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Metamaterials have recently emerged and shown great potential for noise and

vibration reduction in specific frequency ranges, called stop bands. To predict

stop bands, their often periodic nature is exploited and dispersion curves are

calculated based on a single representative unit cell, typically modeled using the

finite element method. Since their sub-wavelength nature and often intricate

design can lead to large unit cell models, model reduction methods such as the

Generalized Bloch Mode Synthesis have been proposed to greatly accelerate

dispersion curve calculations. In order to calculate forced vibro-acoustic

responses of finite periodic elastic metamaterial plates composed of an

assembly of unit cells, however, full order finite element models rapidly

become computationally unaffordable. Therefore, in this work the

Generalized Bloch Mode Synthesis is incorporated in a sub-structuring

approach, which enables fast forced vibration response calculations of finite

elastic metamaterial plates based on a single reduced order unit cell model. The

main advantage as compared to a regular Craig-Bampton approach is the

additional local reduction of unit cell boundary degrees of freedom, whereby a

compatible basis for the identical neighboring unit cells is incorporated. In

addition, by combining this Generalized Bloch Mode Synthesis based sub-

structuring approach with the Elementary Radiator Approach, efficient sound

transmission loss computations of finite periodic metamaterial plates are

enabled. The performance of the proposed approach for fast vibro-acoustic

response predictions is demonstrated for different cases.
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1 Introduction

In the search for novel lightweight solutions with favourable

noise and vibration attenuation performance, locally resonant

metamaterials (LRMs) have gained significant attention (Liu

et al., 2000; Claeys et al., 2016). Due to their stop band

behaviour, arising from the addition of resonant structures on

a sub-wavelength scale on or in a flexible host structure, targeted

frequency ranges of strong noise and vibration attenuation can be

achieved (Xiao et al., 2012, 2013; Claeys et al., 2016; Chang et al.,

2018; Droz et al., 2019; Van Belle et al., 2019; de Melo Filho et al.,

2020; Song et al., 2020; Pires et al., 2022; Sangiuliano et al., 2022).

Although periodicity is not strictly required, the modelling,

analysis and design of LRMs typically relies on infinite periodic

structure theory: a single representative unit cell (UC) model is

combined with Bloch-Floquet periodicity boundary conditions

in order to predict wave propagation, and thus stop bands, in the

infinite periodic structure by means of dispersion curves

(Hussein et al., 2014; Van Belle et al., 2017). The finite

element (FE) method is often used for the UC modelling due

to its versatility and high modelling flexibility. However, given

the typically complex LRM structures, the amount of degrees of

freedom (DOFs) in the FE UC models can become large, leading

to expensive UC analyses. To accelerate dispersion curve

calculations, model order reduction (MOR) techniques have

been applied which reduce the amount of DOFs in the UC

model: e.g. component mode synthesis (CMS) methods such as

the Bloch Mode Synthesis (BMS) (Krattiger and Hussein, 2014;

Aladwani et al., 2022) and Generalized Bloch Mode Synthesis

(GBMS) (Krattiger and Hussein, 2018; Van Belle et al., 2020; Xi

and Zheng, 2021) as well as Bloch wave based methods such as

the Reduced Bloch Mode Expansion (RBME) (Hussein, 2009)

and Bloch wave reduction (Boukadia et al., 2018; Palermo and

Marzani, 2020) have been proposed and have been shown to lead

to considerable computation time reduction.

To assess the LRM performance in real applications,

however, forced vibro-acoustic responses for finite structures

with realistic boundary conditions should be evaluated as

opposed to considering only infinite periodic structures

(Sangiuliano et al., 2020). While wave- and transfer matrix-

based approaches exist for finite 1D periodic wave guides

(Mencik, 2014; Mencik and Duhamel, 2021), forced response

computations of finite 2D periodic structures often still rely on

full order model (FOM) assemblies. However, these

computations can rapidly become very expensive for an

increasing amount of periodically repeating UCs contained

within the finite structure. As recently shown in (van Ophem

et al., 2018; Mencik, 2021) the forced vibration response of 2D

periodic finite LRMs comprised of a repetition of UCs can be

efficiently performed by means of dynamic sub-structuring, with

the UCs constituting the individual sub-structures. To reduce the

computational cost of large sub-structured FE models, MOR is

often applied to the sub-structures before assembly, for which the

use of CMS methods such as the Craig-Bampton method is well-

established (Gruber and Rixen, 2016; Allen et al., 2020). This

method reduces the interior DOFs of the sub-structures using a

truncated set of eigenmodes resulting from a modal analysis

before assembly, as is performed in the BMS, and was e.g. applied

in (Mencik, 2021) for the analysis of finite LRM plates composed

of dissimilar UCs. Alternatively to CMS, in (van Ophem et al.,

2018) Krylov-based MOR was used on a single UC level in

combination with sub-structuring for the analysis of finite

periodic LRM plates in view of improving accuracy. In both

(van Ophem et al., 2018; Mencik, 2021), an additional global

MOR step was applied to the assembled system of UC reduced

order models (ROMs) to further accelerate computations.

Although the above MOR techniques have been developed for

the vibration response of finite periodic LRM plates, the sound

transmission loss (STL) predictions of 2D periodic LRM

partitions are predominantly still limited to infinite periodic

structure predictions, e.g. (Deckers et al., 2018; Errico et al.,

2019; Boukadia et al., 2020), or accurate yet typically

computationally expensive FOM finite structure predictions,

e.g. (Van Belle et al., 2019; Decraene et al., 2022).

Although reducing the UC interior DOFs, the aforementioned

sub-structuring-based MOR applications for finite periodic structure

vibration response predictions leave the UC boundary DOFs before

assembly unaltered, which can again amount to significant

computational cost for the finite plate assembly, especially when

many UCs and refined FE UC models are considered (Cool et al.,

2022). As a consequence, substantial gains could potentially be

obtained by also reducing the UC boundary DOFs before

assembly, which is the purpose of this work. In (Krattiger et al.,

2019), different modal boundary reduction methods for sub-

structures were compared in a CMS context. Sub-structure

boundary reduction based on the assembled system-level matrices

was reported to be most accurate but costly, whereas local boundary

reduction on the uncoupled sub-structures was found to be fast at the

cost of slight accuracy loss due to the uncoupled nature of the used

boundary modes. In the case of periodic LRM plates composed of a

single repeating UC, particularly the local boundary reduction on a

single uncoupled UC is highly interesting as it would allow obtaining

a very fast sub-structured model by creating only a single UC ROM

once. To achieve this, in this work, the CMS based MOR with local

boundary reduction on a single UC is performed by using the GBMS

methodology (Krattiger andHussein, 2018), which can be considered

as a variant of the exact-compatibility local-level characteristic

constraint modes approach for sub-structure boundary reduction

discussed in (Krattiger et al., 2019). This enables fast forced vibration

response computations of finite periodic LRM plates. Moreover, to

also enable fast STL computations of finite periodic LRM plates, the

proposed GBMS-based sub-structuring approach based on a single

structural FE UC model is next combined with the Elementary

Radiator Approach (ERA) proposed in (Jung et al., 2017).

The rest of this paper is structured as follows. In Section 2, the

problem formulation is introduced. In Section 3, the UC MOR
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based sub-structuring methodology and application of the ERA is

explained. In Section 4, an LRM plate design and FE UC model

are introduced, followed by an eigenfrequency analysis on UC

and assembly level and eventually forced vibration frequency

response and STL predictions of the finite LRM plate. The main

outcomes are summarized in Section 5.

2 Problem formulation

In this work, 2D periodic rectangular LRM plates are

considered, which are composed of an assembly of Nx × Ny

identical UCs in the xy-plane (Figure 1A). Structural plate

models are considered and two types of excitations and

corresponding responses are of interest. On the one hand, one

or more normal point forces are considered and the out-of-plane

displacement response is of interest (Figure 1B). On the other

hand, an acoustic plane wave incident at elevation angle θ and

azimuth angle ψ excites the panel and the acoustic radiated power

on the other side of the panel is of interest (Figure 1C), which

enables computing the sound transmission loss (STL). The

acoustic wavenumber in the acoustic medium with

soundspeed ca and density ρa is given by ka = ω/ca. The

acoustic medium is air with ca = 340 m/s and ρa = 1.225 kg/

m3. Time harmonic behaviour with ejωt-dependence is

considered, with j2 = −1, angular frequency ω and time t.

3 Methodology

In what follows, the sub-structuring approach is first recalled

in Section 3.1. Next, the MOR on UC level is explained in Section

3.2, using BMS for interior modal reduction and GBMS for

additional boundary modal reduction. The global modal

reduction on finite plate assembly level is discussed in Section

3.3. Eventually, the application of the ERA within the sub-

structuring MOR approach is explained in Section 3.4.

3.1 Sub-structured assembly of UCs

Consider a 2D periodic rectangular LRM plate composed of

Nx × Ny identical UCs (Figure 1), modelled using the FE method.

For the s-th UC FE model containing nUC DOFs, the time-

harmonic equations of motion of the UC FOM read as:

KUC − ω2MUC( )d s( )
UC � F s( )

UC, (1)

With the (nUC × 1) UC DOF vector d(s)UC and generalized force

vector F(s)UC, the (nUC × nUC) UC mass matrix MUC and (complex)

stiffness matrix KUC and the e
jωt-dependence omitted for readability.

For sake of simplicity, only frequency-independent structural

damping is considered in this work by considering a complex

KUC, although the methodology can be extended to general

(viscous) damping (Rouleau et al., 2017; Allen et al., 2020;

Aladwani et al., 2022). While MUC and KUC are identical for all

UCs, this does not necessarily hold for F(s)UC, since the periodic finite

plate can be subjected to an arbitrary and distributed load. The

system of equations of the 2D periodic finite rectangular LRM plate

are retrieved by assembling the UC system of equations as follows

(Gruber and Rixen, 2016; Allen et al., 2020; Mencik, 2021):

K � ∑
s

Ls
TKUCLs, M � ∑

s

Ls
TMUCLs, F � ∑

s

Ls
TF s( )

UC, (2)

with Ls the Boolean localization matrices of the Nx × Ny UCs and

superscript T denoting the transpose, leading to the following

system of equations for the finite LRM plate assembly FOM:

K − ω2M( )d � F. (3)

3.2 UC model reduction

Since the full order finite plate assembly system of equations

of Eq. 3 rapidly becomes very large with increasing Nx × Ny and

for fine FE UC models, model reduction is applied first on single

UC level, exploiting the periodicity at hand. To this end, a single

FIGURE 1
(A) LRMUC FEmodel (top) with highlighted interior (dUC,I) and boundary (dUC,A) DOFs (bottom), (B) finite LRM plate assembly composed of 5 × 5
UCs with input point force and output displacement locations and (C) with oblique acoustic plane wave excitation.
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UC reduction basis VUC is constructed, which allows expressing

the original UC DOFs d(s)UC in terms of a reduced set of UC DOFs
~d
(s)
UC by projection, and applied to the UC FOM to set up a UC

ROM as follows:

d s( )
UC � VUC

~d
s( )

UC 0 ~KUC − ω2 ~MUC( )~d s( )
UC � ~F

s( )
UC, (4)

with:

~KUC � VT
UCKUCVUC, ~MUC � VT

UCMUCVUC, ~F
s( )

UC � VT
UCF

s( )
UC.

(5)
Although ~KUC and ~MUC only need to be calculated once to

represent all identical UCs, it is noted that ~F
(s)
UC is

calculated per UC separately in case F(s)UC is not identical

for all UCs. In particular, if a localized force input in one

UC is considered, ~F
(s)
UC has to be calculated for that UC

only, setting the other ~F
(s)
UC to zero. Instead, if multiple UCs

are subjected to a load or if different loads apply for

different frequencies, the corresponding ~F
(s)
UC can be

computed simultaneously by stacking the nf loads F(s)UC

in the columns of an nUC × nf load matrix and pre-

multiplying it with the UC reduction basis VUC. To

determine VUC, the interior UC DOFs are reduced

following the BMS (Krattiger and Hussein, 2014),

corresponding to a classical Craig-Bampton reduction.

Next, the GBMS (Krattiger and Hussein, 2018), which

embeds the BMS as a first step, allows to reduce the

remaining boundary UC DOFs. These steps are now

explained.

3.2.1 Interior UC modal reduction using BMS
To reduce the interior UC DOFs following the BMS

approach, the UC DOFs and matrices are partitioned into the

nI interior (dUC,I) and nA boundary (dUC,A) DOFs (with nUC = nI
+ nA) (Figure 1A):

KUC,II KUC,IA

KUC,AI KUC,AA
[ ] − ω2 MUC,II MUC,IA

MUC,AI MUC,AA
[ ]( ) dUC,I

dUC,A
{ }

� FUC,I

FUC,A
{ }. (6)

Next, a single reduction basis VUC is set up by representing the

interior UC DOFs by a superposition of a set of fixed interface

normal interior modes ΦUC,I and a set of static constraint

modes ΨUC,IA (Krattiger and Hussein, 2018; Krattiger et al.,

2019):

VUC � ΦUC,I ΨUC,IA

0 I
[ ],

dUC,I

dUC,A
{ } � ΦUC,I ΨUC,IA

0 I
[ ] ~dUC,I

dUC,A
{ } (7)

where ~dUC,I is a reduced set of interior modal UC DOFs

corresponding to the UC interior modes and

KUC,II − ω2
UC,I,iMUC,II( )ϕi

UC,I � 0 and ΨUC,IA � −K−1
UC,IIKUC,IA,

(8)
with ΦUC,I � [ϕ1UC,Iϕ2UC,I . . . ϕn

ϕ
I
UC,I] and nϕI ≪ nI is the truncated

number of included interior modes, typically determined using

frequency-based mode selection: e.g. the lowest-frequency modes

up to twice the maximum frequency of interest. This reduction

basis VUC is next used to reduce the UC model matrices by

projection:

KUC � VT
UCKUCVUC, MUC � VT

UCMUCVUC (9)

3.2.2 Boundary UCmodal reduction using GBMS
Following the interior modal UC MOR, a large number of

UC boundary DOFs nA can potentially remain, which would

still lead to large model sizes for the finite plate assembly of

UC ROMs especially when using refined UC FE models.

Therefore, the GBMS is used, which embeds the BMS as a

first step, to also perform local boundary modal reduction

on single UC level to additionally reduce the remaining UC

boundary DOFs. This is done by calculating a set of normal

boundary modesΦUC,A based on the submatricesKUC,AA and

MUC,AA resulting from Eq. 9 as follows:

KUC,AA − ω2
UC,A,iMUC,AA( )ϕi

UC,A � 0, (10)

with ΦUC,A � [ϕ1UC,Aϕ2UC,A . . . ϕ
nϕA
UC,A] and nϕA ≪ nA is the truncated

number of included UC boundary modes. This number is typically

determined by trial and error since frequency-based truncation has

been found to be less straightforward (Krattiger and Hussein, 2018).

To allow compatibility between the boundaries of neighboring UCs

in the finite plate assembly, augmented mode sets for the

corresponding neighboring boundaries of the adjacent sub-

structures would need to be considered as discussed in (Krattiger

et al., 2019). However, exploiting the periodicity at hand, this can now

be done using the boundary modesΦUC,A of the single UC alone. To

this end, the GBMS approach is further followed (Krattiger and

Hussein, 2018): after partitioning ΦUC,A according to the

corresponding UC DOF groups on left and right sides, bottom

and top sides and bottom-left, bottom-right, top-left and top-right

corners of the UC for the assembly, the corresponding UC boundary

mode partitions are respectively combined and orthogonalized using

a singular value decomposition (SVD) before combining them in the

final boundary projection matrix BUC,A. Eventually, the reduction

basis VUC of Eq. 7 is extended with BUC,A to incorporate the

boundary reduction (Krattiger and Hussein, 2018; Krattiger et al.,

2019):

VUC � ΦUC,I ΨUC,IABUC,A

0 BUC,A
[ ],

dUC,I

dUC,A
{ } � ΦUC,I ΨUC,IABUC,A

0 BUC,A
[ ] ~dUC,I

~dUC,A
{ }, (11)
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where ~dUC,A is a reduced set of boundary modal UC DOFs

corresponding to the UC boundary modes. The eventual UC

ROM is obtained using this basisVUC by projecting the UC FOM

matrices per Eq. 5.

3.2.3 Assembly of the UC ROMs
The Boolean localization matrices ~Ls are updated according

to the reduced UC DOFs and are used to create the finite plate

assembly of UC ROMs as follows:

~K � ∑
s

~Ls
T ~KUC

~Ls, ~M � ∑
s

~Ls
T ~MUC

~Ls, ~F � ∑
s

~Ls
T~F

s( )
UC. (12)

It is again noted that ~KUC and ~MUC are only calculated once,

while for ~FUC this depends on the load applied. The primal

assembly of Eq. 12 enforces compatibility between the UCs by

using the corresponding boundary DOFs for the adjacent sub-

structures, either in terms of nodal UC boundary DOFs in case of

BMS or in terms of reduced modal UC boundary DOFs in case of

GBMS. The resulting system of equations for the assembly of UC

ROMs reads as follows:

~K − ω2 ~M( )~d � ~F. (13)

3.3 Global modal reduction of the
assembly

Although applying UC MOR already allows to drastically

reduce the model size of the finite plate assembly, the resulting

system of equations can again become large when increasing

the number of UCs. Therefore, an additional final global

modal reduction step is applied by calculating a set of

normal modes ΦT for the assembly as follows, after

application of boundary conditions to the plate boundaries,

as in (Mencik, 2021):

~K − ω2
T,i
~M( )ϕi

T � 0, (14)

with ΦT � [ϕ1Tϕ2T . . . ϕn
ϕ
T
T ] where nϕT is the truncated number of

included global modes using a frequency-based mode

selection: e.g. the lowest-frequency modes up to two times

the maximum frequency of interest. Given the comparatively

small size of ~K and ~M, this modal calculation can be done

much faster as compared to the finite plate assembly FOM. To

further improve the projection basis, the set of normal modes

ΦT can be enriched with a static response for the applied load

ΨT � ~K
−1~F which is afterwards mass-normalized with ~M,

leading to the global projection basis VT = [ΦT, ΨT]. In

particular for localized excitations, this can enable better

approximating the strong vibration attenuation inside the

stop band frequency range. The system of equations of the

global assembly is eventually reduced using VT as in Eq. 5,

resulting in the final globally reduced finite plate model:

K̂ − ω2M̂( )d̂ � F̂. (15)

After solving the system of equations for all frequencies of

interest, the nodal responses are found via back-projection

using VT and VUC.

3.4 Elementary radiator approach

To approximate the STL of the flat rectangular LRM

plates using only structural FE models, the elementary

radiator approach (ERA) proposed in (Jung et al., 2017) is

applied. This method was shown to enable efficient STL

approximations using structural FE models of finite,

baffled flat plates, without requiring an expensive coupled

vibro-acoustic analysis. Here, this method is employed in

combination with the above outlined GBMS-based sub-

structuring approach to accelerate STL analyses of baffled,

finite periodic LRM plates based on structural UC FE models.

In what follows, the method is briefly described.

Consider an oblique acoustic plane wave pi with amplitude

A = 1 Pa, which impinges upon the LRM plate, baffled in the xy-

plane, along incidence angles θ and ψ (Figure 1C):

pi x, y, z( ) � Ae−j kaxx+kayy+kazz( ), (16)

with (kax, kay, kaz) = −ka(sin θ cosψ, sin θ sinψ, cos θ) and ka the

acoustic wave number. The incident sound power on the baffled

plate due to this oblique plane wave excitation is:

Pi � S|A|2
2ρaca

cos θ, (17)

with S the area of the finite LRM plate. The acoustic plane wave

excitation is applied to the structure as a blocked pressure

excitation, while the radiation resistance of the acoustic

medium is neglected since the mass density of the acoustic

medium air is low. Corresponding to (Fahy, 2012; Yang et al.,

2017), for each frequency ω, the blocked pressure is

applied as lumped normal forces at the nodes of the LRM

plate’s top face:

Fz,j � 2pi xj, yj, zj( )Sj, (18)

with (xj, yj, zj) the coordinates of node j, Sj the nodal area, and

with the factor 2 arising from the blocked pressure field. This

leads to the corresponding nodal external forcing vectors F(ω) for

the finite LRM plate assembly FOM in Eq. 3. As shown in

previous work by the authors (Van Belle et al., 2019) using a

fully coupled vibro-acoustic LRM FE UC model, applying the

acoustic excitation on the flat LRM plate’s top face while

neglecting the presence of the sub-wavelength resonators has

a negligible effect on the predicted STL and is hence applied here

as such as well. In order to apply the UC model reduction, the

loading vectors F(ω) for each frequency are first sub-structured
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into the corresponding UC force vector parts F(s)UC(ω) using the Ls
and stacked column-wise into one UC force matrix before being

simultaneously reduced for all frequencies using the VUC. For the

global modal reduction step, the VT is applied at once to the

column-wise stacked reduced UC ROM assembly loading vectors
~F(ω) for all frequencies.

After solving the reduced system of Eq. 15 for all

frequencies and back-projection to obtain the LRM plate’s

nodal responses d, the transmitted sound power is computed

at each frequency ω of interest from the normal nodal

displacement field uz(x, y) of the flat bottom face of the

LRM plate using the ERA. To this end, uz(x, y) is first

subsampled in a rectangular grid of np non-overlapping

rectangular patches of equal dimensions, referred to as

equivalent radiators, coarser than the FE mesh. The

transmitted acoustic pressure pt, evaluated at the radiating

surface, is expressed as (Jung et al., 2017):

pt xp, yp( ) � ∑np
q�1

Zpqvz,q, (19)

with p the index of the radiator position at which the pressure is

computed, q the index of the radiators and vz,q = vz(xq, yq) =

jωuz(xq, yq) the normal velocity (interpolated) at the center of

radiator q. Zpq is the radiation impedance of the radiator, which is

analytically computed as (Jung et al., 2017):

Zpq �
ρajω

e−jkaRpq

2πRpq
Sq , p ≠ q

ρaca 1 − ejkarp( ) , p � q

⎧⎪⎪⎪⎨⎪⎪⎪⎩ and

Rpq �
�������������������
xp − xq( )2 + yp − yq( )2√

(20)

with Sq the area of radiator q and rp � ����
Sp/π

√
the equivalent

radius of radiator p. As shown in (Jung et al., 2017, 2022), by

considering a limited yet refined enough number of radiators,

computing the radiated acoustic pressure this way provides a

considerably more efficient yet accurate alternative to evaluating

Rayleigh’s integral directly on the nodal velocity field vz(x, y),

particularly for refined FE meshes. Next, assuming identical radiator

areas S0, the transmitted sound power Pt is efficiently obtained as:

Pt � 1
2
∑np
p�1

Re pt xp, yp( )vpz xq, yq( ){ }Sp � S0
2
Re vHz Zvz{ }, (21)

with superscripts * and H respectively denoting the complex

conjugate and Hermitian transpose operators, Z the np × np
radiation impedance matrix and vz � [vz,1 vz,2 . . . vz,np]T the

equivalent radiator velocities. With Pi and Pt known, the

oblique STL at every frequency ω of interest is eventually

calculated as:

STL � −10 log10 τ( ) � −10 log10
Pt

Pi
( ), (22)

with τ the sound power transmission coefficient. By

considering multiple plane waves as multiple right hand

sides in Eq. (14), and integrating the corresponding

resulting oblique sound power transmission coefficients

over the incidence angles, also the diffuse field STL can be

computed. The ERA based STL results have been verified

against fully coupled vibro-acoustic FE models in (Jung

et al., 2017) and good agreement as well as high

computational efficiency have been shown. Hence, the

combination of ERA with fast structural response

computations using the presented GBMS based sub-

structuring approach in this work is proposed to enable

further accelerating STL predictions of finite periodic LRM

plates.

4 Results

In this section, the above described procedure is applied to a

refined LRM UC FE model. After introducing the LRM design

and finite plate configuration in Section 4.1, the eigenfrequency

calculation on a UC and finite plate assembly level are compared

when using the UC FOM as well as the UC ROMs obtained with

BMS and GBMS in Section 4.2. Next, vibration responses are

calculated for finite LRM plates for a point force excitation in

Section 4.3, comparing model size, computational cost and

accuracy. STL results for plane wave excitation are discussed

in Section 4.4.

4.1 LRM description

The LRM design of (Van Belle et al., 2020) is considered,

which consists of a 1 mm thick aluminium (Young’s modulus E =

70 GPa, mass density ρ = 2,700 kg/m3, Poisson’s ratio ] = 0.3)

plate host structure with periodically added beam-shaped

PMMA (Young’s modulus E = 4.85 GPa, mass density ρ =

1,188 kg/m3, Poisson’s ratio ] = 0.31) resonators with 0.03 ×

0.03 m periodicity (Figure 1A). A constant damping loss factor

η = 0.01 is considered for the entire structure in this work. The

UC is discretized using 3,834 CHEXA8 linear solid elements,

with a maximum element size of 1 mm and minimally three

elements through the thickness of all parts. The UC FOM

contains a total of 16,335 DOFs, with nI = 14,871 and nA =

1,464. As discussed in (Van Belle et al., 2020), the beam-shaped

resonator is tuned with its first out-of-plane bending mode to a

resonance frequency of 616 Hz and adds 39.8% mass to the host

structure, which leads to a bending wave stop band between

597–656 Hz. The frequency range of interest in this work hence

ranges up to a maximum frequency of 1,000 Hz.

To verify the accuracy and computational benefit of theMOR

approach, a moderately sized finite LRM plate composed of 5 × 5

UCs (Figure 1B) and a larger 15 × 15 UC LRM plate are
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considered. A zero displacement boundary condition is imposed

along the circumference of the finite plates. The resulting 5 × 5

UC plate FOM counts a total of 386,127 unknown DOFs, and the

15 × 15 UC plate FOM counts 3,497,007 unknown DOFs. The

moderate 5 × 5 UC plate size allows a comparison of the ROMs

with the finite LRM plate FOM within reasonable computation

times, while the 15 × 15 UC plate similar to (Mencik, 2021)

allows demonstrating the efficiency of the approach for larger

LRM plates as compared to conventional global modal MOR.

4.2 Eigenfrequency analysis

Before assessing the vibro-acoustic forced response

computations, the computation of the eigenfrequencies of

the undamped UC ROMs and finite plate ROMs is first

assessed for different nϕI and nϕA and the relative errors on

these eigenfrequencies are computed against the

corresponding FOMs.

4.2.1 UC level
To assess the UC ROMs, the first 20 eigenfrequencies of the

free, undamped UC are computed and the non-zero

eigenfrequencies are compared. First, only interior UC modal

reduction is applied using the BMS, considering different

amounts of interior UC modes nϕI (Figure 2A). Choosing

nϕI � 3, corresponding to an interior modal frequency of

3,045.9 Hz or thus three times the maximum frequency of

interest, already provides a relative error below 10−3 for the

first three eigenfrequencies of the free UC, with f3,FOM =

3,063.4 Hz. A further increase to nϕI � 10 further decreases

this error below 10−4 and is retained here and for the

subsequent GBMS reduction.

Next, also the UC boundary is reduced using the GBMS,

considering nϕI � 10 and different amounts of boundary UC

modes nϕA (Figure 2B). For nϕA � 3 a high relative error is

found. By increasing nϕA to 5, the error for the first three

eigenfrequencies of the free UC lowers to about 10−2 and

becomes acceptable. Eventually for nϕA � 15, corresponding to

a boundary modal frequency of 19,455 Hz, the error decreases

further below 10−4 and approaches the error for the UC with only

interior modal reduction.

4.2.2 Finite plate level
To assess the finite plate ROMs, the first 60 eigenfrequencies

of the clamped, undamped finite LRM plate assembly of 5 × 5

UCs are computed, up to about twice the frequency range of

interest of 1,000 Hz. This comes down to evaluating E. 14 on the

FIGURE 2
(A) Eigenfrequencies (left) and relative error of the eigenfrequencies (right) computed for the BMS reduced free UC, considering different nϕ

I . (B)
Eigenfrequencies (left) and relative error of the eigenfrequencies (right) computed for the GBMS reduced free UC, considering nϕ

I � 10 and different
nϕ
A .
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assembly of UC FOMs or ROMs. Again, first only interior UC

modal reduction is applied for different nϕI before assembly and

the eigenfrequencies and relative error thereof with respect to the

FOM are assessed (Figure 3A). Already for nϕI � 3, relative errors

are achieved of around 10−2 or lower for the eigenfrequencies

below 2,000 Hz and of around 10−3 or lower for the

eigenfrequencies below 1,000 Hz. Further increasing nϕI to

10 further lowers this error to around 10−4 or lower below

2,000 Hz and to around 10−5 or lower below 1,000 Hz. This

corresponds well to the observations in Figures 2A, 2is in line

with the accuracy expected for regular Craig-Bampton based sub-

structuring. It is noted that around 600 Hz and 1,200 Hz, many

modes are present around the same frequency (Figure 3A left).

This is due to the accumulation of modes with in-phase resonator

motion which happens right before a stop band (Claeys et al.,

2013, Claeys et al., 2014), with this LRM having a stop band

around 600 Hz and a directional stop band around 1,200 Hz

(Van Belle et al., 2017). The more localized nature of these modes

due to the resonators also leads to a lower relative error on these

predicted eigenfrequencies, which highlights the

representativeness of the interior UC modal basis for these

localized effects.

Next, the finite plate assembly of GBMS UC ROMs is

assessed, considering nϕI � 10 and different nϕA (Figure 3B).

High relative errors are found for nϕA � 3 and nϕA � 5. For

nϕA � 15, relative errors of around 10−3 or lower are found.

These are higher than the corresponding errors found for the

free UC modes (Figure 2B), which were below 10−4 for the same

frequency region. This increase in error for the assembly of

GBMS UC ROMs as compared to the free UC ROMs is expected,

since the UC boundary modes are calculated for the uncoupled

UCs and thus neglect the mass and stiffness coupling with the

adjacent UCs, thereby only approximately enforcing the coupling

upon assembly as explained in (Krattiger et al., 2019). Even

though the error for nϕA � 15 is now acceptable, nϕA can be further

increased to reduce this error, with nϕA � 100 again leading to a

similar error as for the free UC modes. At low frequencies and

right after the (directional) stop bands, where the modes are of

more global plate-level nature, higher errors are observed. This

reduced accuracy can be attributed to the local nature of the UC

reduction, which does not account for the system-level mass and

stiffness coupling between the UCs in the finite plate assembly.

Table 1 gives an overview of the model sizes and timings for

the FOM, BMS and GBMS UC based sub-structured clamped

finite LRM plate’s modal calculation for the first 60 eigenmodes.

All computations were performed on a Intel Xeon Gold

6240 CPU with 192 GB RAM. Where the BMS with nϕI � 10

reduces the model size with a factor 26 and reduces the total

computation time by half as compared to the FOM, the

additional UC boundary reduction with the GBMS allows to

FIGURE 3
(A) Eigenfrequencies (left) and relative error of the eigenfrequencies (right) computed for the clamped finite plate assembly of 5 × 5 BMS UC
ROMs, considering different nϕ

I . (B) Eigenfrequencies (left) and relative error of the eigenfrequencies (right) computed for the clamped finite plate
assembly of 5 × 5 GBMS UC ROMs, considering nϕ

I � 10 and different nϕ
A.
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further significantly reduce the model size and required

computation time, even for an increased nϕA, with the UC

boundary reduction taking only very limited additional time

for the here considered case. It is noted that the ratio of interior to

boundary UC dofs can have an important impact on the

efficiency of the GBMS (Cool et al., 2022).

The additional benefit of the UC boundary reduction in

the GBMS based approach is emphasized when considering a

larger, 15 × 15 UC assembly and computing the first

564 eigenmodes (Table 2) up to about twice the frequency

range of interest of 1,000 Hz. Where for the 5 × 5 UC

assembly, the total computation time to obtain the

eigenmodes up to twice the frequency range of interest is

about factor 4 faster with GBMS (nϕA � 100) as compared to

BMS, this speed-up increases to about a factor 12 for the 15 ×

15 UC plate, despite the computation of a higher number of

finite plate modes. Compared to the FOM, the GBMS

(nϕA � 100) is about 24 times faster for this 15 × 15 UC

plate, which is a significant speed-up as compared to the

speed-up with about factor 8 for the smaller, 5 × 5 UC

plate. It is noted that, although the GBMS allows

increasingly faster eigenmode computations than the FOM

and BMS with an increasing number of UCs in the finite plate

assembly, an a priori assessment of the required nϕA is more

difficult and requires some iterations due to the absence of a

clear frequency-based mode selection criterion (Krattiger and

Hussein, 2018). This should be accounted for in setting up the

GBMS based ROM.

4.3 Forced vibration response

For the forced response analysis, first the 5 × 5 UC finite LRM

plate is considered. The plate is excited by a point force with

magnitude Fz = 1 N in the out-of-plane direction at (x, y, z) =

(4.15, 5.3, 0) cm, in the second UC along the x- and y-direction

(Figure 1B). The RMS out-of-plane displacement response uz at

the UC corners of the plate’s top face is calculated for frequencies

1–1,000 Hz with a 1 Hz step and the relative errors of the RMS

responses of the finite plate ROMs are computed with respect to

the finite plate FOM (Figure 4). In total, six different models are

considered: FOM, FOM with global MOR, BMS based ROM

(nϕI � 10), BMS based ROM with global MOR, GBMS based

ROM (nϕI � 10, nϕA � 100) and GBMS based ROM with global

MOR. For the global modal reduction in these models, nϕT � 59 is

considered, with the highest frequency 2,119 Hz corresponding

to at least two times the maximum frequency of interest, and

static enrichment is applied given the single point force

excitation. As discussed in Section 4.2.2, due to the

accumulation of modes before (directional) stop bands in the

frequency range up to 2,000 Hz, the number of global modes to

be included for LRM plates can be considerably higher as

compared to bare plate counterparts and also increases with

the amount of resonators and resonant modes in the considered

frequency range (Claeys et al., 2013, 2014). The model sizes and

total computation times for the forced vibration responses are

listed in Table 3. The models with global MOR have the same

amount of DOFs.

TABLE 1 Overview of 5 × 5 UC finite LRM plate FOM, BMS and GBMS based model sizes and computational times required for the model reduction,
assembly and eigenmodes calculation.

DOFs Interior reduction Boundary reduction Assembly Eigenmodes
calculation

Total time

FOM 386,127 – – 0.73 s 94.08 s 94.81 s

BMS (nϕI = 10) 14,602 6.51 s – 3.14 s 38.25 s 47.9 s

GBMS (nϕI = 10, nϕA = 15) 1,342 6.61 s 0.44 s 0.05 s 0.26 s 7.36 s

GBMS (nϕI = 10, nϕA = 100) 4,402 6.52 s 0.79 s 0.34 s 3.74 s 11.40 s

TABLE 2 Overview of 15 × 15 UC finite LRM plate FOM, BMS and GBMS basedmodel sizes and computational times required for the model reduction,
assembly and eigenmodes calculation.

DOFs Interior reduction Boundary reduction Assembly Eigenmodes
calculation

Total time

FOM 3,497,007 – – 6.66 s 8,785.88 s 8,792.54 s

BMS (nϕI = 10) 153,282 6.59 s – 34.19 s 4,329.57 s 4,370.35 s

GBMS (nϕI = 10, nϕA = 15) 14,052 6.76 s 0.40 s 0.24 s 37.09 s 44.49 s

GBMS (nϕI = 10, nϕA = 100) 46,182 6.75 s 0.81 s 2.39 s 361.79 s 371.74 s
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The frequency responses show very good agreement, with the

stop band around 600 Hz clearly leading to vibration attenuation

(Figure 4A). Overall, the BMS ROMs show good accuracy,

similar to FOM with global MOR, with relative errors around

10−3 or lower (Figure 4B). As was observed for the finite assembly

eigenfrequencies, GBMS leads to a slightly higher overall error of

around 10−2 or lower, but still shows good agreement with the

other models, especially around the stop band frequency zone of

interest, where the errors of around 10−3 are lower. At low

frequencies, where the response is dominated by the plate

stiffness and where the wavelengths of the subsequent

vibration modes are typically large, the higher errors of the

GBMS might arise from the deviation of the assembly-level

stiffness due to the local UC boundary modal reduction which

neglects the mass and stiffness coupling with the adjacent UCs. It

is noted that, inside the stop band, applying global MOR leads to

slightly lower accuracy for all models for this concentrated point

force excitation. This might arise from the high attenuation

inside the stop band, which could require a even higher nϕT to

better approximate the strongly spatially decaying response.

When comparing the forced response computation times of

the finite plate models with global MOR applied (Table 3), the

UC boundary reduction of the GBMS based UC MOR clearly

allows a considerable additional computation time reduction as

compared to only interior UC reduction of the BMS based UC

MOR, with over a factor 4. This is attributed to the further

reduced system size after assembly of the UC ROMs which hence

enables a faster global reduction step, while the computation time

for UC interior and consecutive boundary reduction is small

(Figure 5), as also discussed in previous section. It is noted that, in

all cases, the small system size after global reduction allows a fast

frequency solution.

Another significant advantage of particularly the GBMS UC

MOR is that, due to the smaller assembly system size,

considerably less memory is required to perform the global

reduction step. Especially for finite LRM plates with many

UCs, this property of sub-structuring forms an important

improvement and is further leveraged here by only

considering a single UC. Apart from the larger system size,

the typical accumulation of modes near the stop band which

directly depends on the number of resonators and thus UCs also

requires an increasingly higher nϕT with increasing numbers of

UCs and amount of resonant modes in the frequency range of

interest.

FIGURE 4
Forced vibration frequency responses (A) and relative error thereof with respect to the FOM (B) computed for the clamped finite plate assembly
of 5 × 5 UCs for different ROMs. The good agreement between the results causes the frequency responses (A) to appear on top of each other.

TABLE 3 Overview of FOM, BMS and GBMS UC based finite LRM plate model sizes for the clamped finite plate assembly of 5 × 5 UCs and total
computational times required for the forced vibration response.

DOFs Total time

FOM 386,127 32,222.3 s

FOM + global MOR (nϕT = 59) 60 141.3 s

BMS (nϕI = 10) 14,602 9,480 s

BMS (nϕI = 10) + global MOR (nϕT = 59) 60 68.1 s

GBMS (nϕI = 10, nϕA = 100) 4,402 1,062.3 s

GBMS (nϕI = 10, nϕA = 100) + global MOR (nϕT = 59) 60 15.3 s
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To further illustrate the benefit of the GBMS UC MOR in

combination with global modal MOR, consider the larger

clamped finite LRM plate with 15 × 15 UCs. The plate is

again excited by a unit point force in the out-of-plane

direction, this time at (x, y, z) = (20.3, 19.15, 0) cm in the

seventh UC along the x- and y-direction. The RMS out-of-

plane displacement response uz at the UC corners of the

plate’s top face is calculated for frequencies 1–1,000 Hz with a

1 Hz step. To include the modes up to twice the frequency range

of interest of 1,000 Hz for this LRM plate with 225 resonators, a

significantly higher amount nϕT � 564 is required, with a

maximum frequency of 2,014 Hz. Directly applying global

MOR with 564 modes and static enrichment to the FOM

leads to a high computation time for the frequency response

calculation (Table 4). The BMS based UCMORwith nϕI � 10 and

global MOR is over 2 times faster than the FOM with global

MOR, which is a similar speed-up as for the 5 × 5 UC LRM plate.

Instead, the GBMS based UC MOR with the same nϕI � 10, nϕA �
100 and global MOR is over 25 times faster than the FOM with

global MOR, which is more than twice the speed-up as compared

to the 5 × 5 UC LRMplate. These observations correspond well to

the results for the eigenmode computations in Section 4.2.2,

indicating that the GBMS UC MOR especially enables faster

computations due to a faster global modal MOR step.

Comparing the vibration responses for this 15 × 15 UC LRM

plate computed with the FOM, BMS and GBMS, all combined

with global MOR, good agreement is obtained (Figure 6A). For

this larger LRM plate, a more prominent vibration attenuation is

also observed around the predicted stop band. The relative errors

of the vibration response (Figure 6B), this time computed with

respect to the FOM with global MOR, lead to similar

observations as for the 5 × 5 UC plate: the BMS with global

MOR is more accurate than the GBMS with global MOR, except

around the stop band where the accuracy is comparable. The

considerably faster GBMS with global MOR leads to an overall

error of around 10−2 or lower, while the error in and around stop

band is about 10−3. As expected, somewhat higher errors again

occur for the GBMS at lower frequencies due to the nature of the

local UC boundary mode reduction.

4.4 Sound transmission loss

To demonstrate the fast STL computations by combining the

proposed MOR approach with the ERA, first the clamped finite

LRM plate composed of 5 × 5 UCs is again considered. The plate

is now excited by an oblique incident plane wave at angles θ = 60°,

ψ = 30° and the out-of-plane vibration response is computed for

FIGURE 5
Overview of the computation times for the forced vibration response calculations of the clamped finite LRM plate assembly of 5 × 5 UCs for the
FOM (A), BMS (B) and GBMS (C) based UC ROMs, all applying global MOR. The time ranges on the vertical axis differ per case for readability.

TABLE 4 Overview of FOM, BMS and GBMS UC based finite LRM plate model sizes for the clamped finite plate assembly of 15 × 15 UCs and total
computational times required to calculate the forced vibration responses of Figure 6.

DOFs DOFs
without global MOR

Total time

FOM + global MOR (nϕT = 564) 565 3,497,007 11,768.2 s

BMS (nϕI = 10) + global MOR (nϕT = 564) 565 153,282 5,447.5 s

GBMS (nϕI = 10, nϕA = 100) + global MOR (nϕT = 564) 565 46,182 460.8 s
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frequencies 20–1,000 Hz with a 5 Hz step. To obtain the STL, the

ERA is applied, subdividing the out-of-plane nodal velocity field

in a square grid of 10 × 10 square radiators with dimensions 1.5 ×

1.5 cm2. The latter corresponds to half the UC size in x- and y-

directions, and is twice smaller than one tenth of the acoustic

wavelength λa/10 = 3.4 cm at the maximum frequency of interest

of 1,000 Hz. Although a procedure was introduced in (Jung et al.,

2017) to optimize the amount of radiators depending on the

frequency range, a constant and relatively fine grid was

considered here for all frequencies.

For theMOR, the same settings as for the 5 × 5 UC LRMplate

in Section 4.3 are applied, with exception of the static

enrichment, since in this case the excitation is distributed and

frequency-dependent. The latter would also lead to a different

enrichment vector for each frequency, which would either result

in a too large reduction basis or an inefficient frequency-

dependent projection step. The STL results and corresponding

relative errors as compared to the FOM are shown in Figure 7,

while the model sizes and computation costs are summarized in

Table 5. As expected for LRM partitions with bending wave stop

bands (Van Belle et al., 2019), the STL shows a clear peak around

600 Hz, near the tuned resonator frequency, followed by a

characteristic STL dip. The low-frequency STL dip around

270 Hz, corresponding to the first bending mode of the

clamped plate, lies slightly below 0 dB, which is due to the

underlying Rayleigh integral approximation made in the ERA

in combination with the small sample size. However, despite its

uncoupled nature, overall the ERA enables a representative STL

prediction for the considered LRM plate configuration. As

observed in previous section for the vibration response

predictions, also the STL shows very good agreement between

all models. This is expected, since the difference in STL between

the models results from the difference in vibration responses

obtained with the different ROMS. The highest absolute

FIGURE 6
Forced vibration frequency responses (A) and relative error with respect to the FOM + global MOR (B) computed for the clamped finite plate
assembly of 15 × 15 UCs for different ROMs. The good agreement between the results causes the frequency responses (A) to appear on top of each
other.

FIGURE 7
STL results (A) and relative error with respect to the FOM (B) computed for the clamped finite plate assembly of 5 × 5 UCs for different ROMs.
The good agreement between the results causes the STL curves (A) to appear on top of each other.
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difference of each UC ROM based model is no larger than 0.6 dB

as compared to the FOM and 0.1 dB as compared to the FOM

with global MOR. The GBMS based ROMs are in good

agreement with the BMS, in particular in and round the stop

band frequency range of interest, but show slightly higher errors

away from the stop band. All ROMs show a relative error of about

10−2 or lower, with global MOR leading to a more outspoken

accuracy reduction as compared to the vibration response. The

latter might be attributed to the absence of static enrichment.

Combined with reported mean errors arising from the ERA

below 0.5 dB as compared to fully coupled vibro-acoustic FE

modeling (Jung et al., 2017), the current MOR approach hence

still enables accurate STL predictions.

Comparing the model sizes and computation times in Table 5, it

is again evident that the additional boundary reduction provided by

the GBMS based MOR provides a significant advantage over only

interior reduction in the case of BMS based MOR. In combination

with globalMOR, theGBMSbasedMORachieves a speed-up of over

a factor 3 as compared to the FOM with global MOR, and is over

2 times faster than BMS basedMORwith global MOR. As illustrated

inmore detail in Figure 8, the apparent slightly lower speed-up of the

GBMS and BMSwith globalMOR versus the FOMwith globalMOR

for these STL computations as compared to the earlier vibration

response computations is attributed to the fixed computation cost for

the sound power evaluation using ERA, which takes about 15 s for

this small 5 × 5 UC LRM plate. As no static enrichment is included

for the STL computations, the global MOR step which includes the

basis construction and the projection takes less time as compared to

the vibration response computations for the point force loading

(Figure 5). The simultaneous projection of asmany loading vectors as

frequencies, due to the frequency-dependency of the blocked

pressure field, does not come at a high computation cost. Using

the GBMS with global MOR, the cost of reducing and solving the

model becomes comparable to the low cost associated with the ERA,

which was already reported in detail in (Jung et al., 2017, Jung et al.,

2022), while obtaining accurate predictions.

As shown earlier for the concentrated point force excitation,

the acceleration of the STL predictions when using the GBMS

based MOR with global reduction as compared to the BMS with

global MOR and FOM with global MOR becomes even more

outspoken when considering a larger 15 × 15 UC LRM plate. The

STL is again computed for frequencies 20–1,000 Hz with a 5 Hz

step for the same oblique plane wave excitation as before, using

FOM with global MOR, BMS with global MOR and GBMS with

global MOR (Figure 9). The sameMOR settings as for the 15 × 15

UC LRM plate in Section 4.3 are applied, without static

TABLE 5 Overview of FOM, BMS and GBMS UC based finite LRM plate model sizes for the clamped finite plate assembly of 5 × 5 UCs and total
computational times required for the STL computations.

DOFs Total time

FOM 386,127 6,474.7 s

FOM + global MOR (nϕT = 59) 59 114.9 s

BMS (nϕI = 10) 14,602 1,865.8 s

BMS (nϕI = 10) + global MOR (nϕT = 59) 59 76.5 s

GBMS (nϕI = 10, nϕA = 100) 4,402 236.5 s

GBMS (nϕI = 10, nϕA = 100) + global MOR (nϕT = 59) 59 33.1 s

FIGURE 8
Overview of the computation times for the STL calculations of the clamped finite LRM plate assembly of 5 × 5 UCs for the FOM (A), BMS (B) and
GBMS (C) based UC ROMs, all applying global MOR. The time ranges on the vertical axis differ per case for readability.
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enrichment, and the relative error is computed against the STL

results of the FOM with global MOR.

As expected based on the vibration response predictions, good

agreement between the STL predictions of the different models is

also obtained. Due to the larger plate size, the stiffness region in the

STL is clearly shifted to lower frequencies, while the STL peak and

dip around the stop band aremore prominent. TheGBMS attains an

overall accuracy of around 10−2 and lower, with some exceptions at

low around globalmodes where the STL reaches values close to 0 dB.

At low frequencies, the approximation due to the local UC boundary

reduction of the GBMS again leads to somewhat higher errors. As

before, the BMS is overall more accurate than the GBMS, apart from

the stop band region. However, as shown in Table 6, for this larger

plate assembly, the GBMS provides a substantial speed-up as

compared to the BMS thanks to the additional UC boundary

reduction, which is again a higher gain as compared to the

smaller 5 × 5 UC LRM plate. For this 15 × 15 UC LRM plate,

the ERA based sound power evaluation step takes about 155 s.

Combined with the GBMS, fast and accurate STL predictions of

finite periodic LRM plates are hence possible.

It is noted that, although the GBMS with global MOR provides

an advantage as compared to BMS with global MOR or FOM with

global MOR for an increasing number of UCs in the finite plate

assembly, the UC ROM assembly as well as the required nϕT will also

further increase. Hence, for very large finite plate assemblies

composed of a large amount of UCs, further improvements of

the vibration response computation might be required.

5 Conclusion

In this paper, a Generalized Bloch Mode Synthesis based sub-

structuring approach was presented for fast forced vibro-acoustic

response computations of finite periodic locally resonant

metamaterial plates composed of periodically repeated, identical

unit cells and applied to a locally resonant metamaterial design.

Contrary to classical sub-structuring, the proposed method exploits

the periodicity at hand by only considering a single unit cell model.

By combining the structural unit cell assembly model with an

Elementary Radiator Approach, also the sound transmission loss

can be computed based on the forced vibration response for

distributed acoustic loading. Compared to a regular Craig-

Bampton based sub-structuring approach which only applies

interior modal reduction to the unit cell, as also applied in the

Bloch Mode Synthesis, the additional unit cell boundary modal

reduction based on the Generalized Bloch Mode Synthesis was

FIGURE 9
STL results (A) and relative error with respect to the FOM + global MOR (B) computed for the clamped finite plate assembly of 15 × 15 UCs for
different ROMs. The good agreement between the results causes the STL curves (A) to appear on top of each other.

TABLE 6 Overview of FOM, BMS and GBMS UC based finite LRM plate model sizes for the clamped finite plate assembly of 15 × 15 UCs and total
computational times required to calculate the STL results of Figure 9.

DOFs DOFs
without global MOR

Total time

FOM + global MOR (nϕT = 564) 564 3,497,007 11,493.4 s

BMS (nϕI = 10) + global MOR (nϕT = 564) 564 153,282 5,029.7 s

GBMS (nϕI = 10, nϕA = 100) + global MOR (nϕT = 564) 564 46,182 612.3 s
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shown to enable considerable additional system size and

computation time reduction for eigenmode computations and

forced vibro-acoustic response computations, with only limited

accuracy loss resulting from the uncoupled boundary modal

computation based on just a single unit cell. The fast

eigenmode computation on assembly level is particularly

interesting when performing the additional global modal

reduction for locally resonant metamaterials, due to the

accumulation of eigenmodes around the stop band which

requires a larger global modal basis. These unit cell based fast

vibro-acoustic forced response computations can next be

employed to accelerate the design and optimization of finite

periodic locally resonant metamaterial plates, while accounting

for their finite size and the boundary conditions.
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