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Surface integrity is important factor for components exposed to wear, like cold
working tools, which need to possess high hardness combined with high wear
resistance. Surface treatments such as grinding, hard turning, and hard turning
with slide burnishing have been developed for its improvement. Vancron 40 and
Vanadis 8 tool steels, of different chemical composition and different types and
amounts of carbides, were now investigated. Heat treatment was carried out in
vacuum furnaces with gas quenching to hardness of Vancron 64 ± 1 HRC and of
Vanadis 65 ± 1 HRC. 3D topography, optical and scanning electron microscopy, X-ray
diffraction and ball-on-disc tribological tests against Al2O3 and 100Cr6 balls as
counterparts were used to examine wear and friction. For both steels, the lowest
values of dynamic frictions and wear rates against Al2O3 counterbodies were achieved
after sequential process of hard turning with slide burnishing with a burnishing force of
180 N. For alumina balls, the increase of wear resistance, achieved after hard turning
plus burnishing in comparison to grinding exceeds 50 and 60%, respectively for
Vanadis 8 and Vancron 40 steels.

Keywords: P/M tool steel, wear resistance, grinding, turning, burnishing

INTRODUCTION

Cold working processes are widely used, among others in mass production of automotive parts,
which are required to possess high strength. Of particular concern of designers and tools
technologists are components subjected to high surface pressures under unfavourable
conditions of boundary friction (Kleiner et al., 2003; Klocke, 2013; Hutchings and Shipway,
2017).

The deterioration of the performance of tools for cold working generally takes place as a
result of progressive tribological wear during operation. The catastrophic (dynamic) wear,
which can include, chipping of tool edge when the ultimate strength is locally exceeded, or
component fatigue failure, may be limited by a careful choice of tool material. In some cases it is
necessary to improve tool design and its manufacture. Surface engineering becomes particularly
important because cold-working tools are exposed to very high contact stresses occurring
during forming and deformation of the workpiece material. The state of technological surface
layer (TSL) of tools affects significantly their life (Dearnley, 2017; Burakowski and Wierzchoń,
1999).
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The properties of TSL are determined by mechanical
processes, often preceded by heat treatment. The surface
roughness and the hardness of surface layer play an important
role in the wear resistance of cooperating components
(Czechowski et al., 2012; Krolczyk et al., 2014). Many types of
mechanical finishing treatments create smooth surfaces, although
not always guaranteeing a favorable stress condition and adequate
hardness of the surface layer. As shown in Table 1, in order to
obtain high surface smoothness, burnishing successfully
competes with the known and much more expensive abrasive
methods, such as grinding or lapping.

Burnishing is a simple and effective method of improving
the surface quality. It can be carried out during the
manufacturing process without the need to change the
machines used in production, such as a lathe or milling
machine, or evan purchase new special equipment. Due to
its high efficiency, as well as low costs compared to other
conventional processes, such as honing and grinding, and
favourable surface properties after burnishing (higher
abrasion and fatigue resistance), this method is widely used
in the engineering, automotive and aviation industries
(Mahajan and Tajane, 2013). It should be added, that, this
also happens as a result of compression stresses generated in
the modified surface layer - an exemplary profile is shown, e.g.,
on Figure 1.

(Prevéy and Jayaraman, 2005) indicates that static burnishing
(including roller and slide burnishing) provides much better
properties of surface layer compared to dynamic burnishing
(shot peening). Static burnishing makes it possible to control
the depth of the plastic deformation, while shot peening generates
a high density of dislocations in the surface layer–this is due to
internal work-hardening, which in turn causes an unstable state
of residual stresses.

(Maximov et al., 2019; Maximov et al., 2021) described in
detail the benefits of using slide burnishing. It employs diamond,
or similar superhard material, tools with a very low coefficient of
friction against metals, as well as high hardness enabling
machining even the hardest steels and alloys (Korzyński et al.,
2011). During this process, the rounded tip of the tool is pressed
and at the same time slides on the machined surface (sliding
friction), causing plastic deformation of uneven peaks and
smoothing the surface (Korzyński et al., 2009). This method is
mainly used for the smooth treatment of hard materials and
protective coatings, obtaining a surface with a low roughness of
Ra ≈ 0.1 μm.

Considering the roughness parameters related to the
material ratio curve, the volume parameters: Vpc, Vmc, Vvc
and Vvv are gaining more and more attention of researchers
dealing with metrology, tribology and machining processes.
Some of these volumetric parameters were used to analyse the
clad surface in drilling (Nieslony et al., 2016). The authors
stated that by reducing the drilling torque, decreased of the
surface roughness parameters can be effected. (Maruda et al.,
2015). showed that the changes in surface roughness of the
bronze CuSn7Zn4Pb6–stainless steel X10CrNi188 friction
were due to the transfer of additives in the emulsion mist.

They stated that the emulsion mist provides a decrease in the
roughness of the being processed stainless steel surface by
more than three times, and the introduction of the additive
based on phosphoric acid esters into emulsion causes a
decrease by 4–4.5 times.

The correlation between roughness parameters–including
skewness and volume parameters–and wettability of a
superhydrophobic Cu cone-flower coating was analysed by

TABLE 1 | Ra surface roughness parameter after selected finishing treatments
(Czechowski et al., 2012).

FIGURE 1 | Profile of stress distribution in the surface layer of hardened
100Cr6 steel after hard turning and ball burnishing (Byrne et al., 2003).

TABLE 2 | Chemical composition (wt%) and heat treatments of the martensitic
tool steels.

Chemical compositions of the steels (wt.%)

Steel C N Si Mn Cr Mo W V

Vanadis 8 2.3 - 0.4 0.4 4.8 3.6 - 8.0
Vancron 40 1.1 1.8 0.5 0.4 4.5 3.2 3.7 8.5

Heat treatment parameters of the steels

Vanadis 8 Vancron 40

Austenitizing 1,180°C/270 s 1,130°C/270 s
First tempering 560°C, 2 h 560°C, 2 h
Second tempering 560°C, 2 h -
The resulting hardness 65 ± 1 HRC 64 ± 1 HRC
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(Yang et al., 2021). They found that high roughness skewness and
void volume ratio are desirable in order to achieve
superhydrophobic surfaces. The correlation between wear of
cutting tool and surface texture quality was assessed by (Liang
et al., 2019), reporting that the machined surface evolves as the
tool deteriorates; the analysis included volume parameters
(Arantes et al., 2017) studied the surface roughness of the
crankcase cylinders of hermetic compressors machined with a
conventional and the flexible honing process. They found that
volume parameters can be successfully used to characterize honed
surfaces as they detect changes resulting from different
process steps.

In this paper, we have studied the effect of mechanical
processes on surface topographies and their correlations with

tribological properties of hardened Vanadis 8 and Vancron 40
tool steels with a similar hardness.

MATERIALS AND METHODS

Materials
The nominal chemical compositions of our steels are presented in
Table 2. Vanadis 8 possesses a very high content of C and V,
unattainable in conventional metallurgy steels. Vancron 40 is
characterized by similar contents of Si, Mn, Cr, Mo and V, but a
lower C content and contains N and W. Samples (ø32 × 12 mm)
from both steels were machined and heat treated in vacuum
furnaces with gas quenching, at parameters as indicated in
Table 2.

Sample Preparation
Heat treated specimens were subjected to mechanical processes
of surface layer modifications, namely: grinding (G), hard
turning (HT), hard turning plus burnishing (HT + B)—see
Figure 2. Front face grinding with cBN (cubic boron nitride)
wheels with resinous bond was carried out on Universal tool
grinder 3E642 type. Mori Seiki NL2000SY turning-milling
CNC center, equipped with fixing system described earlier
(Toboła et al., 2015; Toboła et al., 2017), was used for hard
turning and burnishing on samples end faces. Hard turning was
performed with commercial PCBN (polycrystalline cubic
boron nitride) cutting inserts NP-DCGW11T302GA2 BC020.
Slide diamond burnishing was carried out using diamond
tools with the tips in the shape of spherical caps. High
pressure-high temperature (HT-HP) Bridgman type
apparatus was used to obtain diamond composites with
ceramic bonding phase Ti3SiC2. Compacts were sintered at
the pressure of 8.0 ± 0.2 GPa and at 1800 ± 50°C for 30 s.
Subsequently, their spherical shapes were formed by electrical
discharge machining (EDM) (Jaworska et al., 2005; Jaworska
et al., 2001).

FIGURE 3 | An example of a sample used during the pin-on-disc tests
and two types of A2O3 or 100Cr6 pins as counterbodies.

FIGURE 2 | Types of mechanical surface treatments with parameters.

Frontiers in Mechanical Engineering | www.frontiersin.org December 2021 | Volume 7 | Article 7750593

Toboła and Łętocha Wear Resistance After Combined Processes

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


FIGURE 4 | XRD patterns and microstructure with EDS analysis of two studied steels: (A) Vanadis 8, (B) Vancron 40.

TABLE 3 | Mean values of roughness parameters for Vanadis 8 and Vancron 40 steel samples after selected mechanical processes.

Parameter Vanadis 8 Vancron 40

G T T + B150 T + B180 G T T + B150 T + B180

Amplitude parameters

Sa/μm 0.07 0.10 0.33 0.29 0.12 0.09 0.20 0.25
Sq/μm 0.09 0.13 0.42 0.37 0.14 0.11 0.25 0.32

Sz/μm 0.81 1.58 4.19 2.55 1.09 1.46 1.92 2.77
Sp/μm 0.32 0.99 1.99 1.01 0.44 0.77 0.94 1.49

Sv/μm 0.48 0.58 2.20 1.54 0.66 0.69 0.97 1.29

Roughness core parameters
Sk/μm 0.23 0.32 0.78 0.74 0.36 0.27 0.58 0.69

Spk/μm 0.08 0.13 0.38 0.17 0.08 0.11 0.13 0.33
Svk/μm 0.10 0.13 0.67 0.66 0.18 0.11 0.33 0.41

Smr1/% 8.64 9.34 8.10 6.53 6.12 10.34 5.02 8.89
Smr2/% 87.96 89.55 77.26 81.13 86.93 90.72 83.73 83.92

Material ratio and volume parameters

Smr/% 52.22 50.91 59.73 60.18 54.42 49.68 56.00 54.79
Vmp/ml/m2 0.004 0.006 0.018 0.009 0.004 0.005 0.007 0.016

Vmc/ml/m2 0.084 0.113 0.409 0.324 0.132 0.095 0.232 0.278
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Microstructure, XRD and Surface Texture
Analysis
Metallographic structures and wear tracks were observed with an
optical Carl Zeiss Axiovert 100A microscope and a scanning
electron microscope (JEOL type JSM-6460LV) equipped with an
INCA EDS (energy dispersive X-ray spectrometer).

X-ray diffraction (XRD) analysis and stress measurements
were performed with a PANalytical Empyrean diffractometer
using copper radiation (λCu � 1.5406 Å).

Surface roughness parameters was measured using a contact
profilometer TOPO 01 equipped with a measuring head with a
diamond tip radius of 2 μm and a cone angle of 60°. The areas of
4 × 3.4 mm were measured with a sampling density 0.5 and
10 μm, respectively in the measuring and perpendicular
direction. Values of selected surface geometrical structure

parameters were calculated. Data processing employed the
Gaussian filter according with ISO 16610–21 standard for
Qualitative changes of machined surfaces, relating to:
stereometric and material ratio graphs, contour maps and
roughness core.

Tribological Tests
Wear resistance was evaluated by the pin-on-disc method,
using a CETR UMT-2MT universal mechanical tester. The
loading mechanism applies a controlled load Fn to the pin
holder and the friction force is measured continuously by an
extensometer. For each test, a new pin was used. The pin and
discs were washed in ethyl alcohol and dried. The size of the
disc-shaped samples with the surfaces flatness and parallelism
within 0.02 mm is illustrated in Figure 3. The following test

FIGURE 5 | Results of 3D topography measurements for Vanadis 8 steel after: (A) G, (B) T, (C) T + B150, (D) T + B180.

FIGURE 6 | Results of 3D topography measurements for Vancron 40 steel after: (A) G, (B) T, (C) T + B150, (D) T + B180.
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conditions were: Al2O3 and 100Cr6 ball diameters 10.0 mm
and radius of the sliding circles 7.0 and 11.0 mm, applied load
� 25.0 N, sliding speed � 0.1 m/s, sliding distance � 2000 m,
duration of the test 2·104 s. The tests were carried out at room
temperature (25°C ± 2°C) without lubricant, under maximum
Hertzian contact pressure of 1,600 MPa. The test conditions
were defined that the contact pressure did not exceed the yield
strength of the tested steels, to eliminate damage due to plastic
deformation.

RESULTS AND DISCUSSION

Microstructure and XRD Analysis
The SEM images of cross-sectional micrographs, for both heat
treated steels are shown in Figure 4. In both cases carbide particles
within a fine tempered martensite matrix are evident. In Vanadis 8
onlyMC type carbides rich in Vwere detected, whereas inVancron
40, besides MC type carbides, M6C type carbides were found. This
was confirmed by X-ray diffraction analysis.

Surface Geometrical Structure
Measurements
Areal roughness and volume parameters were measured and
graphs of the surface with material ratio curves are presented.
Gaussian Filtration was used before calculation of roughness
parameters. 3D roughness parameters, for both steels are given
in Table 3. The influence of machining method on 2D roughness
profile parameters was analyzed by (Sedlaček et al., 2009); in our
work areal roughness parameters and selected volume parameters
were taken into account. The former can better describe the
character of the surface and also be more sensitive for random
defects of the surface, such as spikes (the most often occurs in
optical measurement methods) and local small and deep valleys.
Increase of surface roughness for samples after sequential process
can be observed by comparing G to T for both steels. All roughness
parameters related with amplitude have higher values for
burnished samples than for other machining processes. The
biggest differences were for Sz parameter, which characterizes
the height of the greatest amplitude of the surface, and is the
most sensitive to its changes.Very similar trend was also found for
material volume (Vmc) in roughness core, for which the highest
values were determined after T + B150 and T + B180 treatments,
respectively for Vanadis 8 and Vancron 40 steels. Correlations may
exist between Vmc parameter and wear rate and dynamic friction,
especially for T + B180 variant andVancron 40 samples (Figures 8,
9). The higher value of Vmc, the lower dynamic friction, which
leads to a better wear resistance. (Pawlus et al., 2021). showed a
correlation between the friction coefficient and the surface
roughness height for honed samples. They analyzed the results
of the height surface roughness parameters, as well as the
possibility of similar application of other roughness parameters.
Our results show that the parameters related to the material ratio
curve, including the volume parameters, can be successfully
correlated with the coefficient of friction and wear resistance
also for surfaces after sequential processing.

3D topographs and contour line maps after mechanical
processes of surface layer modifications are given in Figures 5,

FIGURE 7 | Material ratio curves after mechanical processes of surface layer modifications for: (A) Vanadis 8, (B) Vancron 40 steels.

FIGURE 8 |Wear rates for Vanadis 8 and Vancron 40 samples, following
the mechanical processes of SL modifications: (A) G, (B) T, (C) T + B150,
(D) T + B180. Ball-on-disc tests carried out against Al2O3 pins.
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FIGURE 10 | Dynamic friction coefficients for Vanadis 8 and Vancron 40 samples, following the mechanical processes of SL modifications: (A) G, (B) T,
(C) T + B150, (D) T + B180. Ball-on-disc tests carried out against 100Cr6 pins.

FIGURE 9 |Dynamic friction coefficients for Vanadis 8 and Vancron 40 samples, following themechanical processes of SLmodifications: (A)G, (B) T, (C) T + B150,
(D) T + B180. Ball-on-disc tests carried out against Al2O3 pins.
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6. All the surfaces have similar texture direction of surface geometric
structure. For both tool steels, after slide burnishing, local hills,
formed by plastic deformation of surface layer, are visible as red on
stereometric graphs and contourmaps. This is also shown by values
of Vmp and Spk parameters presented in Table 3. In this case
burnished surfaces had higher values. Material ratio curves are
shown in Figure 7. The height of the roughness core increases for
burnished samples, defined by the Sk parameter. This can be
explained by the change of material ratio curve–which acquires
a symmetrical shape.

Figure 7 clearly shows the influence of slide burnishing after
turning on the distribution of material ratio. The curves become
shorter and symmetrical–which means that amplitude of the
surface decreased and the height the peaks after turning was
significantly reduced.

Dynamic Friction and Wear Resistance
Figures 8, 9 present wear rates and dynamic friction values for
tests against Al2O3 after surface layer modifications. The
differences of wear rates between Vancron 40 and Vanadis 8
were: 2.7 (G), 11.6 (T), 3.3 (T + B150) and 2.3 (T + B180) times.
Presence of the much harder (up to 3000 HV 0.02) MC type
carbides in only, Vanadis 8 may explain these results. In
Vancron 40, besides MC type carbides, there are also M6C
type carbides with twice lower hardness (Nurthen et al., 2008).
The lowest wear rates and dynamic frictions were achieved
after the sequential process of hard turning and slide
burnishing, with a force of 180 N. Increase of wear
resistance (against Al2O3) achieved after T + B180 in
comparison to G exceeds 50 and 60%, respectively for
Vanadis 8 and Vancron 40 steels.

FIGURE 11 | Examples of the profilograph running s across the track following the wear as well as images of wear (after ball-on-disc test) for Vanadis 8 tool steel
after different surface treatments: (A) G, (B) T, (C) T + B150, (D) T + B180.
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After all tribological tests against 100Cr6, sufficient wear, that
would allow the determination of wear rates, was not observed
and only dynamic friction coefficients are presented in Figure 10.
For Vanadis 8, the lowest values of about 0.5 were found for the
turning variant, whereas for Vancron 40 two variants, machined
by sequential processes, with almost the same trend, were
observeds.

Examples of the profilograph runnings across the track
following the wear as well as SEM images of wear (after ball-
on-disc test) for the tool steels after different surface treatments
are presented in Figures 11, 12. Always adhesion wear was the
main wear mechanism against 100Cr6, whereas for tests against
Al2O3, abrasive wear was dominant. This mechanism is
consistent with previous results for Vanadis 6 (Toboła, 2022),
where adhesion wear running parallel to the sliding direction
along edge of the trace was the failure mechanism.

CONCLUSION

The following findings were made based on the results of the
experiments:

1) Sequential process of Turning + Burnishing could be an
alternative to grinding for hardened P/M Vanadis 8 and
Vancron 40 tool steels.

2) Increase of wear resistance achieved for Vanadis 8 and
Vancron 40 tool steels after T + B180 process in
comparison to G exceeds 50 and 60% respectively.

3) Differences in wear resistance between investigated tool steels
are related to carbides contains. MC type carbides because of
their high hardness behave better in abrasive environment
(only such ones occur in Vanadis 8 steel), then much softer
M6C type carbides–which are in Vancron 40 steel.

FIGURE 12 | Examples of the profilograph running s across the track following the wear as well as images of wear (after ball-on-disc test) for Vancron 40 tool steel
after different surface treatments: (A) G, (B) T, (C) T + B150, (D) T + B180.
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4) The relationship between the Vmc parameter and the
dynamic friction coefficients (against Al2O3 pins) were
observed. When it reached a higher value the lover friction
was noticed and thus better wear resistance, for both P/M tool
steels.

5) Adhesion wear was the dominant wear mechanisms after tests
against 100Cr6 pins, for all applied variants of mechanical
processes.

6) After tests against Al2O3 pins, besides adhesion wear two
other wear mechanisms were stated: abrasion wear and plastic
deformation.

7) Small amounts of wear debris have been shown after T + B180
process.
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