To initiate this iterative process, an initial
guess of the contact region Ωmax

c is used of which the true contact
area is a subset. Clearly, this BEM model can only be applied
during the unloading stage. It is impossible to capture the snap-in
instability. In a recent work of Popov et al. (Popov et al., 2021), the
model of Pohrt and Popov (Pohrt and Popov, 2015) has been
extended to cover the loading stage with the capability of
capturing the snap-in instability. The detailed implementation
of the iterative process can be found in Algorithm 3. Neglecting
the energy dissipation due to the unstable snap-in/pull-off at
asperity level (Greenwood, 2017; Popov et al., 2021), this BEM
model is valid for adhesive contact in both loading and unloading
stages (i.e., loading and unloading stages are assumed to be
reversible).

3 ACCURACY OF MESH-DEPENDENT
STRAIN ENERGY RELEASE RATE
FORMULA

3.1 Two Classic Crack Problems
The mesh-dependent SERR formula is essential to the previous
BEM model, which is responsible for an accurate delamination
criterion. Even though their model has been validated in various
numerical and experimental studies (Popov et al., 2017; Popov
et al., 2021), the accuracy of Eq. 5 has never been proved. In this
section, two classic mode-I crack problems are revisited, namely.

• Problem 1: the mode-I periodic collinear cracks of semi-
width a with period λ embedded in an infinite space, which

are subjected to a tensile normal traction �p at far end, see
Figure 2A. This classic problem was solved analytically by
Koiter (Koiter, 1959), and the SERR has the following form
(Johnson, 1995; Tada et al., 2000)

Ganalytical
1 � �p2λ

2E*
cos

πa

λ
( ) (7)

• Problem 2: a penny-shaped mode-I external crack of
radius a embedded in an infinite space, which is
subjected to a tensile force F at far end, see Figure 2B.
The SERR has the following form (Maugis, 1992; Tada et al.,
2000)

Ganalytical
2 � F2

8πa3E*
(8)

Two problems are all symmetric about its crack plane (see the
darker plane in Figure 2). Therefore, two mode-I crack problems
are equivalent to the following adhesive contact problems:

• problem 1: a rigid flat and a half-space where half periodic
collinear cracks are embedded at the bonding interface;

• problem 2: a rigid flat and a half-space where a half
external penny-shaped crack is embedded at the bonding
interface.

Because the bonded area (contact area) is known in advance,
the CG method given in Algorithm 4 can be used to solve the
normal traction, p (x, y), within the bonded area. The SERR is
evaluated over the elements at the contact edge using Eq. 5, as
well as the VCCT. A short introduction of VCCT is given in
Section 3.2.

3.2 Virtual Crack Closure Technique
Virtual crack closure technique (VCCT) is widely used in 2D and
3D finite element model for determining SERR (Krueger, 2004).
Consider a simple case where a flexible surface is peeled off from a

FIGURE 2 | Schematics of (A) periodic collinear cracks of period λ with
semi-width a subjected to a uniform tensile normal traction �p at far end, and
(B) a penny-shaped external crack of radius a embedded in an infinite space
subjected to a normal load F at far end. Only a finite portion of the infinite
space is illustrated.
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rigid flat. The normal traction, p, and crack opening
displacement, g, over the bonded and debonded surface
elements, respectively, are shown in Figure 3. The
discontinuous crack opening displacement and contact
pressure distribution are due to the constant elements used in
the BEM model (uniform normal traction and interfacial gap
within each element). As the crack front propagates from A (at
load step k) to A′ (at load step k + 1) by a sufficiently fine element
size Δx, the following self-similarity can be approximately
satisfied: p(k)

ij � p(k+1)
i−1 j and g(k+1)

ij � g(k)
i+1 j, see Figure 3. This

self-similarity enables the determining of SERR within one
load step. At step k, the amount of strain energy released due

to the delamination of element (i, j) of area ΔxΔy is
U � 1

2p
(k)
ij g(k+1)

ij ΔxΔy � 1
2p

(k)
ij g(k)

i+1 jΔxΔy. The SERR, G � U
ΔxΔy

,
at step k is as follows

G � 1
2
pij gi+1 j (9)

where the superscript (k) is dropped for the sake of simplicity.
For an arbitrary crack front that cannot be perfectly parallel

with the element edges (see Figure 4A for an example), the crack
opening displacement in Eq. 9may have more than one candidate
to choose among the closest neighbors of element (i, j). Some
methods are proposed in the finite element literature to solve this
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FIGURE 3 | Schematics of normal traction and crack opening displacement between a rigid flat and flexible surface at the vicinity of the crack front A (at step k, left)
and A′ (at step k + 1, right).

Bonded element on the crack frontBonded element Penny-shaped crack frontDebonded element

R

x

y

θ

A B
VCCT, Eq. (10) Analytical solution, Eq. (8)
Mesh-dependent formula, Eq. (5)

FIGURE 4 | (A) Schematic of themesh grid used in the crack problem 2, and (B) the distribution of SERR,G(θ), at the crack front. Size of the computational domain � 2.5 ×
2.5 (mm2), tensile normal load P � 1 (N), a � 1.0 (mm), E* � 1 (MPa). The mesh grid is 128 × 128. Penny-shaped crack is located at the center of the computational domain.
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ambiguity for non-constant (linear, quadratic, etc) elements, and
a comprehensive summary of those methods was given by Wu
et al. (Wu et al., 2021). For a constant element, we propose the
following simple formula

G � 1
2
pij max(gi j±1, gi±1 j) (10)

where max (gi j±1, gi±1 j) indicates the maximum crack opening
displacement at four closest neighbors of element (i, j). The
reason for picking the maximum interfacial gap is because
that the edge associated with the maximum interfacial gap is
likely the weakest edge for the potential crack to propagate
through. Unlike the mesh-dependent SERR formula in Eq. 5
which is based on the Boussinesq solutions (Pohrt and Popov,
2015), VCCT does not rely on any specific analytical solutions so
that it is a universal method for evaluating SERR in mode I/II/III,
regardless of the material properties (elastic, viscoelastic or
elastoplastic) and types of the domain (periodic or non-periodic).

3.3 Strain Energy Release Rate Results
In problem 1, the conforming mesh is used where the element
edges are parallel with the crack front (see the straight crack front
in Figure 3 as an example). Since the crack problem is in the plane
strain condition, the variation of SERR along the crack front is
negligible. The SERR determined by VCCT, Eq. 10, associated
with three different mesh densities all have excellent agreement
with the analytic solution Ganalytic

1 , see Table 1. Equation 5 is
derived based on the non-periodic, point load (Boussinesq)
solutions under the three-dimensional (3D) elasticity. It is still
valid to apply Eq. 5 to evaluate G in problem 1. Firstly, the 3D
BEM model is inherently in the plane strain condition due to the
usage of two-dimensional FFT in the xy plane so that the crack
has an infinite length in the y direction; Secondly, the semi-width
of the crack, 0.05 (mm), is negligible compared with the period
λ � 2.5 (mm), the coupling between neighboring cracks can be
neglected. Thus, each collinear crack can be studied individually.
Finally, the element sizes, Δx and Δy, are extremely small
compared with the period. Therefore, it is valid to apply Eq. 5
to any periodic problem as long as the mesh density is sufficiently
high. Surprisingly, the SERR determined by the mesh-dependent
formula in Eq. 5 is greatly underestimated by a maximum of 47%
associated with mesh grid of 1,024 × 1,024, see Table 1.

Additionally, the SERR determined by Eq. 5 decreases by
more than 10% with respect to Ganalytic

1 when the mesh grid is
changed from 256 × 256 to 1,024 × 1,024. The variation of the
SERR determined by VCCT, in contrast, is only about 1%. This
implies that the mesh-dependent formula has a stronger mesh-
dependency compared with VCCT when applied to the
conforming mesh. Equation 10 associated with the minimum
gap, min (gi j±1, gi±1 j), and the average gap, mean (gi j±1, gi±1 j), are
also tested, and the corresponding mean SERRs are nearly
the same.

The mesh grid in problem two is non-conforming, since
element edges do not always align perfectly with the crack
front (see the non-smoothed crack front highlighted in blue in
Figure 4A as an example). The distributions of SERR over the
circular crack front G(θ), determined by both VCCT and mesh-
dependent formula, oscillate about mean levels with the
amplitude as high as 50% of Ganalytic

1 , see Figure 4B. The
oscillation of G(θ) at the penny-shaped crack front commonly
occurs in the finite element model due to the non-smoothed crack
front (Wu et al., 2021). As we shown in Section 4, the accuracy of
the SERR determined by VCCT, as well as the mesh-dependent
formula, is related to an accurate estimation of the strain energyU
and the virtually closed area per element. The accuracy of U is
strongly related to the choice of crack opening displacement. Due
to the fact that the crack is non-smoothed, crack opening
displacement is ambiguous, and the virtually closed area per
element is hard to determine. As an example in Figure 4A, some
elements shown at the crack front are only closed partially. For an
adhesive contact where the crack front is not known in advance, it
is nearly impossible to correctly determine the virtually closed
area per element. Therefore, the oscillation amplitude of G(θ) is
high. Many VCCT formulations, similar to Eq. 10, were proposed
to improve the accuracy of G(θ) associated with non-conforming
mesh (Krueger, 2004; Xie and Biggers, 2006; Wu et al., 2021). The
extent of oscillation may be slightly relieved, but the oscillation
cannot be completely removed.

The SERR solved in problem two are summarized in Table 2
where the maximum, average, and standard deviation values of
G(θ) all slightly reduce with the increase of the mesh density for
both VCCT and mesh dependent formula. This is expected since
the smoothness of the crack front is improved at a higher mesh
density. However, the accuracy improvement is not significant

TABLE 1 | The SERR of the crack problem 1 determined by mesh-dependent
formula, Eq. 5 and VCCT, Eq. 10. Size of computational domain, Ω, is 2.5 ×
2.5 (mm2); tensile normal traction �p � 1 (MPa); λ � 2.5 (mm); a � 0.05 (mm); E* � 1
(MPa). Three different mesh grids are used to discretize the computational
domain, namely, 256 × 256, 512 × 512, and 1,024 × 1,024. Collinear cracks
are distributed in the x direction. Only one period is modeled within the
computational domain where two semi-cracks are located at the vicinity of x �
±1.5 (mm). The periodic distribution of the collinear cracks in the x direction,
and the plane strain condition (with infinite crack length in the y direction) are
achieved simultaneously by using FFT in the CGmethod given inAlgorithm 4.

Method G/Ganalytic
1

256 × 256 512 × 512 1,024 × 1,024

VCCT 1.1068 1.0356 0.9916
Mesh-dependent formula 0.6423 0.5767 0.5290

TABLE 2 | A summary of G′ � G(θ)/Ganalytic
2 of an internal penny-shaped crack

determined by VCCT and mesh-dependent formula, i.e., Eq. 10 and Eq. 5.
max (), mean () and std () are the functions of evaluating the maximum, average and
standard deviation values ofG′(θ ∈ [0, 360°)). Key parameters are the same as that
in the caption of Figure 4.

Method Mesh grid max (G9) mean (G9) std (G9)

VCCT 256 × 256 1.5394 1.0012 0.2944
512 × 512 1.5421 0.9977 0.2913

1,024 × 1,024 1.5280 0.9926 0.2891
Maximum change — 0.0141 0.0085 0.0053
Mesh-dependent formula 256 × 256 1.0041 0.6308 0.2225

512 × 512 0.9878 0.6241 0.2182
1,024 × 1,024 0.9695 0.6150 0.2117

Maximum change — 0.0346 0.0158 0.0108
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considering a tremendous increase of computational time. An
adaptive mesh scheme localized at the contact edge may be
applied to improve the SERR accuracy more efficiently. The
mean SERR value determined by VCCT is in good agreement
with Ganalytic

2 for all three mesh densities. The maximum and
standard deviation of SERR values are in the same order of
magnitude as Ganalytic

2 . This implies that the inaccuracy
introduced by the non-smoothed crack front may be relieved
if the SERR is determined as the mean of all SERR at the crack
front. This averaging procedure can be applied to any purely
normal adhesive contact problem, because the SERR at any point
of the static contact edge is the same as the work of adhesion. The
mesh-dependent formula captures a similar oscillation of G(θ)
with the mean level about 40% less than Ganalytic

2 . Surprisingly, the
maximum (see Table 2) and local maxima (see Figure 4B) of
G(θ) determined by the mesh-dependent formula are
approximately the same as Ganalytic

2 for all three mesh densities.
The row “Maximum change” in Table 2 implies that Eq. 5 has a
much stronger mesh-dependency than VCCT when applied to
the non-conforming mesh. Equation 10 associated with the
minimum gap, min (gi j±1, gi±1 j), and the average gap, mean
(gi j±1, gi±1 j), are also tested, and the corresponding mean SERRs
are nearly the same.

3.4 Remarks
According to Table 1 and 2, we can conclude that the mesh-
dependent SERR formula, Eq. 5, cannot accurately estimate SERR
associated with the conforming mesh nor the mean SERR value
associated with the non-conforming mesh. Its accuracy becomes
worse when a finer mesh is used. Pohrt and Popov assumes that
the strain energy U due to the delamination of a rectangular area
of size Δx × Δy is equivalent to the work done by indenting an
elastic half-space within a rectangular area of the same size under
the uniform normal traction of σ

U � 1
2
∫∫puz(x′, y′) dx′dy′

� 1
2πE*

p2 ∫Δx/2

−Δx/2
∫Δy/2

−Δy/2

1

















(x − x′)2 + (y − y′)2

√ dx′dy′ (11)

This may be correct for evaluating U associated with the crack
nucleation within a bonded area, since its neighboring elements
are all closed. It is not appropriate, however, to evaluate U of the
delaminated element at the crack front where some of its
neighboring elements have already been opened.

Surprisingly, the BEM model adopts the mesh-dependent
SERR formula has been extensively validated by the analytical
solutions and empirical data (Pohrt and Popov, 2015; Popov et al.,
2017; Popov et al., 2021). The above-contradicted conclusions
may be due to the following reasons:

1). As far as the authors know, the previous BEMmodel (Pohrt
and Popov, 2015) has never been applied to the case where the
contact edge is perfectly aligned with the element edge, e.g.,
adhesive contact in the plane strain/stress condition.
Approximately 50% underestimation of SERR by Eq. 5
would result in an earlier crack rest, and cause an

overestimation of the contact area. This expectation is
confirmed by an example of sinusoidal waviness contact in
the plane strain condition given in Section 5.2.
2). Instead of Eq. 5, its equivalent form in terms of normal
traction, Eq. 6, is used in the previous BEM model (Pohrt and
Popov, 2015). Because Σ ∼




G

√
is proportional to the square

root of SERR, the inaccuracy introduced by SERR is weakened.
3). Only the elements associated with high peak values of SERR
are detached. According to Figure 4B and Table 2, high peak
values of SERR associated with different mesh densities all very
close to Ganalytic

2 .

In a summary, the mesh-dependent formula is less accurate to
evaluate the SERR of the elements at the crack front.

4 THE CURRENT MODEL

In this section, a new BEM model is built upon the previous
one (Pohrt and Popov, 2015) to fix the inaccurate
delamination criterion. Like the previous one discussed in
Section 2, the current model can only be applied during the
unloading stage which is impossible to capture the snap-in
instability. The conjugate gradient method (Algorithm 4) is
adopted in the current model to numerically determine the
normal traction over a given contact area. The debonding of
the contact interface can be divided into two stages, namely,
crack nucleation and crack propagation. A composite
delamination criterion is developed below to cover both
stages.

4.1 Crack Nucleation
Crack nucleation occurs inside the bonded area at the vicinity of
closed valleys (dimples). However, VCCT cannot be applied due
to the absence of local crack fronts. Cohesive zone modeling
(CZM) may be used to circumvent this difficulty. A typical
failure of a mode-I cohesive crack consists of two stages,
i.e., damage initiation and damage evolution. Before the
damage initiation, the cohesive (tensile) normal traction p
linearly increases with the interfacial separation δ where the

FIGURE 5 | Schematic of normal traction p to interfacial gap g relation
used in the cohesive zone model.
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proportionality K is the normal stiffness, see Figure 5. Beyond
the damage initiation point (pc, δc), the cohesive interface enters
the damage evolution (softening) stage where the normal
stiffness degrades gradually until the complete failure is
reached at δ � δf.

The normal traction-based delamination criterion, Eq. 6,
proposed by Pohrt and Popov (Pohrt and Popov, 2015) is an
extrinsic cohesive law (Zhou et al., 2020) where the
interfacial separation is strictly zero within the bonded area.
Therefore, corresponding p(δ) curve before the damage initiation
has an infinite slopeK→∞ (see the red thicker line inFigure 5). The
maximum tensile stress, Σ, determined by Eq. 6 could be treated as
the critical tensile stress |pc| � Σ at the damage initiation point. For a
brittle fracture, catastrophic failure occurs immediately after the
damage initiation point. Thus the damage evolution stage could
be neglected. Equation 6 also removes the need of assigning multiple
parameters (e.g., K, δc and δf) in the phenomenological laws.
Algorithm 1 below illustrates how the crack nucleation is
implemented in the present model.

4.2 Crack Propagation
The VCCT is used in the present model to calculate the SERR
on the contact edge. Because the accuracy of the SERR is
deteriorated by the non-smoothed crack front associated
with the non-conforming mesh, it is not appropriate to
identify the element delamination based on the local SERR
values. Taking the stable penny-shaped external crack in
Figure 4A as an example. If the delamination of non-
conforming elements at the crack front are checked using
G(θ)>w � Ganalytic

1 where G(θ) is shown in Figure 4B, it is
clear that this crack front is not stable and nearly half of
elements at the crack front should be delaminated. The
delamination continues until the max(G(θ))<Ganalytic

1 . This
contradicts the stable assumption and underestimates the
bonded area.

To overcome this contradiction, a new crack propagation
criterion is proposed based on the mean SERR: mean(G) > w
where mean(G) is obtained by averaging the SERR values of all
elements at all crack fronts. Once mean(G) > w, only the elements
associated with larger SERR values are delaminated so that the
mean value of the SERR of the residual bonded elements at the
crack front is approximately the same as the work of adhesion w.
This delamination process can guarantee that no crack
propagation at any individual elements once mean(G) ≤ w is
satisfied. The implementation of this delamination process can be
found in Algorithm 2.

The algorithm of the present BEMmodel is almost the same as
that given in Algorithm 3.

5 RESULTS AND DISCUSSION

Two classic adhesive contact problems, namely, axisymmetric
parabolic contact and sinusoidal waviness contact in the plane
strain condition, are revisited by the previous and present models.

5.1 Axisymmetric Parabolic Contact
Consider a rigid parabolic indenter of radius R in a purely normal
contact with an elastic half-space under a normal load of F, see the inset
in Figure 6B for the schematic. Ignoring the intermolecular attractions
outside the contact area, this classic problem can be solved using JKR
theory (Johnson et al., 1971;Maugis, 1992). The closed-form solutions of
the radius of adhesive contact area, a, and the indentation depth, δ, are

a3 � 3R

4E* F + 3πwR +

















6πwRF + (3πwR)2

√[ ] (12)

δ � a2/R −









2πwa/E*

√
(13)

For a given normal load F, the corresponding contact pressure
distribution p (r < a) inside the contact area is

p(r< a) � −







2wE*a

π

√
(a2 − r2)−1/2 + 2E*

πR
(a2 − r2)1/2 (14)

and the interfacial gap distribution g (r > a) outside the contact area is

g(r> a) � − 2
E*








2wE*a

π

√
sin−1(a/r) + a

πR








r2 − a2

√ + 1
πR

(2a2

− r2)sin−1(a/r) + r2

2R
− δ (15)

The radius of contact area a(F) and indentation depth
δ(F) associated with a sequence of F (increasing from Fmin

to 5|Fmin|) are solved by two BEM models and JKR theory
where Fmin � −3

2 πwR is the pull-off force associated with the

Algorithm 1 | (p, Ωc) � CrackNucleation(p, Ωc, Σ)
This function determines the crack nucleation based on the Griffith’s criterion.

Algorithm 2 | (p, Ωc) � CrackPropagation(p, g, w)
This function determines the crack propagation based on Griffith’s criterion.
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fixed load condition. a and δ are normalized by a0 and δ0
which are the corresponding radius a0 � (92 πwR2

E* )1/3 and
indentation depth δ0 � a20/R − 









2πwa0/E*
√

at zero normal
load, respectively. An initial guess of the contact area
completely contains the largest contact area under the
maximum normal load. The critical tensile stress pc is not
necessary in this problem, since crack front exists in the

initial guess of contact area and no crack nucleates inside the
bonded area.

Excellent agreement of a(F) and δ(F) predicted by two BEM
models and JKR theory can be found in Figure 6A. A similar
agreement of contact pressure distribution p (r < a) and
interfacial gap distribution g (r > a) under a normal load of
F � 5|Fmin| is shown in Figure 6B. In Table 1 and 2, the SERR
determined by a mesh-dependent formula adopted in the
previous model is found to be strongly influenced by the
mesh size. To investigate how this mesh-dependency
influences the results of the previous model, a mesh
convergence test is conducted and the relative percentage
difference of a and δ with respect to the JKR solutions
(i.e., aJKR and δJKR) are given in Table 3. The relative
percentage difference of a and δ are negligible. a and δ
predicted by both BEM models monotonically converge to
the JKR solutions as the mesh density increases. Numerical
data in Table 3 confirms that the error brought by the mesh-
dependent SERR formula can be neglected in the previous
model when the non-conforming mesh is used.

5.2 Plane Strain Sinusoidal Waviness
Contact
Consider a rigid periodic sinusoidal waviness in the adhesive
normal contact with an elastic half-space, see Figure 7. The
sinusoidal profile z � h (x, y) has the following geometry
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FIGURE 6 | (A) Dimensionless contact radius a(F)/a0 and dimensionless indentation δ(F)/δ0; (B) Contact pressure p (x, 0) and interfacial gap g (x, 0) at F � 5|Fmin|
where the contact radius is amax. E* � 1 (MPa); Lx � Ly � 2.5 amax; nx � ny � 128; w � 10 × 10–6 (mJ/mm2); R � 10 (mm).

TABLE 3 | Results of mesh convergence test of the present and previous BEMmodels. All key parameters are the same as that give in the caption of Figure 6. Normal load
F � 5|Fmin|. aJKR � 0.3478 (mm) and δJKR � 7.4188 × 10–3 (mm) are solutions of JKR theory.

Mesh (a − aJKR)/aJKR × 100 (%) (δ − δJKR)/δJKR × 100 (%)

Present model Pohrt and Popov (2015) Present model Pohrt and Popov (2015)

128 × 128 0.4888 0.2875 0.0485 0.1671
256 × 256 0.23 0.0575 0.0431 0.1564
512 × 512 0.0863 0 0.0297 0.0971

FIGURE 7 | Schematic of sinusoidal wavy surface in purely normal
contact with a rigid flat.
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h(x, y) � Δ cos
2π
λ
x( ) (16)

Ignoring the intermolecular attraction outside the contact area,
Johnson (Johnson, 1995) solved this problem analytically by
superposing a collinear periodic crack problem on a normal
non-adhesive sinusoidal waviness contact problem. The
contact width 2a within one period λ can be determined from
the following non-linear equation

sin2(ψa) − α








tan(ψa)

√
− �p/p* � 0 (17)

where ψa � πa/λ, p* � πE*Δ/λ, and α �





2E* w
λ

√
1
p*. Differentiating

the left hand side of Eq. 17 with respect to ψa, we can have a
polynomial of tan(ψa/2) which results in either two distinct real
roots (stable and unstable branches), two identical roots (instability
point) or no real root. The contact pressure p (x ∈ [− a, a]) within the
bonded zone is 1

p(x) � 2�p′ cos(ψ)
sin2(ψa)

sin2(ψa) − sin2(ψ)[ ]1/2
+ �p″ 1 − cos2(ψa)/cos2(ψ)[ ]−1/2 (18)

where �p′ � p* sin2(ψa) and �p′′ � −p* α 







tan(ψa)

√
. The interfacial

gap, g (x′ ∈ [ − l, l]), can be derived in an integral form based on
the fracture mechanics approach developed by Xu and Jackson
(Xu and Jackson, 2018)

g(x′) � ∫l

−l
GP

uy
(x′, x″) −�p + p* cos(2πx″/λ)[ ]dx″ (19)

where x′ is the local coordinate centered at the trough of the sinusoidal
waviness, i.e., x′ � x + λ/2, see Figure 7 and l � λ/2 − a. The Green’s
function GP

uy
(x′, x′′) has the closed-form in Ref. (Xu and Jackson,

2018), and the average interfacial gap is �g � 1
L∫l

−l g(x′)dx′.
According to Johnson’s solution, the loading and unloading

stages are not reversible. Therefore BEM (VCCT) can only be
applied to the unloading stage. As pointed out by Johnson
(Johnson, 1995), the sinusoidal waviness bonding interface
needs an infinite tensile force to separate if complete contact
occurs. Following Johnson’s suggestion, we assume there is a flaw
(non-contact region) of width 2bf ≈ 0.11λ which is symmetric

A

C

B

D

Westergaard's solution

BEM (Pohrt & Popov)
BEM (VCCT)
Johnson's solution

Unloading path

FIGURE 8 | Dimensionless contact radius 2a(�p)/λ and dimensionless average interfacial gap �g(�p)/Δ associated with (A) α � 0.1; (B) α � 0.2; (C) α � 0.3; (D)
dimensionless contact pressure p(x)/p*, and dimensionless interfacial gap g(x)/Δ where �p/p* � 0 (MPa), α � 0.2, E* � 1 (MPa), λ � 10 (mm), Δ � 0.1 (mm), nx � ny � 128,
computational domain size � λ × λ.

1Several typos are found in Johnson’s original derivation (Johnson, 1995). The
contact pressure p(x) is decomposed into p′(x) and p″(x) terms. The former term is
Westergaard solution, but the square root is missing in Eq. 5 in Ref. (Johnson,
1995). The latter part contains an extra negative sign in front of �p′′, see Eq. 6 in Ref.
(Johnson, 1995).
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about x′ �NλwhereN � 0, ±1, ±2,/. The initial interfacial gap is
illustrated using blue dashed line in Figure 7 where the
compressible air with negligible internal pressure is trapped
within the initial non-contact region. Substituting bf into Eq.
17, the critical average contact pressure �pc can be derived

�pc � p* cos2 πbf/λ( ) − α










cot πbf/λ( )√[ ] (20)

As �p > �pc, the contact width remains the same. The trapped
volume, as well as the average interfacial gap, gradually increases as
�p drops. As �p drops below �pc, an unstable point is reachedwhere the
contact width a instantaneously reduces and quickly rests at a stable
value. Similarly, the average interfacial gap �g instantaneously
increases and stabilized at a larger value, see Figure 8C for a
clear illustration. Following the stable branch of the unloading
curve, jump-off occurs when �p is further reduced to a minimum
value where the local slope of a(�p)→∞. Beyond that point, the
sinusoidal waviness is completely detached from the rigid flat.

Figures 8A–C indicates a good agreement in the unloading
stage between the numerical solutions of contact width, 2a, and
the average interfacial gap, �g, solved by the present model and
Johnson’s solutions until jump-off contact occurs for all three
values of α. The numerical solutions of the previous model,
however, gradually deviate from Johnson’s solution as α
increases. Contact pressure p(x) and interfacial gap g(x) predicted
by the present model at α � 0.2 are also in good agreement with
Johnson’s solution within both the tensile and compressive regime,
see Figure 8D. The previous model underestimates the interfacial
gap and overestimates the contact pressure, and the accuracy is even
worse associated with higher α. The sinusoidal waviness contact
problem clearly shows that the previous model is not valid to be
applied to the plane strain contact problem where the mesh is
conforming.

5.3 Discussion
In Section 3.3, the accuracy of the present model is validated by
two classic adhesive contact problems. The previous model is
found to be sufficiently accurate only when a non-conforming
mesh is used. Up till now, we have shown that 1) VCCT is suitable
for evaluating the SERR in the purely normal adhesive contact
problem; and 2) the composite delamination criterion is correctly
implemented for the crack propagation stage. The crack fronts
initially exist in the above two classic problems, thus the crack
nucleation part of the composite crack delamination criterion has
not been tested yet. The following 3D sinusoidal waviness contact
problem is chosen to explore the composite delamination
criterion at the crack nucleation stage.

Consider a rigid 3D sinusoidal waviness in a purely normal
adhesive contact with an elastic half-space. The sinusoidal surface
z � h (x, y) has the following geometry

h(x, y) � Δ cos
2π
λx

x( )cos 2π
λy

y( )
The contact pair is subjected to an average contact pressure of �p.
Under the JKR limit, only the asymptotic solutions are available
(Johnson, 1995). When the rigid waviness is in complete contact
with the elastic half-space, the corresponding normal traction pc
(x, y) is (Johnson, 1995; Xu et al., 2015)

pc(x, y) � p* cos
2π
λx

x( )cos 2π
λy

y( ) + �p (21)

where

p* � πE*Δ








λ−2x + λ−2y

√
When the wavy surface is in a complete contact (solid interaction
occurs everywhere on z � 0 plane) with the elastic half-space, it is
subjected to an average contact pressure �p≥p*. If the wavy
surface is unloaded from the complete contact status, crack
nucleation occurs at the vicinity of the valley where maximum
tensile traction (�p − p*< 0) is located. According to the
composite delamination criterion, crack nucleates at the
trough of the waviness once the following inequality is satisfied

�p − p*< − Σ (22)

At this instance, crack nucleates and instantaneously propagates
until it rests on a stable branch, see Figure 9. The prediction of
contact ratio predicted by the two BEM models shows an excellent
agreement. As thework of adhesionw increases, the crack nucleation
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FIGURE 9 | Contact ratio to average contact pressure relation
associated with multiple work of adhesion w. E* � 1 (MPa), λx � λy � 10 (mm),
Δ � 0.1 (mm), nx � ny � 128, and w � 0 ∼ 60 × 10–6 (mJ/mm2).

TABLE 4 | A mesh convergence study of two BEM models. �p/p* � 0.5, w � 10 ×
10–6 (mJ/mm2), and the other parameters are the same as that given in the
caption of Figure 9.

Mesh grid Present model Pohrt and Popov (2015)

�g/Δ Contact ratio �g/Δ Contact ratio

128 × 128 0.04333 0.7521 0.04334 0.7518
256 × 256 0.0 1 0.0 1
512 × 512 0.0 1 0.0 1
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occurs at lower �p. This is due to the fact that maximum tensile stress
Σ given in Eq. 6 monotonically increases with w.

To explore the influence of mesh size on the solutions of BEM
models where crack nucleates inside the bonded area, the
sinusoidal waviness contact problem is repeatedly solved using
three different mesh densities, and the selected results are given in
Table 4. When mesh density is low (e.g., 128 × 128), crack
nucleation occurs under the average contact pressure of
�p � 0.5p*. As density increases to 256 × 256 and 512 × 512,
the interface remains closed. This mesh-dependent crack
nucleation phenomenon is due to the fact that Σ is also mesh-
dependent. Consider a special case where Δx � Δy, the maximum
tensile stress Σ in Eq. 6 simplifies to (Pohrt and Popov, 2015):

Σ �












E* w

0.473201Δx

√
(23)

which indicates a monotonic increase of Σ with the reduction of
element size Δx. For a fixed normal load �p, the maximum tensile
stress at the complete contact (closure) is �p − p*< 0. If the mesh
size is smaller than a critical value, Σ would exceed |�p − p*| and
the interface remains closure. This mesh-dependent nucleation
paradox may be solved by setting an upper limit for
Σ, i.e., max(Σ) � Σc. However, the empirical approach of
measuring Σc is not clear. For the rough surface contact, two
BEMmodels could result in unexpected closures in the vicinity
of a great number of valleys at the unloading stage. Commonly,
a large number of elements with small sizes are used to
represent the fine details of rough surfaces. In those cases,
both models tend to overestimate the interfacial toughness, as
well as the real area of contact.

In this study, only the purely normal contact problem
associated with mode-I crack is modeled. The present model
can also be extended to other complex cases in mode-I, II, and III
and/or with bi-material interface cracks, e.g., the purely normal
contact considering the interfacial friction (Khajeh Salehani et al.,
2018) and adhesive friction (Khajeh Salehani et al., 2019). The
calculation of tangential surface displacement, as well as new
crack propagation and nucleation criterion, must be added to the
present model. The former is easily implemented using the
Boussinesq-Cerruti solution and FFT. A typical crack
propagation criterion in a mixed mode may be written as

G � f(GI, GII, GIII,/ )>w
where G is the total SERR which is composed of the SERRs in
mode-I, II, and III, as well as other parameters, e.g., the mode
mixity. SERRs of all modes are determined locally using VCCT.
An averaging process is applied to get the mean value of G based
on the local value of each element at the contact edge. For an
absence of crack fronts, the critical state of interfacial stress may
be obtained following the derivation of the mesh-dependent
SERR formula where the strain energy contribution due to the
tangential load must be added. For better accuracy, the authors
suggest developing an empirical approach to curve-fit a
phenomenological law for the critical state of interfacial stress

at the instance when the crack is nucleated within the
bonding area.

6 CONCLUSION

In this study, a new BEM model is developed upon the previous
one proposed by Port and Popov. VCCT is used to evaluate SERR
on the edge of the bonding interface. It is a universal tool
independent of the material models and domain types. By
revisiting two classic crack problems, it is shown that VCCT
has better accuracy and weaker mesh-size dependency than the
closed-form SERR formula adopted in the previous model. A
composite delamination criterion is proposed for crack
nucleation and crack propagation. Two classic adhesive
contact problems, namely, the axisymmetric parabolic contact
and the sinusoidal waviness contact in the plane strain condition,
are revisited by the present and previous BEMmodels. Numerical
results predicted by the present model have good agreement with
the analytical solutions of both problems. The previous model
can achieve a similar accuracy for the axisymmetric parabolic
contact where the mesh grid is non-conforming. Once the mesh
grid is conforming to the crack front, the accuracy of the previous
model is significantly deteriorated, especially at high work of
adhesion and high mesh density. In both BEM models, however,
the crack nucleation is found to be mesh-dependent which may
be solved by introducing an upper limit for the tensile normal
traction.

As far as the authors know, the previous model has never been
applied to any plane-strain contact problems where the mesh grid is
strictly conforming to the crack front, the comparisons and
conclusions made upon the results of the previous model are still
valid. The authors recommend replacing the mesh-dependent SERR
formula with the VCCT in the adhesive contact models for better
accuracy, weaker mesh-dependency, and broader applications.
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APPENDIX A. BEM ALGORITHM
In this section, the algorithm of the previous model developed by
Pohrt and Popov (Pohrt and Popov, 2015) is given below. The
tolerance and maximum number of iteration are hard programmed
as εc � 1 × 10−5 and nmax � 1000 for both BEM models.

Algorithm 3 | BEM (Pohrt & Popov).
The algorithm for boundary element method of linear elastic purely normal
contact. This algorithm is adapted from the one given by Pohrt and Popov (Pohrt
and Popov, 2015).

Algorithm 4 | (p,g) � L−1(h,Ωz , F).
This function determines the contact pressure p and interfacial gap g using
conjugate gradient (CG) method for a given contact area Ωc. This algorithm is
adapted from the one given by Pohrt and Li (Pohrt and Li, 2014).

Algorithm 5 | (p, Ωc) � Delamination(p, Ωc, Σ).
Mesh dependent local detachment criterion

Frontiers in Mechanical Engineering | www.frontiersin.org October 2021 | Volume 7 | Article 75478214

Xu and Zhou Adhesive Boundary Element Method VCCT

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles

	Adhesive Boundary Element Method Using Virtual Crack Closure Technique
	1 Introduction
	2 The Previous Model
	3 Accuracy of Mesh-dependent Strain Energy Release Rate Formula
	3.1 Two Classic Crack Problems
	3.2 Virtual Crack Closure Technique
	3.3 Strain Energy Release Rate Results
	3.4 Remarks

	4 The Current Model
	4.1 Crack Nucleation
	4.2 Crack Propagation

	5 Results and Discussion
	5.1 Axisymmetric Parabolic Contact
	5.2 Plane Strain Sinusoidal Waviness Contact
	5.3 Discussion

	6 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References
	Appendix A. BEM algorithm


