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Background and objective: Causes for nasal airway obstruction (NAO) are

many but septum deviation is the most prevalent etiology. A deviated septum

affects the airflow dynamics in the human nasal cavity, which in turn affects the

physiological functions of the nasal cavity like heating, humidification, and

filtration capabilities. The present study investigates and compares the

airflow patterns in a healthy nasal cavity to a septal deviated nasal cavity.

Methods: Two nasal airway models are considered and compared in this study.

One with a septal deviation and the second with a healthy patent nasal cavity.

Airflow analysis is carried out by developing the CT scans into 3D models using

Materialise MIMICS (Materialise, Ann Arbor, MI), and then using the FLUENT

solver of ANSYS 2020R2. The simulations are carried out for airflows ranging in

laminar and turbulent flows using the SST k-ω turbulence model. Polyhedral

meshes are used and the mesh check using Grid Convergence Index studies is

adopted.

Results: The pressure and velocity profiles are assessed for a wide range ofmass

flow rates. The results indicate a turbulent flow pattern for mass flow rates over

15 LPM. The velocity profiles show aberrated flow profiles in a septal deviated

nasal cavity where the peak velocity is observed at the mid-nasal region rather

than the nasal valve region. There was a 38% to 55% higher nasal resistance in

the septal deviated nasal cavity as compared to a normal and healthy nasal

OPEN ACCESS

EDITED BY

Suvash C. Saha,
University of Technology Sydney,
Australia

REVIEWED BY

Md Mamun Molla,
North South University, Bangladesh
Arun Karthick Selvam,
SSN College of Engineering, India

*CORRESPONDENCE

Mohammad Zuber,
mohammad.zuber@manipal.edu

SPECIALTY SECTION

This article was submitted to
Biomechanical Engineering,
a section of the journal
Frontiers in Mechanical Engineering

RECEIVED 02 August 2022
ACCEPTED 01 November 2022
PUBLISHED 25 November 2022

CITATION

Corda JV, Shenoy BS, Lewis L, K. P,
Khader SMA, Ahmad KA and Zuber M
(2022), Nasal airflow patterns in a
patient with septal deviation and
comparison with a healthy nasal cavity
using computational fluid dynamics.
Front. Mech. Eng 8:1009640.
doi: 10.3389/fmech.2022.1009640

COPYRIGHT

© 2022 Corda, Shenoy, Lewis, K.,
Khader, Ahmad and Zuber. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Abbreviations: CFD, Computational fluid dynamics; CT, Computerized tomography; CATIA,
Computed aided three-dimensional interactive application; FLUENT, Flow oriented logistics
upgrade for enterprise networks; GCI, Grid convergence index; HU, Hounsfield unit; IEC,
Institutional ethical clearance; LPM, Litres per minute; NAO, Nasal airway obstruction; Re,
Reynolds number; SIMPLE, Semi-implicit method for pressure linked equations;WSS,Wall shear stress.

Frontiers in Mechanical Engineering frontiersin.org01

TYPE Original Research
PUBLISHED 25 November 2022
DOI 10.3389/fmech.2022.1009640

https://www.frontiersin.org/articles/10.3389/fmech.2022.1009640/full
https://www.frontiersin.org/articles/10.3389/fmech.2022.1009640/full
https://www.frontiersin.org/articles/10.3389/fmech.2022.1009640/full
https://www.frontiersin.org/articles/10.3389/fmech.2022.1009640/full
https://www.frontiersin.org/articles/10.3389/fmech.2022.1009640/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmech.2022.1009640&domain=pdf&date_stamp=2022-11-25
mailto:mohammad.zuber@manipal.edu
https://doi.org/10.3389/fmech.2022.1009640
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://doi.org/10.3389/fmech.2022.1009640


cavity. The pressure drop in the septal deviated nasal cavity is higher by 60%–

120% when compared to a healthy nasal cavity.

Conclusion: The septal deviated nasal cavity greatly affects the nasal airflow

distribution resulting in higher velocities in the mid-nasal region, increased

pressure drop and higher nasal resistance. Hence the NAOwith septal deviation

has to be rectified with proper surgical procedures.
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Introduction

The human nasal cavity is crucial in warming and

moisturizing the air that is inspired. In addition, the inspired

air is cleared of fine dust particles and other unwanted particles

by the upper nasal cavity before it reaches the lower airways and

then into the lungs (Sobiesk and Munakomi, 2021). The inspired

air in the nasal cavity undergoes two abrupt turns, the first at the

nasal valve region into the mid-nasal region, and the second at

the nasopharynx region where it is diverted to the lower

respiratory region before entering the lungs. The nasal cavity

is portioned into two nearly equal parts with separate

compartments by the nasal septum. Though ideally, the

septum should divide the nasal cavity into two halves, it

rarely happens that both sides of the nasal cavity are exactly

symmetrical. It is said that nearly 80% of people do not have a

symmetric nasal cavity. A deviated septum is one of the most

common nasal conditions (Fettman et al., 2009). Abnormal

septal growth can be attributed to birth trauma or early-life

microfractures (Holt, 1999). A study showed that around 20% of

newborns in India had nasal cavities with septal deviation

(Harugop et al., 2012).

Obstruction in nasal cavities is a common complaint given

by many people. Some of the major causes of nasal obstructions

are enlarged concha bullosa, chronic rhinosinusitis, allergic

rhinitis, nasal septal deviation, hypertrophied inferior

turbinate, nasal polyps, choanal atresia (Bhandary and

Kamath P, 2009; Constantian and Clardy, 1996; Lee, 2013;

Maturo and Lopez, 2011). Deviated septum may result in

enlarged turbinates which alter the normal airflow

phenomenon in the nose. The nasal septum acts as a

centreline support for the nasal cavity, in addition to

providing a space between nasal walls and the centreline for

the passage of air. A straight septum assures the airflow is

smooth and laminar thereby performing the physiological

functions of the nose effectively (Aziz et al., 2014). On the

other hand, a deviated septum may result in elevated nasal

resistance, snoring and the aesthetic appearance of the nose

(Hsia et al., 2014). Common symptoms include nose bleedings,

face pain, obstructed nostrils, noisy breathing during sleeping

and preferential sleep at one particular side (Mayo Clinic,

2021).

Septal deviation can be corrected by a surgical procedure

called septoplasty (Thomas et al., 2016; Ketcham and Han, 2010).

However, septoplasty may result in complications like

Hemorrhage/septal hematoma, perforations, deformations in

the nasal structure like saddle nose, nasal tip ptosis, hyposmia,

endocranial complications, and ocular complications to name a

few (Dąbrowska-Bień et al., 2018). In silico simulations using

computational fluid dynamics (CFD) have emerged as a faithful

tool to capture and analyze airflow inside the nasal cavity.

Researchers have confidently used CFD to predict the airflow

dynamics, particle depositions, and thermal conditioning studies

in the nasal cavity particularly in cases where practically

constructing the nasal cavity and experimentation is found to

be not viable economically (Inthavong et al., 2019; Zuber et al.,

2020; Keeler et al., 2016; Pless et al., 2004). In addition to this

virtual surgeries are also planned using CFD (Vanhille et al.,

2018; Frank-Ito et al., 2019b).

Studies on septal deviations have been studied by researchers in

the past (Chen et al., 2009; Liu et al., 2012; Frank-Ito et al., 2019a).

This study attempts to add knowledge to the already existing studies

by investigating the airflowdependence on the anatomical variations

that are found between a healthy nasal cavity and a septal deviated

nasal cavity. Further, the relation between the airway geometry and

the airflow parameters is studied. The study employs a range of flow

rates at the inlet from 5 LPM to 35 LPM which depicts normal

breathing and light exercise conditions (Subramaniam et al., 1998).

The flow range considered in this study additionally covers both the

laminar and turbulent flow regimes in the nasal cavity. The influence

of septal deviation on nasal airflows is evaluated and compared with

a healthy nasal cavity. This study employs two nasal cavities, one

with a septal deviation and the other is a normal and healthy nasal

cavity. The CT scans are used to generate a 3D model of these nasal

cavities, which are then exported to CATIA V5, followed by a

airflow simulation using ANSYS FLUENT 2020 R2.

Materials and methods

Reconstruction of the nasal cavity

Institutional ethical clearance has been obtained for this

study further to which the CT scans of the adult nasal cavities
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are procured from the Department of Radio-Diagnosis, Kasturba

Medical College, Manipal, India. Two cases of CT scans are

procured, one is of the patient with the nasal septum and the

other is of a healthy nasal cavity without any reported breathing

difficulties. The procured CT scans are anonymized before

proceeding to the model generation. The details of CT scans

are given in Table 1 and the slice increments are below 2 mm for

the selected scans to capture the intricate nasal geometry (Bailie

et al., 2006). In line with many of the previous works by

researchers, only the main nasal airway is constructed and the

sinus is not included in this simulation (Zubair et al., 2013b; Xi

et al., 2012; Inthavong et al., 2019).

An image processing software MIMICS (Materialise, Ann

Arbor, MI, United States) is used to generate a 3D model

from the CT scans. Utilizing the thresholds

between −1024 HU and −444 HU, segmentation is

performed. Segmentation is carried out slice by slice

thereby building the nasal cavity which is then exported

to 3-MATIC (Materialise, Ann Arbor, MI, United States)

where the file is saved in .STL format. This file is then

exported to CATIA V5 to generate a solid airway which is

saved in .stp format. This file in .stp format can be simulated

for flow in ANSYS FLUENT 2020 R2.

Flow field equations

Continuity and momentum equations are used to simulate

the flow in the nasal cavity. The energy equation is not used as the

temperature effects are not considered. These equations are

shown in equations Eqs 1, 2.

▽.u � 0 (1)
u.▽u � −1

ρ
▽p + ]▽2u (2)

Where “u” represents air velocity, “ρ” denotes fluid density and

′v′ denotes kinematic viscosity, ′p′ represents the fluid pressure.

Reynolds Average Navier Stokes equations are used to

characterize the incompressible and viscous 3D fluid flow. SST

k-ω model is used which is a two-equation shear stress transport

equation. This was developed by Menter (1994) and has been

widely used by many researchers in the past (Mylavarapu et al.,

2009; Zubair et al., 2013b).

Meshing

The meshing of the generated nasal cavities is executed using

the polyhedral meshing technique with six prism layers at the

nasal wall boundaries and ensuring a y+ value of less than 1.

Maximum skewness is limited to a value of 0.7. Three meshing

iterations namely the coarse (N3), medium (N2), and fine (N1)

meshing are used for grid convergence studies. A sample

meshing at mid nasal section plane is shown in Figure 1.

Boundary conditions and simulation setup

It is assumed that the nasal wall is rigid and non-slip (Ishikawa

et al., 2009; Brüning et al., 2020). A mass flow rate equivalent to a

particular air intake in liters perminute is applied at the nostril inlets.

The range of flows considered in this study is from 5 LPM to

30 LPM which are in laminar and turbulent flow regimes

(Zamankhan et al., 2006; Frank-Ito et al., 2019b; Garcia et al.,

2007). As a general norm, for adult nasal cavities, any flow

below 15 LPM is considered laminar in nature and over 15 LPM

turbulent flow is considered to be governing. For the nasopharynx,

an “outflow” boundary condition is considered which assumed a

fully developed flow. The presence of a mucus layer and nasal hair is

not included in this simulation. The properties of the fluid (air) used

in this calculation are the density and dynamic viscosity of 1.225 kg/

m3 and 1.7894 × 10−5 kg/(ms) respectively.

The governing equations are discretized over the control

volume. Integrating these discretized equations gives the set of

equations in algebraic form. The simulations were executed using

CFD solver ANSYS FLUENT 2020 R2. The SIMPLE algorithm was

chosen to relate the velocity and pressure corrections. Second-order

schemes for momentum, turbulent kinetic energy, and specific

dissipation rate are used for higher accuracy and the convergence

criteria of four orders of magnitude were adopted.

Results

Comparison of nasal cavities

To efficiently visualize the airflow at different locations, and

to compare the area variations, the nasal cavity is marked with

TABLE 1 Details of CT scans.

Sl No. Patient number Age Gender Slice increment No. of
slices

Pixel resolution

1 P01 19 years Male 1.035 140 512 × 512

2 P02 27 years Female 0.45 278 512 × 512

P01-With septal deviation, P02-Patent and healthy nasal cavity.
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FIGURE 1
Mesh information.

FIGURE 2
Cross-sectional planes in the adult nasal cavity.
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different planes where the values can be extracted as shown in

Figure 2.

Two nasal cavities are considered in this study, one with a

septal deviation and the other with a healthy patent nasal

cavity (Keyhani et al., 1995; Cheng et al., 1996; Subramaniam

et al., 1998; Wen et al., 2008; Xi et al., 2012; Garcia et al., 2016).

As seen in Figure 3, the nasal cavities’ cross-sectional areas are

plotted against their normalized length from the anterior nose

tip. The septal deviation in Patient P01 is identified from the

CT scans as shown in Figure 4.

The normalized distance from the anterior tip of the nostrils

is used to compare the cross-sectional areas. As plotted in

Figure 5. The highlighted region is the nasal valve region,

which is the narrowest and most constricted region in the

nasal cavity. Figure 5 shows that the mid-nasal region has the

smallest cross-sectional area for the septal deviated nasal cavity.

This has a significant impact on the nasal cavity’s airflow

dynamics, which affects how the nasal cavity physiologically

functions, such as the filtration of dust particles and the heat

conditioning of the inspired air.

The effective diameter at different locations in the nasal

cavity is calculated and compared for the nasal cavities. The

effective diameter is indicated in Table 2 which shows that the

effective diameter of the septal deviated nasal cavity is 88% that of

the normal nasal airway. Nasal resistance is influenced by the

effective diameter (Hey and Price, 1982).

The hydraulic diameter is equal to four times the area divided

by the perimeter. Table 3 shows the hydraulic diameter calculated

and indicated. The hydraulic diameter affects the Reynolds

Number Calculations, which indicate whether the flow is

laminar or turbulent.

Meshing results

The meshing of the nasal cavities included three meshing

stages with coarse, medium, and fine meshes which are indicated

in Table 4. The mesh generated is in the asymptotic range of

convergence and can be concluded to be independent of any

further mesh refinement.

The grid convergence index study in Table 5 shows a

numerical uncertainty of 13.551% and 0.174% respectively for

the mesh generated for P01 and P02 were observed. Celik et al.

(2008), explained the GCI calculation method using the

discretization error estimation technique explained by

Richardson and Glazebrook (1911).

FIGURE 3
Comparison of cross-sectional areas with the literature.
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Reynolds number, nasal resistance, and
pressure drop

The Reynolds numbers are calculated for the septal deviated

and normal nasal cavities and reported in Table 6.

Reynolds number indicates the nature of the flow where a value

less than 2,000 is considered laminar, 2,000–2,300 is transitional

flow and above 2,300 the flow becomes turbulent. From Table 6 it

can be seen that the airflow in the nasal cavity is laminar up to

15 LPM and over this, the flow becomes turbulent in nature.

Nasal resistance for the two cases mentioned in this study is

listed in Table 7. During the breathing process, there is a certain

quantum of obstruction is generated which is known as nasal

resistance. It is calculated by the ratio of pressure difference

across the nasal cavity to themass flow rate (ΔP/Q). It can be seen
from the table that the nasal resistance values are comparable to

work done by previous researchers for a healthy nasal cavity.

FromTable 7, it can be seen that the nasal resistance in the septal

deviated nasal cavity is higher when compared to a healthy nasal

cavity. The total nasal resistance indicates the degree of nasal

obstruction during breathing and provides an overall assessment

of nasal functioning. A study has shown the limited link between the

minimum cross-sectional area and perceived nasal patency may be

because airway constrictions are not always the only cause of nasal

resistance (Garcia et al., 2016). This study however shows that there

is a decrease in nasal resistance in a healthy nasal cavity attributed to

the ease of breathing.

The Figure 6 indicates the pressure drop plotted against the

mass flow rates for the nasal cavities studied. Additionally, the

work done by researchers in the past is also plotted (Wen et al.,

2008; Weinhold and Mlynski, 2004).

Velocity profiles and wall shear stress

The velocity profiles are plotted only for a mass flow rate of

14 LPM for the two nasal cavities. The Figure 7 shows maximum

velocity locations at the nasal valve region for the healthy nasal

FIGURE 4
Coronal section showing (A) Deviated septum in P01 (B) Healthy nasal cavity in P02.
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cavity which is the general trend observed by many researchers.

But for the septal deviated nasal cavity, the peak velocity is

observed in the mid-nasal region as well as in the nasopharynx

region which is abnormal in nature.

As per the literature, the peak velocity is expected at the

nasal valve region as it is the location with the least cross-

sectional area (Segal et al., 2008; Inthavong et al., 2019). In

general, the mid-nasal region experiences lower velocity in both

the nasal cavities considered in this study. Since the nasal

valve’s primary function is to constrain and congregate the

airflow produced in the nasal cavity, it must always be

functioning at a high velocity. Because the middle turbinate

has the largest surface area, it has less vascular tissue density

and is less visible in nasal airflow patterns. To understand the

velocity distribution across the nasal cavity, the maximum

velocity values are potted along the normalized length of the

nasal cavity. The values plotted in Figure 8 are for twomass flow

rate values that are for 14 LPM and 35 LPM.

The normalized velocity plot in Figure 8A indicates that the

peak velocity in the septal deviated nasal cavity is observed at the

mid-nasal and the nasopharynx region indicating an unusual

flow pattern when compared to a healthy nasal cavity.

The wall shear stress distribution along the length of the nasal

cavity is plotted for the two nasal cavities at 14 LPM and 35 LPM

as indicated in Figure 9.

The air passing through the nasal cavity continuously

applies shearing frictional forces to the nasal wall which is

called wall shear stress. The wall shear stress showed a peak

value in the nasal valve region which is in agreement with the

literature (Doorly et al., 2008). The Healthy nasal cavity

experiences a higher wall shear stress when compared to a

septal deviated nasal cavity. The overall patterns of wall shear

stress show higher wall shear stress along the anterior regions of

the inferior turbinate which is in line with the literature (Bailie

et al., 2009).

Discussion

The septal deviation is one of the most commonly

encountered nasal airway obstructions. The deviated septum

influences the physiological functions of the nasal cavity

which can be seen in this study where the nasal airflows are

compared between a septal deviated and a healthy nasal cavity.

FIGURE 5
Cross-Sectional area Comparison.
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The Reynolds number calculations show that the airflow is

laminar for flow rates below 15 LPM, and as the mass flow

rate at the nostril inlets increases beyond 15 LPM the flow tends

to become turbulent in nature. These findings are in line with the

findings of previous researchers (Inthavong et al., 2019; Chen

et al., 2009). However, a comparison between the nasal cavities

used in this study shows a higher Reynolds number in a healthy

nasal cavity when compared to the septal deviated nasal cavity.

The values of nasal resistance indicate comparatively higher

values in a septal deviated nasal cavity when compared to a

healthy nasal cavity. Interestingly the nasal resistance values in

septal deviated nasal cavities are greater than the healthy nasal

cavity by a range from 38% to 50% for mass flows below 15 LPM,

but as the mass flow rate increases the nasal resistance values

increase beyond 50%. This indicates that nasal resistance

increases as breathing changes from sedentary to exercising

conditions. Nasal resistance across the nasal cavity greatly

depends on the nasal anatomy (Ohki et al., 1991). Pressure

drop has been traditionally used to validate CFD solutions

where the pressure difference is taken between the nostril

inlets and the nasopharynx outlets (Weinhold and Mlynski,

2004). Pressure drop is considered to highly influence nasal

patency (Ottaviano and Fokkens, 2016). Higher values of

pressure drop are observed in the septal deviated nasal cavity

as compared to a healthy nasal cavity.

The velocity profiles indicate an abnormal velocity

distribution trend across the septal deviated nasal cavity

which is contrary to the healthy nasal cavity where a peak

TABLE 4 Mesh details.

Subject Mesh count (in millions)

N1 N2 N3

P01 6.605 2.378 0.864

P02 5.998 2.141 0.955

P01- With septal deviation, P02- Healthy nasal cavity without septum deviation.

TABLE 3 Hydraulic diameter.

Nasal anatomy Area (mm2) Perimeter (mm) Hydraulic diameter
(dh = 4A/P) mm

P01 P02 P01 P02 P01 P02

Nostril-Right 114.39 61.65 45.27 34.96 10.11 7.06

Nostril-Left 137.06 57.43 49.51 30.67 11.07 7.49

Trachea 79.56 204.63 36.35 60.26 8.75 13.58

TABLE 2 Effective diameter.

Nasal anatomy Volume (mm3) Surface area (mm2) Effective diameter
(mm) = 4V/A

P01 P02 P01 P02 P01 P02

NVV 3,789.73 1,625.69 2,542.88 1,443.71 5.96 4.50

MNR 20,059.78 19,800.61 17,271.30 17,358.19 4.65 4.56

NR 5,313.87 12,124.58 2,247.01 3,462.25 9.46 14.01

Total 29,163.38 33,550.88 22,061.19 22,264.15 5.29 6.03

NVV, Nasal vestibule and valve; MNR, Mid nasal region; NR, Nasopharynx Region.

TABLE 5 GCI results.

e21 [%] e21
ext [%] GCI21 [%] p φ0 Asymptotic check

P01 2.557 9.780 13.551 0.679 2.992 1.026

P02 0.874 0.139 0.174 5.783 3.781 1.009
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velocity is observed at the nasal valve region. The nasal valve

region is the most constricted in the nasal cavity, which results

in the highest velocity due to air accelerating in this region

(Segal et al., 2008). Following the nasal valve, there is an

abrupt increase in the cross-sectional area resulting in a

decrease in the velocity (Croce et al., 2006). Septal deviated

nasal cavity experiences peak velocities at the mid-nasal

region and the nasopharynx region which indicates an

aberrated flow pattern. This may consequence in the

thermal conditioning and the filtration capabilities of the

nasal cavity.

Wall shear stress (WSS) is the friction force that is

generated when the air moves inside the nasal cavity which

permits the heat and mass transfer between the air and the nasal

cavity. Local concentrations of the stresses would result in

irritating blood vessels (Wen et al., 2008). The results show

TABLE 7 Nasal resistance across the nasal cavity.

Researchers Subject Flow rate (LPM) Nasal
resistance (Pa s/ml)

Wen et al. (2008) Healthy adult nasal cavity 20 0.054

Weinhold and Mlynski (2004) 20 0.06

Zubair et al. (2013a) 20 0.068

Garcia et al. (2007) 15 0.046 to 0.07

Present Study P01 5 0.035

10 0.051

14 0.059

20 0.081

25 0.095

30 0.110

35 0.123

P02 5 0.021

10 0.027

14 0.030

20 0.038

25 0.044

30 0.050

35 0.056

FIGURE 6
Pressure drop for different inhalation flow rates.

TABLE 6 Calculated reynolds number at the nostril inlet for variable
flow rates.

P01 P02

Mass flow Re Mass flow Re

5 504 5 653

10 1,008 10 1,306

14 1,411 14 1,828

20 2,016 20 2,611

25 2,520 25 3,264

30 3,024 30 3,917

35 3,529 35 4,570
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higher wall shear stress at the nasal valve region for the normal

nasal cavity which is the general trend observed, but the septal

deviated nasal cavity experiences the highest WSS in the mid-

nasal region.

Limitations and future work

Only one nasal cavity each of septal deviation and a healthy

subject are considered for this study. This study can be further

improvised by improving the sample size considered. This study is

performed for steady-state conditions, and future work can consider

transient simulations. Future work shall include thermal studies

comparison due to airflow variations resulting from septal deviation.

Future studies can also include the comparison of the effects of

inspiration and expiration on nasal airflows.

Conclusion

Septal deviation which is one of the major causes of NAO

is studied by comparing the airflow patterns in a healthy

airway and a septal deviated nasal airway. In this study, the

CT scans of a septal deviated nasal cavity and a healthy

normal nasal cavity were used to develop 3D models and

carry out airflow analysis for a range of 5 LPM–35 LPM

indicating resting breathing and light exercising conditions

respectively. The anatomy is compared which shows

aberrated cross-sectional area patterns in a septal deviated

nasal cavity where the most constricted area is at the mid-

nasal region which is contrary to the healthy nasal cavity in

which the nasal valve region is most constricted. The velocity

patterns show a peak velocity at the mid-nasal region in the

septal deviated nasal cavity which affects its physiological

FIGURE 7
Velocity contours in (A) P01-Septal deviated nasal cavity (B) P02- Healthy nasal cavity.
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functions. The septal deviated nasal cavity projected higher

nasal resistance in comparison to the healthy nasal cavity,

higher by 38%–55%. The pressure drop values were higher by

60%–120% in the septal deviated nasal cavity as against the

healthy nasal cavity. Hence it is implied that the NAO with

septal deviation has to be effectively dealt with proper nasal

FIGURE 8
Velocity distribution across the normalized distance from anterior nose tip (A) Normalized Velocity (B) Maximum Velocity (m/s).
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procedures to relieve the airway and allow for the smooth

flow of air.
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