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In powder bed fusion additive manufacturing, machines are often equipped with in-situ
sensors to monitor the build environment as well as machine actuators and subsystems.
The data from these sensors offer rich information about the consistency of the fabrication
process within a build and across builds. This information may be used for process
monitoring and defect detection; however, little has been done to leverage this data from
the machines for more than just coarse-grained process monitoring. In this work we
demonstrate how these inherently temporal data may be mapped spatially by leveraging
scan path information. We then train a XGBoost machine learning model to predict
localized defects—specifically soot–using only the mapped process data of builds from a
laser powder bed fusion process as input features. The XGBoost model offers a feature
importance metric that will help to elucidate possible relationships between the process
data and observed defects. Finally, we analyze the model performance spatially and
rationalize areas of greater and lesser performance.

Keywords: additive manufacturing (3D printing), machine learning, spatio - temporal analysis, explainable AI,
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INTRODUCTION

Additive manufacturing (AM) is a set of exciting and promising processing methods that are
expected to continue to revolutionize manufacturing. One exciting subset is AM for metals, which is
being investigated for applications in several industries such as aerospace, automotive, biomedical,
and nuclear (Herderick, 20112011), (Lou and Gandy, 2019) The excitement behind AM is attributed
to its flexibility in component design—AMmay be used to fabricate geometries not possible by other
conventional means.

At the same time, however, the technologies have not achieved widespread adoption and are
typically relegated to non-critical applications. The inability to gain traction comes from the poor
repeatability of the process from one build to the next stemming from the prevalence of seemingly
stochastic defects (Grasso and Colosimo, 2017) and anisotropic microstructure (Kok et al., 2018)
yielding inconsistent and heterogeneous properties throughout a component and across nominal
duplicates of a component. This is true for all metal AM technologies including the more mature
subdomain of powder bed fusion (PBF).

The key to mitigating these shortcomings is to characterize more accurately the complex
relationships between the PBF processes, the components’ structural characteristics (both
microstructural as well as macro-scale defects), and the resulting mechanical properties that
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ultimately dictate the quality of the component. These sets of
intricately coupled relationships have collectively been deemed
process-structure-property relationships (DebRoy et al., 2018).

Some researchers have proposed the use of machine learning
(ML) as a way to establish relationships between these different
regimes. Such relationships would aid in more robust
qualification of AM builds. The ultimate goal would be to
predict component characteristics and mechanical properties
from in-situ process data collected during fabrication. This
would allow for circumvention of costly ex-situ
characterization and destructive testing. Additionally,
discovering and leveraging relationships between in-situ
process data and component properties would allow for the
determination of part properties in real-time during
fabrication and possibly even the triggering of reparative
measures.

Currently, research predominantly focuses on some form of
in-situ imaging data for localized defect detection and property
prediction as well as closed-loop control (Everton et al., 2016)
(Moltumyr et al., 2020). However, other, less utilized in-situ
data—specifically temporal sensor data—is also being
investigated for process quality monitoring. Several
commercial machines yield such data in the form of a build
log file. Much of the data in build log files is generated by sensors
that directly monitor machine subsystems and the build
environment, the status of which can directly affect build
quality (Sames et al., 2016). Analyzing these streams may help
to directly relate the process to corresponding properties.

Recent work has shown the value of this temporal sensor data
for build qualification—especially for electron beam PBF (EB-
PBF). Grasso et al. (Grasso et al., 2018) showed how a statistical
model could leverage data from Arcam log files to predict
swelling. Additionally, Chandrasekar et al. (2019) showed how
rake data from these log files, in addition to powder reuse
information, informs build quality. Steed et al. (Steed et al.,
2017) shows how a visual analysis tool called Falcon may be
used for EB-PBF builds to analyze the time series data from log
files to determine process consistency and relate it to build
quality. Currently, however, it has been only possible to use
these data on a layer-wise or build-wise basis; no published
technique exists to leverage this data for more localized, intra-
layer analyses.

Some machines produce sensor data records at a sufficient
sampling rate to detect changes in these important subsystems
during a single layer and even during a single melt-phase.
However, leveraging this data for localized analysis is
unintuitive due to its different modality—temporal instead of
spatial. As such, some technique must be used to convert the
temporal data to space in order to have a one-to-one relationship
with the spatial data. Vandone et al. (Vandone et al., 2018) have
proposed leveraging tool paths for directed energy deposition
(DED) to fuse spatial (melt track morphology data) and temporal
(melt pool imaging video data and laser power) datasets together
for modeling. However, their work centers on experimental data
from single melt tracks, the temporal input feature space is small
and targeted, and the overall findings are likely not to scale to
larger and more complex geometries and will be confounded by

other process intricacies. Our approach, rather than being bottom
up, begins to chip away at the process monitoring and defect
detection problem in a top-down way. We begin with data from
multiple full-scale builds and fuse together as many in-situ
process signals as are available and leverage ML to mine for
relationships between the process and structure.

For this study, we focus on a ConceptLaser M2 Laser Powder
Bed Fusion (L-PBF) machine instead of Arcam EBM or DED
sensor data. It records data from multiple sensors during a build
and compiles it into a log file. Several of these data streams
contain enough records to allow for investigating how
perturbations in these process signals relate to localized defects
that are detectable in in-situ layer-wise images. This work
demonstrates an initial attempt of leveraging these temporal
process data to detect localized, layer-wise defects within four
entire builds using XGBoost. Additionally, we analyze the
XGBoost prediction results to better understand key
relationships between process data and the resulting defects.

This work specifically investigates the relationship between the
process data and the occurrence of soot within a layer. Soot has
been shown to cause significant degradation within the L-PBF
process. While studying the effects of powder reused in L-PBF
processes, Heiden et al. (Heiden et al., 2019) found that soot is
potentially detrimental to both mechanical properties of
components and to the reuse of powders for subsequent
builds. They recommend process parameter tuning to reduce
the occurrence of soot and spatter. Huang and Li (Huang and Li,
2021) found that the prevalence of soot that has resettled is likely
related to decreased ductility of components due to reduced
effective laser power in those regions. Finally, in a recent
white paper GE additive discusses the poor materials
processing that occurs as a result of soot and outlines ways
that they are improving the gas flow systems on the
ConceptLaser M2 machines to remove soot from the build
area more effectively (Roidl).

MATERIALS AND METHODS

Data Sources and Descriptions
This work was performed on process data produced from
four builds fabricated at the Oak Ridge National Laboratory’s
(ORNL) Manufacturing Demonstration Facility. Here we
outline relevant information about the builds and the data
collection procedure.

Build Setups and Descriptions
The builds were fabricated on a ConceptLaser M2 L-PBF system
that has two 400W laser modules and a build chamber volume of
245 mm × 245 mm x 450 mm. Four builds were chosen that had
approximately the same geometry to reduce confounding effects
that different geometries induce in the in-situ process
data—especially the trajectory laser data. Figure 1 shows the
two geometries included in this analysis.

The builds were fabricated out of 316L stainless steel.
Power was set to 370 W, speed to 1,350 mm/s, spot size to
130 μm, and hatch spacing to 0.09 mm. The gas flow rate was
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set at 52 mm/h, and the powder dosing factor was set to 350%.
Builds 1 and 2 utilize both laser modules for different sections
of the build. Build 3 uses only laser module 1; build 4 utilizes
only laser module 2. Note that these builds were not
fabricated specifically for this analysis. Instead, this work
demonstrates the training, prediction, and analysis of an ML
model on real-world data.

Data Collection and Description
Data were collected during the fabrication of these builds from
several different distinct sources. These data sources are in-situ
process data from various machine sensors that are recorded in
log files, trajectory data that record relevant information about
the laser scan path for each layer, and finally defect detection
labels that were derived from in-situ visible-light layer-wise
images.

In situ Process Data
During builds, the ConceptLaser M2 machine records data from
several different in-situ sensors that monitor important
subsystem statuses. These sensors monitor the build
environment during fabrication and perturbations in these
sensor signals may correlate with the quality of the fabricated
component. In L-PBF the build chamber is filled with an inert gas,
typically argon, to prevent oxidation of the material during
fabrication. The laminar gas flow serves to mitigate the
occlusion of the melt surface caused by the laser scattering off
of the vapor plume and to remove spatter, soot, and other ejecta
from the build area. A number of embedded sensors monitor this
gas flow and the system that controls it.

In addition to gas flow rate, the machine monitors the oxygen
concentration within the machine. The L-PBF process must be
conducted within an inert environment because oxygen can react

FIGURE 1 | Left: geometry for build 1. Right: geometry for builds 2, 3, and 4. For builds 1 and 2 the gray and red regions represent where laser modules 1 and 2 are
used respectively.

FIGURE 2 | A plot of a single layer of log file data for “FlowSensorTop” from build 1. The black vertical lines indicate where the melt phase begins and ends for
this layer.
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with the material during fabrication and lead to variable
consistency and properties. Several sensors detect the level of
residual oxygen in the system.

Finally, thermocouples are also placed in several location in
the build chamber to monitor the global temperature. Figure 2
shows an example plot of temporal, in-situ process data from a
gas flow sensor for one layer.

These data are collected and recorded in text base log files that
are available for analysis at the end of a build. Importantly, the
data in these build logs are recorded asynchronously—values are
only written out upon a significant change as dictated by the
machine’s operating system. For this work, a specific value from
one of the sensors is assumed to persist until a new value is
recorded. A set of the sensor streams do not generate enough
records in the log file to be included in this analysis. Table 1
shows the subset of sensors that were used in this analysis. Also,
note that the log files contain timestamps of when the melt phase
begins for each layer.

Trajectory Data
In addition to the previously described temporal process data,
spatial information from the laser modules is captured during the
melt phase. This data is captured during a build by a National
Instruments PXIe-data acquisition device at an approximate
sampling rate of 40 kHz and stored in a TDMS file. The data
that are included for each sample are scaled x and y location on
the build plate, an indicator of which laser module is melting, and
intensities from an on-axis photodiode. From the sequence of
coordinates and sampling rate the absolute order and timing of
the melt is known.

For this work, these data are transformed from the format
described and interpreted as line segments. The start and end
coordinates of these line segments are the coordinates of the
current sample and the coordinates of the subsequent sample.
Thus, we can derive a distance for each scan line, and since the
sampling rate is constant, velocity can also be derived. Finally, the
relative start time for each scan line since the beginning of the
melt can also be found. This can be extended further to find the
time elapsed since the beginning of the melt for any arbitrary
location in the trajectory.

Also, for this work the photodiode data was only used to infer
part boundaries and not as an input feature. Figure 3 shows a
close up of a plot of trajectory where the color is from the
photodiode data and shows the component boundaries.
Determining the component boundaries allows for the analysis
of only voxels that are melted and where process perturbations
may affect the local material properties. This will be elaborated
upon later in this paper. With the part boundaries identified,
consecutive sub-scans could be consolidated into a single raster
line. Table 2 shows the variable names and descriptions of the
trajectory data.

Defect Data
Finally, the defect data are generated from in-situ images of the
powder bed that are collected by an off-axis, five-megapixel,
visible light camera focused on the powder bed. The camera
captures the full 245 × 245 mm build plate, and the build area is
illuminated from above by an LED array (Scime et al., 2020). Two
images are taken for each layer—one after powder spreading and
another after the melt is complete.

The defect predictions are generated by Peregrine—a tool
developed at ORNL (Scime et al., 2020). This tool uses a deep
convolutional neural network (CNN)—what the authors
specifically refer to as a dynamic segmentation

TABLE 1 | Description of in-situ process data used to detect defects for this analysis.

Variable name Description

FlowSensorTop Gas flow at the top of the build chamber in m³/h
FlowSensorBottom Gas flow at the bottom of the build chamber near the powder bed in m³/h
Ventilator control Actual The speed of the motor of the ventilation system as a percentage of the maximum command possible
Ventilator rotation speed Another measure of the motor of the ventilation system as a percentage of the maximum command possible
Residual oxygen value in module The oxygen concentration in the build chamber as a percentage
Residual oxygen value in gas loop The oxygen concentration in closed inert gas circuit as a percentage

FIGURE 3 | Example of trajectory data from build 1 zoomed in on four
components. The image shows themelt areas, skywriting, and jump lines, and
the visualized data are the raw digital intensity levels from the on-axis
photodiode that was used to determine the component boundaries for
spatial mapping.
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convolutional neural network (DSCNN)—to perform
semantic segmentation on the in-situ, layer-wise images.
Semantic segmentation is a computer vision task for
assigning one or multiple class labels to each pixel that is
a constituent of an object within an image. As stated
previously, we focus specifically on the “Soot” defect
because this defect is generated during the melt and is
influenced by build chamber gas flow and possibly by
other process factors such as the laser trajectory and
possibly amount of oxygen in the chamber—all features
that are captured in the process log or trajectory data.

Peregrine outputs a categorical label for each voxel in a layer.
Since only one label is investigated for this work, the defect data
are transformed to a Boolean value indicating the presence of soot
or not. Figure 4 shows the Boolean defect detections for a single
layer as a binary image. Note that the authors state that the off-
axis setup of the imaging system leads to differing effective
resolutions across the build chamber (Scime et al., 2020).

XGBoost Background
XGBoost is a fast and effective ML model implementation (Chen
and Guestrin, 2016). It has been used effectively for many
different, real-world applications—often achieving top
performance for structured data tasks (Chen and Guestrin,
2016) (Awesome XGBoost, 2021).

Model Description
XGBoost is an implementation of Gradient Boosted Machine
(GBM). GBM, in turn, is a robust ML model that aims to train
many weak learners that, when leveraged in conjunction, act as
one strong model (Friedman, 2001). A weak learner is a model
whose predictions are only slightly better than random guessing;
they are simple and typically have few learnable parameters. As
such, GBM is an example of ensemble learning, and specifically as
the name denotes, it implements a paradigm of ensemble learning
called boosting. Boosted models are still trained using gradient
descent; however, it differs from typical gradient descent training
used in other, monolithic models such as logistic regression or
neural networks. A brief discussion of similarities and differences
between training GBM’s and other ML models that the reader
may be familiar with is now presented. The equations are taken
from the original paper on GBM’s by Friedman (Friedman, 2001)
with minor simplifications for brevity and clarity.

The goal of supervised ML is to find an optimal function,
F*(x), minimizes a loss function, Ψ, with respect to provided
labels or response values, y, as shown in Eq. 1.

Fp(x) � argmin
F(x)

Ey,xΨ(y, F(x)) (1)

Many different types of ML models have been developed to
this end, and many of these models, such as logistic regression
and neural networks, are parameterized. This means that finding
an optimal function for a given model occurs when optimal
model parameters, P*, are found as shown in Eq. 2.

Pp � argmin
P

Ey,xΨ(y, F(x, P);Fp(x) � F(x, Pp) (2)

The optimization of the parameters occurs by updating the
parameters over the course of M iterations from an initial guess,
p0, as shown in Eq. 3.

Pp � ∑M
m�0

pm (3)

Each update is a small increment—scaled by a learning rate,
α—along the negative gradient of the loss function with respect to
the current parameter values, as shown in Eqs 4, 5.

pm � −αgm (4)

gm � [zΨ(y, F(x, P))
zP

]
P�Pm−1

(5)

In fact, GBM’s leverage a similar algorithm for model training.
As an ensemble method, the optimal function, F*(x), is a
summation of constituent weak learner models, and like
conventional models, the optimization of this ensemble can be
performed by iterative updates as shown in Eq. 6.

TABLE 2 | Description of trajectory data used as the basis of spatial mapping of
the in-situ process data and to detect defects for this analysis.

Variable
name

Description

Phase An indicator variable denoting the laser module utilized to melt
Distance Length of the consolidated scan line
Duration Elapsed time for the laser to traverse the scan line
Speed Velocity of the laser
Time Elapsed time since the start of the melt for any arbitrary location

along the trajectory

FIGURE 4 | Binary class labels for “Soot” for each voxel of the build
chamber in layer 10 of build 1 as predicted by Peregrine.
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Fp(x) � ∑M
m�0

fm(x) (6)

However, instead of updating one set of model parameters, the
ensemble incrementally adds additional learners along the
negative gradient of the ensemble loss with respect to all the
current learners in the ensemble, as show in Eqs 7, 8.

fm(x) � −ρgm(x) (7)

gm(x) � Ey[zΨ(y, F(x))
zF(x) |x]

F(x)�Fm−1(x)
(8)

So, gradient boosting performs gradient descent by iteratively
training additive models that each attempt to lower the global loss
of the ensemble. For a complete technical description of the
model and underlying algorithm, the reader is referred to original
paper on GBM’s by Friedman (Friedman, 2001) as well as a
technical overview provided in the XGBoost documentation
(Introduction to Boosted Trees, 2021).

Typically, XGBoost employs decision trees as the base, weak
learners; however, other base models may be used instead. Also, it
may be used for either classification or regression. For this task we
used the classification version with the decision tree base learner.
The model has several user-defined parameters that affect
training and performance of the algorithm. A subset of the
parameters that are considered the most important are shown
in Table 3. The values for these parameters were empirically
optimized. This process is covered in Model parameter
optimization and tuning Section.

Model Interpretability
Additionally, XGBoost offers several metrics for evaluating the
importance of input features on the performance of the final
model. This enables a user to gain a better understanding of the
key relationships between the input features and the output. This
is an important advantage over other, deep neural network ML
models. Specifically, XGBoost offers three distinct metrics for
feature importance: gain, weight, and cover (Pythone API
Reference, 2021). The gain metric calculates the average
improvement to the model’s loss contributed by each feature.
Cover and frequency refer to how many samples are associated
with a feature and how often a feature was utilized for splits
within the ensemble respectively. Based on these definitions, gain
is a more relevant evaluation metric when compared to the other
two. Therefore, we focus on it to analyze the input features. This
will allow for the investigation and initial determination of which

process data may be most closely associated with the chosen
defect class–soot.

Methodology
Before the analysis is possible on these data, several
transformations and preprocessing steps must be performed.
These steps are outlined here, but for the sake of brevity and
scope some of the more technical details are omitted.

Temporal and Trajectory Data Transformation
The temporal data from the in-situ sensors as well as some of
the trajectory data, and spatial data from the in-situ images
and defect detections, are not immediately useful in
conjunction. Indeed, typical data analysis is restrained to
using each of these modalities only in isolation. As such, the
need to transform one of these modalities to the other is
necessary for them to be leveraged together. To this end and
for this work, we propose a “spatial mapping” transformation
that takes the inherently temporal in-situ process data and
turns it into a spatial dataset.

Several items are needed to complete this transformation: an
absolute timestamp for the start of the melt phase for each layer
and the location and timing information of the heat source. For
the ConceptLaser M2 these data come from the build log and the
trajectory data respectively. The ultimate goal is to transform the
temporal data into an image-like array of the same shape as the
in-situ image data and Peregrine defect predictions.

The basic process is to use the location information from the
trajectory data to determine which voxels each scan line travels
through for a given layer. The timing information of the
trajectory data gives the relative time from the start of the
melt that the pixels are intersected by the laser. The melt start
time given in the build log gives the absolute time for the start of
the melt, and together yield the absolute time that the laser passed
through each pixel. With this information, one can trivially index
into the in-situ process data and pull any sensor value from a
given time that corresponds to a physical location where the laser
was melting material. Figure 5 illustrates this general concept.
This spatial mapping and voxelization of the data can be
performed for any arbitrary voxel resolution; however,
intuitively, the data are mapped to match the
resolution—approximately 100 µm—of the Peregrine defect
prediction data.

Once this data transformation is complete, the in-situ process
data as well as the trajectory data are in the same domain as the
defect data. Each voxel of each component contains localized in-

TABLE 3 | Description of a subset of XGBoost model parameters.

Parameter name Value

n_learners The maximum number of decision trees for the ensemble
scale_pos_weight A weighting factor to balance the positive and negative class weights
colsample_bytree Fraction of features to include when building each tree
subsample Fraction of training samples to include when building each tree
max_depth Maximum depth of each tree in the ensemble
min_child_weight Number of samples that must exist in a leaf node
learning_rate Parameter that controls shrinkage of feature weights between boosting rounds
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situ process data, trajectory data from the laser scan path, as well
as local defect detections.

Data Preprocessing
After the data are transformed to the same voxelized, spatial
domain, as shown in Figure 6, several more preprocessing steps
are performed before the analysis. These steps and rationale are
outlined in this section.

Defect Data Preprocessing
First, the defect data undergo a dilation operation. Through
qualitative analysis it was determined that many of the “Soot”
defect detections occurred over the powder bed and proximal to
the printed components with vanishingly few detections over the
components themselves. This operation expands the defect
predictions from the original set of voxels to adjacent voxels,
and it serves to reasonably increase the number of “Soot” voxels

FIGURE 5 | A sample layer from build 1 includes trajectory data, log data for “FlowSensorTop”, and the subsequent mapped data. The orange highlighted portion
of the log data corresponds to the melt phase for the layer as indicated by the “Exposure started for” and “Exposure ended for” log file entries.

FIGURE 6 | 3D plot of the build volume of spatially mapped process data for “Residual oxygen value in gas loop” with defects overlaid for build 2. Note that this
image shows combined soot and debris defects (Scime et al., 2020), but for the actual analysis only soot was considered.
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that intersect with voxels where mapped process data exist. The
likely reality is that the soot particles are also present on the
printed surfaces in quantities proportional to their presence near
the part; however, the imaging conditions make their on-part in-
situ detection challenging.

Full Data Preprocessing
The next operation is a Gaussian blur of defects and in-situ
process data—both the log data and the trajectory data. Within
the AM process, many complex interactions occur within local
regions, so this Gaussian blurring of the data serves to blend the
data together and eliminate hard boundaries between defects and
nominal voxels as well as voxels with one sensor value proximal to
another with a different value from the same sensor.

Afterwards, the data were resized spatially to reduce the data
burden. This decreased the voxel spatial resolution of the data
from 100 × 100 µm to 300 × 300 µm. This was determined to be a
reasonable processing step since soot may be detected from in-
situ layer images at lower resolutions.

The blurring and resizing of the data create a target set, “Soot”,
that is no longer simply 0’s and 1’s, so we threshold the defect data
of the lower resolution dataset at 0.5 to recreate a Boolean target
for classification.

Now the data are in a form where many voxels in the build
chamber contain data from all three data sources (any voxel
outside the geometry where no in-situ process data exist is
removed). This dataset is now appropriate for training a
supervised ML model. Each voxel represents a sample in the
dataset with process and trajectory data acting as the input
features and the defect labels serving as the training targets.

Several final preprocessing steps are taken. Namely, the
removal of some bad data points. Specifically, these were
voxels where the trajectory “Speed” value had been corrupted
at some point along the way and had a value of infinity. This
represented a very small number of overall voxels.

At this point a subset of the data was generated by randomly
choosing onemillion voxels with spatially mapped data from each
of the four builds. For the first build this represented
approximately 1.5% of the voxels, and for the remaining three
builds it represented approximately 6%. This subset of the data
were used for parameter optimization, as outlined later in the
paper, and for final model training.

Finally, the input features were duplicated, standardized in
two different ways, and concatenated to create the final input
feature set. The first copy of input features was each standardized
globally across all four builds. For each feature a global mean and
standard deviation were calculated. Then for each sample, each
respective feature was zero centered and scaled to have a unit
standard deviation. The second copy of input features were
standardized per build—meaning that the mean and standard
deviation were calculated for each feature and build separately
and then each sample was standardized based upon which build it
belonged to. The rationale for these two, simultaneous
standardization methods is that the global standardization will
allow a ML algorithm to learn important trends and relationships
in the absolute ranges for each sensor. The build-wise
standardization, on the other hand, will help account for and

mitigate any possible sensor drift or changes in calibration
between builds and still allow for the ML algorithm to learn
relationships between changes in relative sensor values and
defects.

Model Parameter Optimization and Tuning
ML models have distinct parameters that affect the training
characteristics and performance of the model. For this work
we approximately followed the parameter optimization
procedure as outlined in (Aarshay, 2016), and we only
optimized the parameters discussed in Model Description
Section. Parameters of interest were set to default values as
outlined in the XGBoost documentation until optimized with
one exception. The “scale_pos_weight” value was initialized using
a heuristic recommended by the creators of XGBoost—a ratio of
the number of negative samples to the number of positive samples
(XGBoost Parameters, 2021).

Additionally, receiver operating characteristic (ROC) area
under the curve (AUC) is used as the evaluation metric during
parameter optimization. It was chosen because it is well suited for
binary classification tasks when there is a significant class
imbalance. Using this evaluation metric mandates that the
model use logistic regression as its objective to perform the
classification (XGBoost Parameters, 2021).

To determine the model performance more accurately for a
given parameter set, the dataset is typically divided into multiple
folds, or training and validation set pairs, that are each used to
evaluate the model performance and across which an average
performance is calculated in a process called cross validation. For
this work, the voxels were divided into four folds each consisting
of approximately four million voxels. The validation set of each
fold contained voxels from only one of the four builds—one
million voxels; the training set contained the remaining voxels
from the other three builds—three million voxels. This was done
to emulate a likely scenario where anMLmodel is trained on data
from existing builds and then used to predict properties of new
builds. Later, for model training this same principle was
applied—models were trained on data from three builds to
predict defects for the fourth build.

The first optimization was to determine an initial number of
learners, n_learners. An XGBoost model was trained with an
initial goal of 1,000 learners; however, early stopping was enabled
that would end training after 50 consecutive trees failed to reduce
the loss and the number of learners with the best average loss
across the four folds was used.

Next, with the new number of learners established,
“scale_pos_weight” was optimized from its original, heuristic-
based number. This optimization was done by using random
search as implemented in the python library scikit-learn
(Pedregosa et al., 2011). Twenty randomly selected values
between the square root of “scale_pos_weight” and the original,
heuristic-base “scale_pos_weight” were tested while holding the
remaining model parameters constant. A second random search
of a narrower range was performed if it was deemed necessary.

Then, “max_depth” and “min_child_weight” were jointly
optimized followed by another round of updates to
“n_learners”. Afterwards, “colsample_bytree” and “subsample”
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were jointly optimized. Finally, “learning_rate” was manually set
to 0.01 and the final value for “n_learners” was determined. The
optimized model parameter values are shown in Table 4. An
asterisk indicates that the parameter was chosen manually and
did not undergo any optimization.

Input Feature Subsets
Several different subsets of the features were used to train models
(each using the samemodel parameters previously outlined). This
ablation study was performed to establish the effect on model
performance that different in-situ data had for identifying defects.
These subsets were as follows: the full feature set—both in-situ
sensor data and trajectory data, the full feature set excluding the
ordering information from the trajectory data, and finally a subset
that consisted only of in-situ sensor data and laser module data.
Table 5 shows these three different input feature sets. Recall that
each feature listed, except “Phase”, actually represents two input
features—one that is globally standardized and another that is
standardized per build.

These subsets were chosen with the following respective
rationales: to train a model on a comprehensive feature set
that did not include any explicit location information, to train
a model on a feature set that did not include implicit location
information (in the form of scan path order as given in the
“Time” feature), and to train a model strictly on in-situ process
data and establish initial relationships between these signals and
detected defects. Note that “Phase”—information about which
laser module was melting—was included in all three feature sets
because the log files also indicate when each laser is being utilized.

In summary, a total of twelve models were trained—four models
trained on data from three builds to predict defects in the fourth
and replicated for all three subsets of the feature set.

RESULTS

Models were trained with the optimized XGBoost model
parameters. One model was trained to make voxel-level soot
predictions for each of the four builds with sampled data from the
other three builds—approximately three million voxels worth of
data. This was repeated for each of the three distinct input feature
sets. This process produced several distinct results that will each
be presented. The overall performance of each model, the feature
importance rankings for each model, and the location-based
performance for each model will be presented.

Model Performance
Confusion matrices are a canonical way of presenting
classification results; however, the imbalanced nature of this
problem makes their use impractical because the
overwhelming majority of predictions are true negatives.
Instead, we will discuss several metrics in conjunction that will
allow for analyzing the model performances. These are sensitivity
and specificity, balanced accuracy, as well as false omission rate
and false discovery rate.

Sensitivity is also known as the true positive rate and is the
fraction of ground-truth positives that were correctly predicted as
a percentage of all ground-truth positive examples. Similarly,
specificity is also known as the true negative rate and is the
fraction of ground-truth negatives that were correctly predicted
as a percentage of all ground-truth negative samples. Balanced
accuracy is the average of sensitivity and specificity and is a good
metric for analyzing performance in light of class imbalance.
False omission rate is the fraction of data that were ground-truth
positive that were incorrectly predicted as a percentage of all
model-predicted negatives; false discovery rate is the fraction of
data that were ground-truth negative that were incorrectly
predicted as a percentage of all model-predicted positives.
Table 6 shows the performance for all twelve models as well
as aggregated metrics across the four build-wise models for each
input feature set.

Feature Importance
As previously discussed, XGBoost offers metrics for ranking the
importance of each feature for producing predictions. Figure 7
shows the top ten features for each of the twelve models divided
up by input feature sets.

Location-Based Model Performance
The performance results can also be calculated per component
and visualized. This may lead to some interesting observations
about the model performance. Figure 8 show the component-
wise balanced accuracy for each build and input feature set. Note
that the coloring scale is not consistent across the images. This
was done to ensure that differences among the components and
trends across the build chamber could be observed easily. Also,

TABLE 4 | Final XGBoost model parameters used to train all models for analysis.

Parameter name Value

n_learners 1249
scale_pos_weight 24.7
max_depth 4
min_child_weight 7
colsample_bytree 0.612
subsample 0.617
learning_rate* 0.01
seed* 27

TABLE 5 | Three different input feature sets (“Full”, “Without Time”, and “Log
Data”) that were used to train the XGBoost model.

Feature name Full WO Time Log

FlowSensorTop X X X
FlowSensorBottom X X X
Ventilator control Actual X X X
Ventilator rotation speed X X X
Residual oxygen value in module X X X
Residual oxygen value in gas loop X X X
Phase X X X
Distance X X —

Duration X X —

Speed X X —

Time X — —
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note that changes in balanced accuracy are dominantly influenced
by changes in the sensitivity metric across the build chamber.

For context, the spatial distribution of the soot prevalence per
build is shown in Figure 9.

DISCUSSION

Analysis
The results from this analysis show fair performance but with
ample room for improvement with respect to the various metrics.
The model achieved an aggregated best sensitivity of
approximately 40% and balanced accuracy of approximately
67%. However, the model still performed better than a
baseline of random guessing. In general, models for builds 1
and 3 had better performance. Additionally, the performance
consistently decreased with more restricted input feature sets.

Across all twelve XGBoost models, two input features were
consistently measured to have the greatest importance for model
predictions across all builds and input feature sets. These were
“Residual oxygen value in module_full_norm” and “Residual
oxygen value in gas loop_full_norm” constantly occupying the
first and second positions respectively. This makes strong
intuitive sense as increasing levels of oxygen lead to greater
levels of oxidation on the exposed surface that manifest as
darker regions that are easy for Peregrine to detect as soot.
Additionally, these two features were the globally standardized
versions (indicated by the “_full_norm” suffix), so it is the
absolute ranges for residual oxygen that is most informative
(as opposed to the relative changes within a relative range in
the sensor readings within a build).

Finally, several interesting spatial trends are observed when
visualizing model performance in different regions of the build
area—especially as observed in builds 2-4. Figure 9 shows how
the prevalence of soot increases toward the front of the build
chamber. The prevalence is also skewed toward the right side of
the build chamber. When “Time” is included as an input feature,

the XGBoost models likely consistently uses it to approximately
determine location. This occurs because the ConceptLaser M2
machine printed these components at the extreme left side of the
machine first proceeding from front to back. The “Time” feature
indirectly gives the model approximate spatial information. As
such, the models are able to correctly predict more samples on the
right side of the machine where the prevalence is greater as shown
in the first row of Figure 8—labelled “Full”. However, when the
“Time” feature is removed, performance across the build plate
changes. Row two of Figure 8—labelled “WOTime”—shows that
the balanced accuracy tends to be greater toward the back of the
build chamber albeit only slightly. This may stem from the data
lacking information that relates to the higher prevalence of soot at
the front of the build chamber leading to decreased model
sensitivity. Using only in-situ process log data shows a similar
pattern. Across all three input feature sets, the component-wise
balanced accuracy is very similar for build 1. This is likely related
to the models that predicted defects for build 1 having been
trained on builds 2 through 4 that have a different geometry.
Since different geometries yield different trajectory data, the
model was likely unable to leverage those features effectively
for defect detection and thus the little apparent spatial
performance change from one input feature set to the next.

Future Work
This work demonstrates a first take on leveraging already-
available in-situ process and trajectory data modalities, but it
only begins to scratch the surface of testing the possible utility of
these data. When training the ML model this work completely
neglected spatial information and makes predictions for each
voxel based only on the sensor values for that voxel. Instead of
XGBoost these data could be used to train a deep CNN which
would be able to learn from the spatial relationships between the
mapped voxels in addition to the mapped data. Further, they
could be employed as additional input channels in existing deep
learning NN models, like the DSCNN that generated the initial
defect data in this study, for more accurate defect detection.

TABLE 6 | Model performances. The top lines for each input feature set represents the aggregated performance across all four models and respective builds.

Model Sensitivity (%) Specificity (%) Bal. Acc. (%) FOR (%) FDR (%)

Full 39.69 94.11 66.90 0.63 93.78
Build 1 41.68 92.94 67.31 0.37 96.59
Build 2 34.66 96.55 65.60 1.00 86.93
Build 3 45.36 93.68 69.52 1.01 88.85
Build 4 34.14 96.79 65.47 0.86 88.06

WO Time 30.52 94.37 62.45 0.72 94.93
Build 1 41.86 92.38 67.12 0.38 96.82
Build 2 17.28 98.03 57.65 1.25 88.37
Build 3 38.14 94.63 66.38 1.13 88.96
Build 4 14.33 98.48 56.41 1.10 89.27

Log 22.34 94.28 58.31 0.80 96.29
Build 1 35.50 92.21 63.86 0.42 97.34
Build 2 4.01 98.89 51.45 1.43 94.88
Build 3 26.60 94.57 60.59 1.34 92.11
Build 4 13.11 97.75 55.43 1.12 93.07
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FIGURE 7 | XGBoost feature importances for the twelve build and dataset combinations.

Frontiers in Mechanical Engineering | www.frontiersin.org November 2021 | Volume 7 | Article 76744411

Halsey et al. Defect Detection From Mapped Data

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


Alternatively, with spatial and trajectory data omitted, as was the
case for the third input feature set, the existing models could be
utilized directly with sampled, streaming in-situ process data to
make defect predictions in real-time as a coarse AI-based process
monitoring system.

Finally, this type of analysis should be readily employable for
any AM technology that has the requisite data—in-situ temporal
process data, trajectory data, and localized property data. One can
even imagine leveraging this method to mine for relationships
between other localized properties such as microstructure and

mechanical properties by utilizing the feature importance scores
produced by XGBoost to discover relationships between the
inputs and targets to investigate further with targeted
experiments.

Conclusion
This analysis represents a first attempt at leveraging in-situ
process data for predicting localized build defects. It elicits
interesting possibilities for leveraging temporal data modalities
for predicting localized spatial properties. Specifically, that

FIGURE 8 | Visualization of balanced accuracy per component of each build for the “Log” input feature set.

FIGURE 9 | Spatial distribution of soot prevalence for the four builds.
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spatially mapped, in-situ process and trajectory data may be fused
into a common representation and related to image-based defect
data. The overall performance of the model is likely not adequate
to be deployed as the sole means for process monitoring and soot
detection. However, the use of XGBoost as the chosen classifier
yields desirable auxiliary capabilities—namely the ability to
narrow down which in-situ data are most relevant for
detecting certain in-situ defects. Additionally, the spatially
transformed in-situ process dataset may be used as additional
inputs to other ML models for more accurate prediction of
defects.
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