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Within the context of immiscible biphasic flow in porous media, when the nonwetting fluid
invades the pore spaces which are a priori saturated with the wetting fluid, capillary forces
dominate if the pore network is formed by fine-grained soils. Owing to the cohesion-less
frictional behavior of such soils, a capillary force–driven fracturing phenomenon has been
put forward by some researchers. Unlike the purely mechanistic tensile force–driven
mode-I fracturing that typically has been attributed to the formation of desiccation cracks in
soils, attempts to model this alternate capillarity-driven mechanism have not yet been
realized at a continuum scale. However, the macro-scale counterpart of the capillary
energy associated with the various pore-scale menisci is well-established as the interfacial
energy characterized by the soil-water retention curve. An investigation of the possible
contribution of this interfacial energy in supplying the dissipation related to fracture initiation
is the essence of this work, inspired by the vast literature on gradient damage modeling.

Keywords: unsaturated porous media, capillarity, gradient damage modeling, localization, stability, drainage,
desiccation cracks

1 INTRODUCTION

How can mode-I fractures initiate on the surface of saturated granular geomaterials which are under
compressive effective stress states when subjected to forced drainage or drying boundary conditions?
This question has been intriguing some researchers for the last decade especially in the light of the
prevailing assessment that in homogeneous desiccating soils, macroscopic surface cracks can appear
only in the presence of tensile stresses induced by zero displacement boundary conditions or by
moisture gradients through the thickness of the sample capable of inducing nontrivial stress
concentration, see for example Peron et al. (2009); Cordero et al. (2021). Indeed, following Shin
and Santamarina (2010, 2011), a different mechanism can be invoked to explain opening-like
fractures appearing at the drained/drying surface of uncemented granular materials, which is
compatible with their fundamental behavior to exhibit a cohesive state only under compressive
effective stresses. In this case, fracturing is hypothesized to be caused by the forced invasion of the
pore network by either immiscible or miscible fluids. In the study by Shin and Santamarina (2010)
water-saturated slurry of clay in a cylindrical chamber was subjected to pressure by a superposed
immiscible nonwetting fluid (oil). This is a scenario which unambiguously generates compressive
effective stresses within the confined sample with the ratio of horizontal to vertical effective stresses
less than 1, which is typical of granular media. Drainage was initiated by opening a port below the
sample. Following an initial settlement of the sediment, mode-I fracture initiation was observed at
sub-millimeter defects on the invasion surface, and these fractures propagated vertically downward
and laterally within a plane normal to the minor principal effective stress. This definitely cannot be
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explained through a tensile stress–drivenmechanism. In Shin and
Santamarina (2010, 2011), it has been hypothesized that such
fracture initiation and the initiation of pattern-forming surface
fractures typical to desiccating soils are due to capillary pressure
overwhelming the maximum pressure that a granular material
can resist before a new fluid–fluid interface is formed. In a more
recent publication, Cordero et al. (2017), the effects of suction and
compressibility of the overall granular material on desiccation
fracture formation have been discussed. A similar configuration
has also been investigated using the Discrete Element Method by
Jain and Juanes (2009); in this case, however, a local condition for
fracture opening has been identified, on the basis of classical
fracture mechanics, requiring the gas pressure to exceed the
minimum compressive stress.

Looking at the macroscopic modeling of such behavior of
granular geomaterials, few contributions can be retrieved from
the literature assuming brittle fracture to be allowed under tensile
stresses and shear stresses. We refer among others to Peron et al.
(2013) and to those approaches that even model the fracture
nucleation/propagation, for instance, the phase-field approaches
proposed by Choo and Sun (2018); Cajuhi et al. (2018) and
references therein. However, these approaches are not adapted to
model the triggering of opening-like fractures under purely
compressive effective stresses on the surface of saturated
granular materials when subjected to forced drainage or
drying boundary conditions. This is the reason why a new
phase-field model is proposed here, which assumes the micro-
scale grain reorganization to not affect the macroscopic stiffness
of the material but its retention properties, hence allowing for the
characterization of a damage criterion comparing a given
threshold with the released capillary energy rather than with
the elastic one. On the other hand, it is to be noted that rock-like
geomaterials are known (Zhou, 2005, 2006; Zhou et al., 2008;
Spetz et al., 2021) to exhibit, under overall compressive loading, a
dilatation of pre-existing defects leading to their further opening-
mode propagation. However, the current work is neither
intended to describe such materials/geometry nor such loading
scenarios.

This work is organized as follows. The proposed approach is
presented in Section 2. Section 3 is devoted to presenting the
numerical algorithm implementing the aforementioned phase-
field approach, while in Section 4, the desiccation problem is
formulated and solved, discussing the stability of damage profiles
and their capability to induce damage localization. Conclusions
and perspectives are briefly drawn in Section 5.

2 MATHEMATICAL MODEL

2.1 A Damaged Porous Solid
The partially saturated porousmedium is described here adopting
the classical approach of continuum poromechanics as presented
by Coussy (2004), to which we refer for a detailed presentation;
the notation used hereafter is consistent with that of the
aforementioned reference. According to this classical approach
to partial saturation, a porous solid is understood as a so-called
‘wetted’ porous skeleton with a thin layer of fluid attached to the

pore walls, and thus a contribution to the stored energy of the
porous solid is attributed to the fluid–fluid and solid–fluid
interfaces. This interfacial energy density is obtained as the
cumulative work carried out by a macroscopic capillary
pressure difference between the wetting and the nonwetting
fluids in modifying the relative fluid volume fractions within
the pores.

Now, the formation of a fracture due to grain/pore
reorganization, as hypothesized by Shin and Santamarina
(2010, 2011), results in a discontinuity of the porous material.
This “absence” of porous material within a fracture would mean,
locally, a complete loss of retention property toward the wetting
fluid and thus a loss of the ability of the porous medium to store
interfacial energy. In the current study, a scalar damage variable,
α, is introduced in order to describe the effects of grain/pore
reorganization within the porous solid, in the regime of
compressive effective stresses, as briefly discussed in the
Introduction. Damage is thus assumed to induce a reduction
in the air-entry pressure and in general to degrade the retention
properties of the porous medium, which is equivalent to a
reduction of the cumulative interfacial energy stored.

Accordingly, the degraded retention relation between the
saturation degree of the wetting fluid, Sw, and the degraded
macroscopic capillary pressure, pc, reads,

pc Sw, α( ) � a α( ) ~pc Sw( ) ≈ − a α( ) ~pw Sw( ) � −pw Sw, α( ), (1)
where a(α) is a damage law whose functional form is elaborated at
a later point. pw is the pore-pressure of the wetting fluid in a
degraded porous solid, and ~pw its nondegraded counterpart.
~pc(Sw) represents the standard retention relation, unaffected
by damage. In the current study, the widely used van
Genuchten form (van Genuchten, 1980),

~pc Sw( ) � ρwg

αvG
S

n
1−n
w − 1( )1n, (2)

is assumed where, αvG and n are the model parameters, g is the
acceleration due to gravity, and ρw is the mass density of liquid
water. It is to be noted that residual saturation is assumed to be
vanishing for simplicity but its incorporation is trivial.

Also, the assumptions leading to Richards’ equation (Hilfer
and Steinle, 2014) are adopted, in particular the hypothesis of a
passive non-wetting phase is assumed, leading to pc ≈ −pw in Eq.
1. While the above development serves as a reasonable first
assumption for investigation, a complete modeling approach
should also involve the degradation of the resistance to fluid
flow within the damaged zone and eventually along localized
fracture planes. With the abovementioned assumptions, the
transient hydraulic problem governing the evolution of pore-
pressure, pw, within the porous solid is written as,

z ϕSw( )
zt

− 8

ηw
∇ · Krw pw( ) ∇pw( )[ ] � 0, (3)

where the intrinsic permeability ϰ is assumed to be independent
of α and ηw is the dynamic viscosity of water. Since ϰ is expected
to increase, in orders of magnitude, within a fracture, we make a
rather simplifying assumption on the relative permeability
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function, Krw(pw) = 1 to in part compensate for the lack of the
aforementioned coupling. It is to be noted that since the primary
unknown factor in the aforementioned equation is the pore-
pressure, Sw can then be derived from it using the degraded
inverse retention relation,

Sw pw, α( ) � ~pc
−1 −pw

a α( )( ). (4)

Appropriate boundary conditions compliment the
aforementioned partial differential equation (PDE) which
could be either an imposed flux representing a natural
boundary condition or an imposed pressure representing a
Dirichlet boundary condition.

We consider an nd-dimensional domain, Ω ∈ Rnd ,
representing the initial configuration of a damaging isotropic
partially saturated porous solid whose boundary is denoted by
zΩ. In line with standard gradient damage modeling (Marigo
et al., 2016) and the theory of unsaturated poroelasticity, the
following considerations are carried out.

1) The scalar internal variable, α ∈ [0, 1], is assigned the role of
describing the extent of damage in the sense of loss of
retention properties. α = 0 denotes an intact healthy
skeleton whose retention properties are described by the
standard retention curve, whereas α = 1 denotes a fully
damaged skeleton whose retention properties are degraded
and can only hold vanishing or residual amounts of
wetting fluid.

2) For a given unit volume of porous solid in its reference
configuration, the bulk energy density, W, accounting for
the internal energy and the dissipation due to material
degradation, is a state function characterized by zΩ (ε, ϕ,
Sw, α, ∇α), respectively, the linearized strain tensor, the
Lagrangian porosity, the saturation degree of the wetting
fluid, the damage variable, and the damage gradient vector
field.

3) In a similar way as the construction of the standard gradient
damage model (Marigo et al., 2016) for the solid continuum,
the porous solid is assumed to be dissipative in a nonlocal
sense due to the dependency of the bulk energy density on the
gradient of damage. The particular expression of the bulk
energy density is assumed to be

W ε, ϕ, Sw, α,∇α( ) � Ψs ε, ϕ, Sw, α( ) + w α( ) + 1
2
w1ℓ

2∇α · ∇α. (5)

The different terms of the aforementioned expression are
explained below.

a) The energy density of the porous solid, Ψs(ε, ϕ, Sw, α),
encompasses the contributions due to the deformation of
the porous skeleton, resulting in solid strains and changes
in porosity and, also, the interfacial energy contribution
due to formation/annihilation of interfaces. Adopting the
concept of energy separation (Coussy, 2004) between the
free energy of the porous skeleton and the interfacial energy
we obtain,

Ψs ε, ϕ, Sw, α( ) � ψs ε, ϕ( ) + ϕ U Sw, α( ). (6)
Here, a specific choice is made that would result in the

aforementioned postulate that damage means the degradation
of only the retention properties and not the poroelastic
properties. The latter would have been the choice for
modeling tensile mode fracture as carried out, for instance, by
Cajuhi et al. (2018). The choice made here allows to isolate the
investigation of fracture formation just due to the ‘release’ of
interfacial energy. Specifically, we assume a degradation of the
form,

U Sw, α( ) � a α( ) ~U Sw( ), (7)
consistent with the definition of the degraded capillary pressure
in Eq. 1. In Figure 1, the two functions pc(Sw, α) and U(Sw, α) are
depicted with the assumed degradation behavior. ~U(Sw)
represents the undamaged interfacial energy given by,

~U Sw( ) � ∫1

Sw

~pc s( )ds. (8)

While various choices of the functional form of a(α) are
possible, we make a specific choice following the standard
gradient damage modeling,

a α( ) � 1 − α( )2 + kℓ , (9)
where kℓ is a small positive constant used solely for numerical
purposes to govern the fully damaged state. Accordingly, when α
grows from 0 to 1, the interfacial energy density degrades to a
vanishing value. The consequence on the damage evolution due
to the abovementioned choices is discussed further.

Now concerning the free energy density of the skeleton, a
possible form that retrieves back the classical Biot’s linear
constitutive relations as its state equations reads as,

ψs ε, ϕ( ) � 1
2
C

0 ε − ε0( ) · ε − ε0( ) + 1
2
b2N ϵ − ϵ0( )2

− Δϕ bN ϵ − ϵ0( ) − pp
0( ) + 1

2
NΔϕ2, (10)

where the notations are borrowed from Coussy (2004). C0 is the
elastic stiffness tensor, b the Biot coefficient, and N the tangent
Biot modulus. Δϕ represents the increment of Lagrangian
porosity, (ϕ − ϕ0). ϕ0, ε0, and pp

0 denote the initial reference
states of the Lagrangian porosity, the linearized strain tensor, and
the average pore-pressure, respectively.

b) The second term in Eq. 5 is the local part of the dissipated
energy,

w α( ) � w1α, (11)
growing from 0 when α = 0, to a positive constant w1 < +∞ when
α = 1. In accordance with the developments in the study by Pham
et al. (2011a), since w′(α) > 0, there exists an elastic phase
preceding damage initiation and the finiteness of w1 ensures
that the energy dissipated during a homogeneous evolution of α
from 0 to 1 is as well finite. However, w1 is not related to fracture
toughness in the classical sense. Rather, it is to be viewed as
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related to a threshold beyond which the grains that form the
skeleton start to ‘slip’ at their contacts, thus characterizing a
dissipative phenomenon that accompanies the release of built-up
interfacial energy and the creation of a new fluid–fluid interface.

c) The last term in Eq. 5 is the nonlocal dissipation, which is
assumed to be a quadratic function of the gradient of α and is
intended for regularization allowing localizations of finite
thickness. ℓ appears with the physical dimension of a
length that in the context of gradient damage modeling is
intended to control the localization thickness.

d) The dual relations associated with the state variables in Eq. 5
are obtained as follows,

zW

zε
� C

0 ε − ε0( ) + bN b ϵ − ϵ0( ) − Δϕ( )I,
zW

zϕ
� −bN ϵ − ϵ0( ) + pp

0 +NΔϕ + U Sw, α( ),

zW

zSw
� ϕ

zU

zSw
Sw, α( ),

zW

zα
� ϕa′ α( ) ~U Sw( ) + w′ α( ),

zW

z ∇α( ) � w1ℓ
2∇α. (12)

2.2 Evolution Problem
Now, we pose the evolution problem for the solution triplet (u, ϕ,
α) of the poromechanical damage problem using a variational
approach similar to the developments in the studies by Pham and
Marigo (2010a, 2010b). The principles governing the evolution
are elaborated for the current problem concerning the
porous solid.

The variational approach is based on the definition of a
suitable total energy of the body under consideration (i.e., the
porous solid), that is associated with the triplet of admissible
states (v,φ, β) ∈ C × P × D. These functional spaces are
defined as,

C � v ∈ H1 Ω( )nd : v � 0 on zΩD{ },
P � φ ∈ L2 Ω( ): 0<φ< 1 in Ω{ },
D � β ∈ H1 Ω( ): 0≤ β< 1 in Ω{ }, (13)

where L2(Ω) is the Lebesgue space of square-integrable
functions equipped with an L2-norm and H1(Ω) is the
Sobolev space of square-integrable functions whose weak
gradients are also also square-integrable. zΩD is a subset of
zΩ where displacement, u, is imposed.

This definition of total energy at each time t is given as the
integral over the whole domain of the bulk energy density minus
the potential of external forces,

Et v,φ, β( ) � ∫
Ω
Wt v,φ, β,∇β; St( ) dx −We

t . (14)

FIGURE 1 | Proposed degradation of the retention properties with evolution of damage depicted for material properties taken from Table 1, (A) macroscopic
capillary pressure, pc(Sw, α), in Eq. 1, (B) interfacial energy density, U(Sw, α), in Eq. 7.
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Since the focus here is on the porous solid, the external loading
concerns not only bulk forces and tractions exerted on the solid
skeleton, which in this case are assumed to vanish for the sake of
simplicity, but also zeroth-order bulk actions tending to modify
from inside the porosity of the solid. This time-dependent bulk
action is obviously related to the presence of fluids in the porous
network and is, therefore, coupled with the solution of the
hydraulic problem, governed by Eq. 3. In a similar way as in
the case of fully saturated porousmaterials, working this action of the
change of Lagrangian porosity, it will coincide with the average pore-
pressure, pp

t � ptSt + pnwSnw, for all t > 0. Pore pressure, pw, and
saturation degree, Sw, of the wetting fluid at time t are further denoted
pt and St, respectively, in order not to overload the notation. The
assumption of a passive nonwetting phase leads to
pp
t (St, αt) ≈ ptSt. It is to be noted that the dependence of pp

t
on damage is due to the coupling of the fluid problem to the
damage evolution within the domain. This contribution to the
potential due to external efforts defined on the set of
admissible porosity fields, φ ∈ P, reads,

We

t φ( ) � ∫
Ω
pp
tφ dx. (15)

Remark: We assume that all the fields are sufficiently smooth
in time, allowing for the following developments. Also, we
consider only the states of damage where α < 1 and the
saturation degree Sw > 0. This is done so that in the following
analysis, the total energy remains finite.

Now, we are in a position to setup the principles of the
variational approach for the evolution in Ω of
(ut, ϕt, αt) ∈ C × P × D for all t ≥ 0 which read:

1) Irreversibility of damage: t↦αt must be nondecreasing.
Consequently, the admissible states accessible from αt
belong to the space Dt defined as,

Dt � β ∈ H1 Ω( ): αt ≤ β< 1 in Ω{ }. (16)

2) Stability: The state (ut, ϕt, αt) must be directionally stable in
the sense that for all (v,φ, β) ∈ C × P × Dt, there exists �h> 0,
such that,

∀h ∈ 0, �h[ ], Et ut + h v − ut( ), ϕt + h φ − ϕt( ), αt + h β − αt( )( )
≥ Et ut, ϕt, αt( ). (17)

3) Energy balance: During the evolution t↦(ut, ϕt, αt), the
following energy balance must hold,

Et ut, ϕt, αt( ) � E0 u0, ϕ0, α0( ) − ∫t

0
∫

Ω
ϕs

zπ

zSs
_Ss dx ds, (18)

where the classical definition of equivalent pore-pressure is
adapted to the current context,
π(St, αt) � pp

t (St, αt) − U(St, αt), and (u0, ϕ0, α0) denotes the
state of the skeleton at time t = 0. At any time 0 ≤ s ≤ t, the
second term on the left-hand side of Eq. 18 accounts for the time
parametrization of the total energy through its dependency on St.

2.3 First-Order Stability and Necessary
Conditions
Equilibrium equation and damage criterion can be obtained as
first-order stability conditions starting from Eq. 17. In addition,
since the solution now involves ϕt, an associated zeroth-order
balance equation is expected to appear.

We start again by expanding the perturbed energy up to the
second-order,

hEt′ ut, ϕt, αt( ) v − ut,φ − ϕt, β − αt( )
+ h2

2
Et″ ut, ϕt, αt( ) v − ut,φ − ϕt, β − αt( )2 + o h2( )≥ 0. (19)

Et′ and Et′′ represent, respectively, the first and second directional
derivatives of Et further referred to as FDD and SDD, respectively,
for compactness. The representation Et′′(ut, ϕt, αt)(·)2 is to be
understood as a shorthand for the quadratic form, whereas the
associated symmetric bilinear form is represented Et′′(ut, ϕt, αt)〈·, ·〉
that is, the application of Et′′(ut, ϕt, αt) to the pair of directions 〈·, ·〉.
The directional derivatives in Eq. 19 have the following forms in the
general direction (v̂, φ̂, β̂),
Et′ ut, ϕt, αt( ) v̂, φ̂, β̂( ) � ∫

Ω

zWt

zε
· ε v̂( ) + zWt

zϕ
−pp

t( )φ̂{
+ zWt

zα
− pp

t ′ϕt( )β̂ + zWt

z ∇α( ) · ∇β̂}dx, (20)
Et″ ut,ϕt, αt( ) v̂, φ̂, β̂( )2 � ∫

Ω

C
0ε v̂( ) · ε v̂( ) +N bϵ v̂( ) − φ̂( )2{

−ϕtπt″β̂
2− 2πt′φ̂β̂ + w1ℓ

2∇β̂ · ∇β̂}dx, (21)

where for the sake of compactness of the notation, we denoted the
directions (v − ut, φ − ϕt, β − αt) with (v̂, φ̂, β̂) and define their
associated function spaces as C × P̂ × D with,

P̂ � φ̂ ∈ H1 Ω( ): − 1< φ̂< 1 in Ω{ }. (22)
In Eq. 20, the partial derivatives of bulk energy density are

functions of state (ut, ϕt, αt) given by Eq. 12.
Dividing Eq. 19 by h and passing to the limit h → 0 gives,

Et′ ut, ϕt, αt( ) v − ut,φ − ϕt, β − αt( )≥ 0, (23)
which is the so-called first-order stability condition and can be
viewed as characterizing stationarity of the state (ut,ϕt, αt). InEq. 23,
testing with φ = ϕt and β = αt and noting that C is a linear space, one
can obtain the variational (weak) form of the classical equilibrium
condition:

∫
Ω

zWt

zε
· ε v − ut( )dx � 0, ∀ v − ut( ) ∈ C, (24)

where a stress tensor can obviously be identified as,

σt � zWt

zε
� C

0 εt − ε0( ) + bN b ϵt − ϵ0( ) − Δϕt( )I. (25)

Similarly, testing with v = ut and β = αt in Eq. 23, one obtains the
zeroth-order balance equation associated with small variations in ϕt,

Frontiers in Mechanical Engineering | www.frontiersin.org October 2022 | Volume 8 | Article 8695685

Ommi et al. Drainage Driven Damage in Granular Geomaterials

https://www.frontiersin.org/journals/mechanical-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering#articles


∫
Ω

zWt

zϕ
− pp

t( ) φ − ϕt( )dx � 0, ∀ φ ∈ P, (26)

Finally, using Eq. 24 and Eq. 26 in Eq. 23 gives the variational
form of the non-local damage criterion

∫
Ω

zWt

zα
− pp

t ′ϕt( ) β − αt( ){
+ zWt

z ∇α( ) · ∇ β − αt( )}dx≥ 0, ∀ β ∈ Dt (27)

Using classical localization arguments of calculus of variations,
one can obtain fromEq. 24 andEq. 26 andEq. 27 the following local
forms, respectively, with corresponding boundary conditions,

∇ · σt � 0 inΩ, σt · n̂ � 0 on zΩ\zΩD, (28)
−bN ϵt − ϵ0( ) + pp

0 +NΔϕt + U αt; St( ) � pp
t inΩ, (29)

−πt′ϕt + w′ αt( ) − w1ℓ
2Δαt ≥ 0 inΩ, zαt

zn̂
≥ 0 on zΩ, (30)

where n̂ denotes the outward unit normal vector associated with
part of the boundary wherever invoked. Note the absence of
surface and volume forces in the equilibrium equation according
to earlier assumption.

Equation 29 is the local form of the zeroth-order balance
law associated with variations in porosity. Rearranging it,
one can identify the relation which in classical
poromechanics is characterized as the constitutive relation
for porosity,

ϕt � b ϵt − ϵ0( ) + 1
N

pp
t − pp

0( ) − U αt; St( )[ ] + ϕ0. (31)

Remark: The aforementioned formulation results in an
equivalent equilibrium equation to be resolved in tandem
with the zeroth-order balance law for variations in porosity.
This can be seen by substituting Eq. 31 into the equilibrium
equation, Eq. 28, giving,

∇ · C
0 ε − ε0( ) − b pp

t − pp
0( ) − U αt; St( )[ ]I( ) � 0 inΩ. (32)

In the abovementioned formula, the classical stress tensor for
unsaturated poroelasticity can be identified as,

σt � C
0 εt − ε0( ) − b pp

t − pp
0( ) − U αt; St( )[ ]I. (33)

This equivalence between the formulations is exploited further
for the purpose of numerical approximation.

Since we have assumed that the evolution is smooth in time,
taking a time derivative of the Energy balance leads to,

0 � d

dt
Et ut, ϕt, αt( ) + ∫

Ω

ϕt

zπt

zSt
_St dx

� ∫
Ω

zWt

zε
· ε _ut( ) + zWt

zϕ
− pp

t( ) _ϕt{
+ zWt

zα
− pp

t ′ϕt( ) _αt + zWt

z ∇α( ) · ∇ _αt}dx. (34)

Integrating by parts the gradient terms and further using the
local form of the equilibrium equations Eq. 28 and the zeroth-
order balance law, Eq. 29 gives,

0 � ∫
Ω

zWt

zα
− pp

0′ϕt − ∇ · zWt

z ∇α( )( ){ } _αtdx

+ ∫
zΩ

zWt

z ∇α( ) · n̂( ) _αtdx. (35)

Owing to the irreversibility of damage everywhere in Ω and
the local inequalities Eq. 30, the two integrals on the right-hand
side of the abovementioned equation are positive or equal to zero.
So, both of them should vanish. Further using classical
localization arguments, we obtain the so-called consistency
conditions or the Karush–Kuhn–Tucker (KKT) conditions
applicable everywhere inΩ and on the boundary zΩ respectively,

−πt′ϕt + w′ αt( ) − w1ℓ
2Δαt( ) _αt � 0 inΩ,
zαt
zn̂

_αt � 0 on zΩ. (36)

These conditions can be read in tandem with the Irreversibility
of damage. The first condition states that everywhere in Ω, the
damage increases only if the local form of the damage criterion
Eq. 30 is an equality, and if it is a strict inequality, then damage
does not increase. The second condition states that everywhere on
the boundary zΩ, if damage increases then the spatial derivative
normal to the boundary vanishes.

3 NUMERICAL APPROXIMATION AND
ALGORITHM

Adopting a similar approach to that extensively used for the
standard gradient damage modeling, see Bourdin et al. (2000); an
alternate minimization algorithm is proposed to solve the
nonconvex minimization problem of the regularized energy
functional, considering that when minimized separately for u,
ϕ, and α, the individual minimization problems are convex.

If one assumes an absence of damage modeling, numerical
approximation of the poromechanical problem can be carried out
using the finite element method and resolving in tandem the
equilibrium equation, Eq. 24, and the zeroth-order balance law
for variations in porosity, Eq. 29, in their variational forms
subject to prescribed boundary conditions. As per the earlier
remark, here, we exploit the equivalence between the
aforementioned formulation and the classical equilibrium
equation of unsaturated poroelasticity. Specifically, we resolve
the latter for the poromechanical part of the problem. For the
transient hydraulic problem, on the other hand, we resolve the
mixed-head form of the governing equation for pore-water
pressure, Eq. 3, with Eq. 4. In the presence of damage, which
is the current context, the damage problem is resolved by the
minimization of the total energy under the unilateral constraint of
the irreversibility of damage.
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Given the solution triplet (un−1, pn−1, αn−1) of the solid and
fluid problems at time-step (n − 1), Algorithm 1 describes the
alternating algorithm to obtain the solution at time-step n. Spatial
discretization is carried out using linear Lagrange finite elements
for approximating p, α, and quadratic elements for u. The time
derivative within Eq. 3 for the hydraulic problem is discretized
using the implicit Euler scheme of first-order. The coupled
problem for solid displacement and fluid pressure, (uin, pi

n), at
each alternate iteration is solved using Newton iterations and a
sparse LU decomposition routine, available in the FEniCS suite
(Alnaes et al., 2015), to solve the linearized systems. The
minimization problem for damage within each alternate
iteration is posed as,

αin � arg min
α

En ui
n, ϕ

i
n, α( ) | αn−1 ≤ α≤ 1 inΩ, (37)

where the unilateral constraint αn−1 ≤ α ≤ 1 is the time-discrete
version of the irreversibility of damage. Numerically, we solve this
minimization problem using a bound-constrained optimization
solver routine available as part of the TAO library (Balay et al.,
2021). The convergence criterion of the alternating algorithm, at
each iteration i, is the comparison against a tolerance, the ℓ

2-
norm of the difference between the damage solutions of
successive iterations, ‖(αin − αi−1n )‖.

Algorithm 1. Alternating algorithm for the capillary damage model

4 TWO-DIMENSIONAL DESICCATION
PROBLEM

The abovementioned modeling approach is now applied to study
the desiccation of soils. As already mentioned in the Introduction,
this test case comes from the various desiccation experiments that
can be found in the literature, Peron et al. (2009); Shin and
Santamarina (2010, 2011); Stirling (2014) to name a few. Typical
desiccation experiments are carried out by subjecting a certain
mass of fully saturated soil to air-drying under controlled
temperature and relative humidity. For numerical purposes,
the flux on the drying face/s is estimated (Stirling, 2014) using
the discharge rate that is calculated from experimental
measurements of mass loss of water.

Furthermore, we consider a plane-strain assumption owing to
the transverse dimension of the samples in all the experiments
being larger than the vertical depth. This assumption does not
drastically affect the aforementioned developments. Specifically,
the in-plane stress components can still be obtained from the
relation Eq. 33 with the definition of stiffness tensor in index
notation,

C
0
ijkl � λδijδkl + μ δikδjl + δilδjk( ), i, j, k, l ∈ 1, 2{ }. (38)

λ and μ are, respectively, the first and second Lamé
parameters that are related to Young’s modulus, E, and
Poisson’s ratio, ], of the empty porous skeleton. So, the
boundary value problem formed by the coupled system of
equations Eq. 3, Eq. 32, and the bound-constrained
minimization with respect to α, Eq. 37, are resolved with
appropriately defined boundary and initial conditions as
laid out further in Section 4.1 and following the algorithm
described in Algorithm 1. The material properties of the
porous medium and the parameters of the model chosen for
the purpose of the simulations are listed in Table 1, which are
in the range typical of silica sands saturated with an air–water
mixture.

During the experiments in the aforementioned literature,
two stages were observed in the drying process. The first stage
involves large irreversible deformations with the degree of
saturation close to 1 and the second stage involves a noticeable
decrease in the saturation degree and with smaller
deformations. Fracture initiation usually was associated with
the sample close to full saturation and the air–water interface
coinciding with the apparent soil surface. In the current
modeling context, damage initiation is associated with the
threshold, w1, appearing within the local dissipation
contribution, Eq. 11, to the bulk energy density and this, as
mentioned earlier, is understood as not directly related to
fracture toughness of the material but to the creation of a new
fluid–fluid interface within the porous medium. Nevertheless,
w1 is a parameter that depends on the material and boundary
conditions. For instance, Holtzman et al. (2012) have shown
experimentally that fracturing is the preferred mode of
invasion of air into water-saturated granular media when
the confining stress is lower. So, this threshold can only be
characterized through experimental observation of fracture
initiation, viewed as a localization of the damage variable
within the model. For the purpose of the current
investigation, various values of w1 are tested that either
initiate damage or not, and in the former case, the
possibility of localization is studied.

4.1 Problem Setup
The reference initial configuration is a rectangular domainΩ = (0,
L) × (0,H) as shown in the Figure 2 with the boundary zΩ = {(x1
= 0) ∪ (x1 = L) ∪ (x2 = 0) ∪ (x2 = H)}. At time t = 0, it is assumed
that the porous solid is completely intact, stress-free, and fully
saturated giving,
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α0 x( ) � 0, u0 x( ) � 0, ε0 x( ) � 0, S0 x( ) � 1, p0 x( ) � 0.

(39)
x ∈ Ω is the position vector given by x = x1e1 + x2e2. The
horizontal and vertical displacements are set to vanish,
respectively, on the lateral (x1 = 0, x1 = L) and the bottom (x2
= H) faces along with the shear stresses at those boundaries. The
top face at x2 = 0 is a free surface. These set of mechanical
boundary conditions ∀t ≥ 0 read,

ut · −e1( )| x1�0( ) � 0, ut · e1
∣∣∣∣ x1�L( ) � 0, ut · e2

∣∣∣∣ x2�H( ) � 0,

e2 · σt · −e1( )∣∣∣∣ x1�0( ) � 0, e2 · σt · e1
∣∣∣∣ x1�L( ) � 0,

σt · −e2( )∣∣∣∣ x2�0( ) � 0, e1 · σt · e2
∣∣∣∣ x2�H( ) � 0.

(40)

Damage is not prescribed and is free to evolve at all the
boundaries whenever the damage criterion is met. Accordingly,
the natural boundary condition on damage reads,

zαt
zn̂

∣∣∣∣∣∣∣∣∣x∈zΩ � 0 ∀t≥ 0. (41)

For the hydraulic problem, the lateral and bottom faces are set
to be impermeable. The loading is carried out by a constant
imposed outward flux, − qfe2, on the top face, thus inducing a
drying effect. While the drying flux measured using the discharge
rates in Stirling (2014) is found to be a function of time, we choose
to make a simplifying assumption of constant flux. These
boundary conditions ∀t ≥ 0 read,

∇pt · −e1( )∣∣∣∣ x1�0( ) � 0, ∇pt · e1
∣∣∣∣ x1�L( ) � 0,

− ϰ
ηw

Krw pt( )∇pt( ) · −e2( )
∣∣∣∣∣∣ x2�0( ) � qf, ∇pt · e2

∣∣∣∣∣ x2�H( ) � 0.

(42)

4.2 One-Dimensional Base Solutions
It can be seen from the problem setup that the geometry, material
properties, and initial conditions are invariant along the
x1-direction. The loading and boundary conditions on the top
and bottom faces are as well-invariant along the x1-direction. The
boundary conditions on the lateral faces demand vanishing
gradients of the solution along the x1-direction. So, even
though the problem does not render itself for obtaining an
easy exact solution due to its nonlinearity, one can a priori
anticipate the existence of a particular class of solutions that
are homogeneous in the x1-direction and are dependent only on
x2. Such solutions are termed here as base solutions. In fact, to
obtain the base solutions, one just needs to solve the problem in
one-dimension along the x2-direction with appropriate
boundary conditions, instead of the full two-dimensional
problem posed earlier. This is the purpose that is
explained in this section. Rigorous mathematical proof of
the existence and uniqueness of such base solutions for all
times is out of the scope of the current work. Instead, we
exhibit numerically these solutions for t > 0.

The domain of the one-dimensional problem is defined ~Ω �
(0, H) along the x2-coordinate, with boundary
z~Ω � {(x2 � 0) ∪ (x2 � H)}. The initial and boundary
conditions from Section 4.1 are adapted to this domain.
While studying the influence of depth H could be interesting,
we choose a depth such that H ≫ ℓ.

In view of the damage criterion, Eq. 30, with the definition of
average pore-pressure, pp

t (St, αt) � pt(St, αt) St, the solution
states can be classified into two: undamaged (αt � 0 ∀x2 ∈ ~Ω)
and damaged (∃x2 ∈ ~Ω | αt > 0). Since the initial state at t = 0 is
assumed to be that of a uniformly intact solid, damage would
initiate if the following local damage criterion is an equality.

ϕtU′ αt; St( ) − pt′ Stϕt + w′ αt( )≥ 0 in ~Ω, (43)
where Eq. 1 gives −pt′ � pc′(St, αt) � a′(αt) ~pc(St) and Eq. 7
gives U′(αt; St) � a′(αt) ~U(St). In Eq. 43, the terms that drive
the damage evolution are first and second. Now for αt = 0,
a′(αt) = −2, and for 0 < St < 1, ~U(St)> 0 and ~pc(St)> 0. Since
ϕt ∈ P, the first driving term is negative, whose magnitude
increases with decreasing St and conversely with increasing αt.
With a similar reasoning also, the second term is negative. The

TABLE 1 | Material properties and model parameters used throughout the article unless mentioned otherwise.

Property ϕ E ν b N 8 ηw ρw αvG n g

[ − ] [Pa] [ − ] [ − ] [Pa] [m2] [Pa.s] [kg.m−3] [m−1] [ − ] [m.s2]

value 0.3 1.3E06 0.4 0.9 1.81E07 1.0E − 12 8.9E − 04 1.0E03 3.52 3.17 10

FIGURE 2 | Reference configuration of the desiccation problem.
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FIGURE 3 | Evolution of the one-dimensional base solution and functions of the solution within the full computational domain, ~Ω � (0,1m), for w1 = 1000N.m−3.

FIGURE 4 | Evolution in Figure 3 shown within a restricted computational domain, ~Ω � (0, 0.05m), close to the drying boundary for clarity.
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FIGURE 5 | Path followed by the solution in the space (St, pt) at the boundary x2 = 0m and two locations within the domain close to this boundary for values ofw1 (A)
2000 N.m−3 (B) 1000 N.m−3, (C) 500 N.m−3, and (D) 100 N.m−3. The dashed line represents the standard non-degraded retention curve.

FIGURE 6 | Evolution of damage for values of w1 (A) 2000 N.m−3, (B) 1000 N.m−3, (C) 500 N.m−3, and (D) 100 N.m−3.
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third term is a positive constant, w′(αt) = w1, acting as the
threshold for damage initiation. Owing to the drying flux
applied at x2 = 0, the saturation degree is the lowest here.
Thus, one can anticipate that starting from a uniformly
undamaged state, the damage initiates at x2 = 0 within a
finite depth and propagates into the domain driven by
desaturation. However, at initial times, since a minimum
amount of capillary energy needs to be stored before
damage initiation according to Eq. 43, the saturation degree
everywhere in the domain could be such that the damage
criterion is a strict inequality and damage does not initiate at
all. So, one can envisage a finite time td > 0 beyond which the
damage criterion is an equality at the drying boundary and so
damage initiates. All the solution states for t ≥ td are called the
damaged states, and this td depends on the intensity of the
drying flux for a given material.

Figures 3, 4 show the time evolution of the solution and
functions of the solution, with H = 1.0m, qf = 10m.s−1, and w1 =
1000N.m−3. The material properties correspond to sand and the
fluid combination to air–water. It can be seen that initially,
damage does not evolve anywhere in the domain even though
flux-induced desaturation initiates at x2 = 0 and progresses into
the domain. During this stage of evolution, the strain remains
compressive and the porosity reduces from the initial value as
expected within the unsaturated zone. However, once the damage
criterion becomes equality, damage initiates at x2 = 0. With
damage growing from 0, the saturation degree degrades close
to 0, indicating invasion of the air phase while the pore-water
pressure only reduces slightly in magnitude. The paths followed
by the solutions for different thresholds, w1, in the space (St, pt)
are shown in Figure 5. It is clear that the path followed during the
initial damage evolution is that of a ‘softening’ with respect to
pore-water pressure. It is also interesting to observe that even
though the drying flux at the boundary continues to drive the
desaturation process, the damage stagnates at a maximum value
at larger times, and this is replicated also within the domain, thus
creating a zone of uniform damage. This is due to the
simultaneous reduction in the magnitude of the first driving
term in Eq. 43with increasing damage so that after a certain value
of damage, the criterion does not become an equality anymore,
even though desaturation progresses.

Figure 6 shows the time evolution of damage for different
thresholds, w1. In all cases, the damage initiates at x2 = 0 as
anticipated and then propagates into the domain supported by a
finite depth, dt, that increases with time. Lower thresholds are
characterized by earlier initiation of damage and a damage value
closer to 1 at the drying boundary.

4.3 Bifurcation From and Instability of the
Fundamental Branch
The one-dimensional base solutions resolved in Section 4.2 are
the x1-homogeneous solutions or the so-called fundamental states
of the corresponding two-dimensional problem. These solutions
are denoted by (�ut, �ϕt, �αt) at time t and, for consistency, the
solution of the hydraulic problem by (�St, �pt). The branch of the
evolution along which all the states remain x1-homogeneous is

called the fundamental branch. Following the works of Benallal
and Marigo (2006); Pham et al. (2011b); Sicsic et al. (2014) for
standard gradient damage models, we investigate the possibility
of bifurcation from the fundamental branch of evolution. A
bifurcation in this sense is understood as the availability of
admissible solution state/s other than the fundamental one.
Whether or not the solution shifts from the fundamental
branch depends on the loss of stability of the fundamental
state itself and the characteristics of the perturbation that can
cause such a shift. In the earlier mentioned works concerning
standard gradient damage models, the possibility of bifurcations
was associated with a loss of uniqueness criterion of the
fundamental state. We follow a similar approach by first
analyzing the loss of stability of the fundamental state and
then the possibility of bifurcation.

4.3.1 Loss of Stability
By construction of the fundamental state, (�ut, �ϕt, �αt) satisfies the
first-order stability, Eq. 23. The question is if it satisfies the full
stability condition. To verify this, one needs to analyze the
condition Eq. 19 that is obtained by the expanding the
perturbed state of energy in the vicinity of the one associated
with the fundamental state,

hEt′ �ut, �ϕt, �αt( ) v − �ut,φ − �ϕt, β − �αt( )
+ h2

2
Et″ �ut, �ϕt, �αt( ) v − �ut,φ − �ϕt, β − �αt( )2 + o h2( )≥ 0. (44)

By virtue of the equilibrium, Eq. 24, and zeroth-order balance,
Eq. 26, the FDD in Eq. 44 reduces to,

Et′ �ut, �ϕt, �αt( ) v − �ut,φ − �ϕt, β − �αt( ) � ∫
Ω

−πt′ �ϕt + w′ �αt( )( ){
× β − �αt( )+w1ℓ

2∇�αt · ∇ β − �αt( )}dx, (45)
with the directions (v − �ut,φ − �ϕt, β − �αt) ∈ C × P̂ × D̂d

t , with P̂
defined in Eq. 22 and

D̂d

t � β̂ ∈ H1 Ω( ): 0≤ β̂< 1 in Ωd
t β̂ � 0 in Ωe

t{ }, (46)
where Ωd

t � (0, L) × (0, dt) is the damaged strip if damage
initiates and Ωe

t � Ω\Ωd
t is the undamaged region.

Undamaged States:
For t < td, �αt � 0 throughout Ω and the FDD is positive for all

directions (v − �ut,φ − �ϕt, β) if β ≠ 0. For directions such that
β � �αt � 0, the FDD vanishes and the SDD, Eq. 21, reduces to,

Et″ �ut, �ϕt, �αt( ) v − �ut,φ − �ϕt, β − �αt( )2
� ∫

Ω

C
0ε(v − �ut) · ε(v − �ut) +N bϵ(v − �ut) − (φ − �ϕt)( )2{ }dx,

(47)
which is positive. Hence, full stability of the fundamental state is
guaranteed for t < td.

Damaged States:
For t ≥ td, the damage criterion is an equality within the

damaged strip Ωd
t � (0, L) × (0, dt) and an inequality

everywhere else, Ωe
t � Ω\Ωd

t . If we consider directions such
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that β ≠ �αt, then the FDD is positive within Ωe
t owing to the

strict inequality of the local damage criterion, whereas a
vanishing FDD corresponds to directions such that β � �αt � 0 in
Ωe

t . In such directions, stability of the fundamental state is
guaranteed if,

Et″ �ut, �ϕt, �αt( ) v − �ut,φ − �ϕt, β − �αt( )2 > 0,
∀ v,φ, β( ) ∈ C × P × Dd

t ,
(48)

and only if the above inequality is not strict. It should be noted
that in the abovementioned equation, the expression of SDD is
given by Eq. 21 and not by the reduced Eq. 47 owing to the
possibility of β ≠ �αt in Ωd

t . Dd
t ⊂ Dt, is the set of admissible

damage fields given by,

Dd
t � β ∈ H1 Ω( ): �αt ≤ β< 1 in Ωd

t , β � 0 in Ωe
t{ }. (49)

The directions (v − �ut,φ − �ϕt, β − �αt) are further denoted as
(v̂, φ̂, β̂) ∈ C × P̂ × D̂d

t , with an abuse of notation w.r.t the
notation introduced in Section 2.3.

Noting, for the moment, that SDD in the damaged states is
evaluated at the fundamental state and analysis of the condition
in Eq. 48 is deferred to a later moment in view of studying the
possibility of bifurcations.

Synopsis: While the undamaged states are fully stable, the
damaged states are conditionally stable and this condition
amounts to verifying the positive definiteness of the quadratic
form Et″(�ut, �ϕt, �αt)(·)2 when applied on directions belonging to

C × _P × _Dd
t . Specifically,

∀ v̂, φ̂, β̂( ) ∈ C × P̂ × D̂d

t

Et″ �ut, �ϕt, �αt( ) v̂, φ̂, β̂( )2 > 0 0 stability

Et″ �ut, �ϕt, �αt( ) v̂, φ̂, β̂( )2 < 0 0 instability.

⎧⎪⎨⎪⎩
(50)

4.3.2 Possibility of Bifurcations
As mentioned earlier, the notion of bifurcation from the
fundamental branch is intertwined with the availability of
admissible solution state/s other than the fundamental one.
This amounts to studying the evolution problem at time t + η,
with η > 0 small enough, knowing that the solution has
followed the fundamental branch up until t, that is,
knowing the solution at t is (�ut, �ϕt, �αt). Before proceeding
further, we assume that such an evolution is smooth enough
that forward time derivatives of the solution components
exist at time t and are defined

_u � lim
η→0

ut+η − �ut

η
, _ϕ � lim

η→0

ϕt+η − �ϕt

η
, _α � lim

η→0

αt+η − �αt

η
.

(51)
Furthermore, a smooth growth of the damage zone is assumed

within the time interval (t, t + η). More detail of such a hypothesis
can be found in Sicsic et al. (2014). Now, if the solution continues
to stay on the fundamental branch, then it implies that ( _u, _ϕ, _α)
are as well x1-homogeneous giving, ( _u, _ϕ, _α) � ( _�u, _�ϕ, _�α).
However, if bifurcation is to happen, then there should be

some other solution rate ( _u, _ϕ, _α). To check this possibility we
derive from the evolution problem at t + η, a rate problem that
any solution rate needs to satisfy.

Imposing (ut+η, ϕt+η, αt+η) to satisfy the three evolution
principles in Section 2.2, we get:

1) Irreversibility of damage:Damage must be nondecreasing, that
is, _α≥ 0. Consequently, ( _u, _ϕ, _α ) ∈ C × _P × _D, with,

_P � φ ∈ H1 Ω( ){ }, _D � β ∈ H1 Ω( ): β≥ 0 in Ω{ }. (52)

2) Stability: Directional stability implies first-order stability
which at (ut+η, ϕt+η, αt+η) reads,

Et+η′ ut+η, ϕt+η, αt+η( ) v̂, φ̂, β̂( )≥ 0 ∀ v̂, φ̂, β̂( ) ∈ C × P̂ × D.

(53)
As analyzed earlier for loss of stability of the fundamental state

at time t, for directions (v̂, φ̂, β̂) such that
Et′(�ut, �ϕt, �αt)(v̂, φ̂, β̂)> 0, by continuity, Eq. 53 and
consequently full stability of the state (ut+η, ϕt+η, αt+η) hold true.

Whereas for directions such that Et′(�ut, �ϕt, �αt)(v̂, φ̂, β̂) � 0,
this is not evident. In fact, such directions correspond to β̂ � 0
in Ωe

t , that is, β̂ ∈ D̂d
t . Dividing Eq. 53 by η and passing to the

limit when η tends to 0 gives the following condition on

any ( _u, _ϕ, _α) ∈ C × _P × _Dd
t ,

Et″ �ut, �ϕt, �αt( )〈 _u, _ϕ, _α( ), v̂, φ̂, β̂( )〉
+ _Et′ �ut, �ϕt, �αt( ) v̂, φ̂, β̂( )≥ 0∀ v̂, φ̂, β̂( ) ∈ C × P̂ × D̂d

t , (54)
with1,

_Dd

t � β ∈ H1 Ω( ): β≥ 0 in Ωd
t , β � 0 in Ωe

t{ }. (55)

3) Energy Balance: The energy balance at time t + η reads,

Et+η ut+η, ϕt+η, αt+η( ) � Et �ut, �ϕt, �αt( ) − ∫t+h
t

∫
Ω

zπs

zSs
ϕs( ) _Ss dx ds.

(56)
A first expansion of Et+η(ut+η, ϕt+η, αt+η) on the left-hand side

of the above equation up to second-order leads to,

Et+η �ut, �ϕt, �αt( ) + Et+η′ �ut, �ϕt, �αt( ) ut+η − �ut, ϕt+η − �ϕt, αt+η − �αt( )
+1
2
Et+η″ �ut, �ϕt, �αt( ) ut+η − �ut, ϕt+η − �ϕt, αt+η − �αt( )2

+o ‖ ut+η − �ut, ϕt+η − �ϕt, αt+η − �αt( )‖2( )
� Et �ut, �ϕt, �αt( ) − ∫t+h

t

∫
Ω

zπs

zSs
ϕs( ) _Ss dx ds,

(57)

1Note the restriction of _α to _Dd
t as opposed to _D carried out a few steps earlier when

imposing irreversibility of damage. This is a consequence of the restriction imposed
on the directions to be considered for Et′(�ut, �ϕt, �αt)(v̂, φ̂, β̂) � 0 to hold true.
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where ‖·‖ denotes the norm of C × P̂ × D. A second expansion in
time up to second-order of the operators at t + η leads to,

Et′ �ut, �ϕt, �αt( ) ut+η − �ut, ϕt+η − �ϕt, αt+η − �αt( )
+η2 _Et′ �ut, �ϕt, �αt( ) _u, _ϕ, _α( ) + η2

2
Et″ �ut, �ϕt, �αt( ) _u, _ϕ, _α( )2

+η _Et �ut, �ϕt, �αt( ) + η2

2
€Et �ut, �ϕt, �αt( ) + o η2( )

� −η∫
Ω

zπt

zSt
�ϕt( ) _St dx − η2

2
d

dt
∫
Ω

zπt

zSt
�ϕt( ) _St dx⎛⎜⎜⎝ ⎞⎟⎟⎠.

(58)
The following definitions are obtained by differentiating with

respect to time the energy balance written at time t,

_Et �ut, �ϕt, �αt( ) � −∫
Ω

zπt

zSt
�ϕt( ) _St dx,

€Et �ut, �ϕt, �αt( ) � − d

dt
∫
Ω

zπt

zSt
�ϕt( ) _St dx⎛⎜⎜⎝ ⎞⎟⎟⎠. (59)

The term Et′(�ut, �ϕt, �αt)(ut+η − �ut, ϕt+η − �ϕt, αt+η − �αt) is o(η2)
due to the assumption of smooth growth of the damage zone and
_α ∈ Dd

t ; see Sicsic et al. (2014) for a detailed deduction. So, one obtains
by diving Eq. 58 by η2 and passing to the limit when η tends to be 0,

_Et′ �ut, �ϕt, �αt( ) _u, _ϕ, _α( ) + Et″ �ut, �ϕt, �αt( ) _u, _ϕ, _α( )2 � 0. (60)
The rate problem: Subtracting Eq. 60 from Eq. 54 gives the

following inequality that the rate at any time t > 0, ( _u, _ϕ, _α)
∈ C × _P × _Dd

t , needs to satisfy,

Et″ �ut, �ϕt, �αt( )〈 _u, _ϕ, _α( ), v̂ − _u, φ̂ − _ϕ, β̂ − _α( )〉+
_Et′ �ut, �ϕt, �αt( ) v̂ − _u, φ̂ − _ϕ, β̂ − _α( )≥ 0 ∀ v̂, φ̂, β̂( ) ∈ C × P̂× D̂d

t .

(61)
To verify if any rate other than the x1-homogeneous rate,

( _�u, _�ϕ, _�α), satisfies the rate problem we proceed as follows. First
choosing (v̂, φ̂, β̂) � ( _�u, _�ϕ, _�α) in Eq. 61, we get,

Et″ �ut, �ϕt, �αt( )〈 _u, _ϕ, _α( ), _�u − _u, _�ϕ − _ϕ, _�α − _α( )〉
+ _Et′ �ut, �ϕt, �αt( ) _�u − _u, _�ϕ − _ϕ, _�α − _α( )≥ 0. (62)

Whereas by choosing (v̂, φ̂, β̂) � ( _u, _ϕ, _α) in Eq. 61 that is already
written with ( _�u, _�ϕ, _�α) as the solution, we get,

Et″ �ut, �ϕt, �αt( )〈 _�u, _�ϕ, _�α( ), _u − _�u, _ϕ − _�ϕ, _α − _�α( )〉
+ _Et′ �ut, �ϕt, �αt( ) _u − _�u, _ϕ − _�ϕ, _α − _�α( )≥ 0. (63)

Adding Eq. 62 and Eq. 63, we get the inequality,

Et″ �ut, �ϕt, �αt( ) _u − _�u, _ϕ − _�ϕ, _α − _�α( )2

≤ 0. (64)

This condition holds true only if ( _u, _ϕ, _α) � ( _�u, _�ϕ, _�α), when
Et″(�ut, �ϕt, �αt) is positive definite, thus indicating a uniqueness

criterion for the solution of the rate problem. It is to be noted that
both ( _u, _ϕ, _α) and ( _�u, _�ϕ, _�α) come from the same space, whereas
( _u − _�u, _ϕ − _�ϕ, _α − _�α) ∈ C × _P × _Dt where _Dt is the linear space
associated with D̂d

t at time t defined as,

_Dt � β ∈ H1 Ω( ): β � 0 in Ωe
t{ }. (65)

Synopsis: The uniqueness of the x1-homogeneous rate solution
of the rate problem and consequently the impossibility of
bifurcation from the fundamental branch are ensured by the
positive definiteness of the quadratic form Et″(�ut, �ϕt, �αt)(·)2 when
applied on directions belonging to C × _P × _Dt. Specifically,

∀ v̂, φ̂, β̂( ) ∈ C × _P × _Dt

Et″ �ut, �ϕt , �αt( ) v̂, φ̂, β̂( )2 > 0 0 no bifurcation

Et″ �ut, �ϕt , �αt( ) v̂, φ̂, β̂( )2 ≤ 0 0 bifurcation possible.

⎧⎪⎨⎪⎩
(66)

Remark: One can notice from the abovementioned results that
both the loss of stability of the fundamental state and the possibility of
bifurcation from it amounts to studying the positive definiteness of the
same quadratic form, Et″(�ut, �ϕt, �αt)(·)2, when applied on directions

belonging to different spaces: C × P̂ × D̂d
t and C × _P × _Dt,

respectively. If tb and ts are two positive times at which,
respectively, bifurcation from and instability of the fundamental

state first occurs, then one can prove as a consequence of P̂ ⊂ _P
and D̂

d
t ⊂ _Dt that tb ≤ ts. This proof is considered to be out of the

scope of the currentwork.However, one canfind such a proof in Sicsic
et al. (2014) using the minimization of ‘Rayleigh’ ratios for both cases
in a thermal shock problem which has a similar structure.

4.4 Characterization of Bifurcations
Now we are in a position to study the possibility of bifurcations by
assuming general forms of the directions in which the quadratic form
is to be applied. To this end, let (v̂, φ̂, β̂) ∈ C × _P × _Dt be a general
direction. Its components can be decomposed into their respective
Fourier modes with characteristic wave numbers k ∈ N as follows:

v̂ x( ) � ∑
k

vk x( ),

vk x( ) � vk1 x2( )sin kπx1

L
( )e1 + vk2 x2( )cos kπx1

L
( )e2,

φ̂ x( ) � ∑
k

φk x( ), φk x( ) � φk
1 x2( )cos kπx1

L
( ),

β̂ x( ) � ∑
k

βk x( ), βk x( ) � βk1 x2( )cos kπx1

L
( ). (67)

While choosing the abovementioned decomposition, the
boundary conditions that apply to the admissible
perturbations to the fundamental state are a priori adapted to
(v̂, φ̂, β̂). Specifically, since the KKT conditions, Eq. 36, demand
that on any boundary where damage grows, the spatial derivative
normal to it vanishes and this applies to the lateral boundaries of
the damaged strip and to the drying boundary, {(x1 = 0) ∪ (x2 ∈ (0,
dt))} and {(x1 = L) ∪ (x2 ∈ (0, dt))}, whereas in Ωe

t since damage is
uniformly zero, its spatial derivative as well vanishes at its
boundaries, {(x1 = 0) ∪ (x2 ∈ (dt, H))} and {(x1 = L) ∪ (x2 ∈
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(dt, H))}. Consequently, for the damage rate one gets, zβ̂/zx1 � 0
on x1 = 0 and x1 = L. Similarly, using the boundary conditions on
displacement imply that on x1 = 0 and x1 = L, v̂1 � 0 uniformly
implying zv̂1/zx2 � 0, and since the shear stress at this boundary
vanishes, we get zv̂2/zx1 � 0. In addition to the above, the x1
independence of the fundamental state justifies the forms
assumed for v̂ an β̂ in Eq. 67. Consequently, the following
definitions for their gradients hold for each k,

ε vk( ) � vk1
kπ

L
cos

kπx1

L
( )e1 ⊗ e1 + dvk2

dx2
cos

kπx1

L
( )e2 ⊗ e2

+1
2
sin

kπx1

L
( ) dvk1

dx2
− vk2

kπ

L
( ) e1 ⊗ e2 + e2 ⊗ e1( ),

∇βk �−βk1
kπ

L
sin

kπx1

L
( )e1 + dβk1

dx2
cos

kπx1

L
( )e2. (68)

Owing to the classical constitutive relation for porosity, Eq. 31,
obtained by rearranging the zeroth-order balance law for
variations in porosity, the abovementioned definition of ε(vk)
and the boundary conditions of the hydraulic problem for pt,
Eq. 42, one can justify the form assumed for φ̂ in Eq. 67.

Exploiting the orthogonality among different Fourier
modes allows to uncouple them and evaluate the functional
Et″(ut, ϕt, αt)(v̂, φ̂, β̂)2 in Eq. 21 at (�ut, �ϕt, �αt), in directions for
each k separately. Following this and integrating once along x1 gives,

Et″ �ut, �ϕt, �αt( ) vk,φk,βk( )2 � L

2
∫x2�H

x2�0
λ vk1

kπ

L
+ dvk2
dx2

[ ]2{

+2 μ vk1
kπ

L
( )2

+ dvk2
dx2

( )2[ ]+μ dvk1
dx2

−vk2
kπ

L
[ ]2

+N b vk1
kπ

L
+ dvk2
dx2

( )−φk
1[ ]2

−�ϕt�πt″ βk1( )2 −2�πt′φk
1β

k
1+w1ℓ

2 βk1
kπ

L
( )2

+ dβk1
dx2

( )2⎡⎣ ⎤⎦}dx,
(69)

where functions denoted (�·) are to be understood as evaluated at
the fundamental state. Dependency on the wave number in the
abovementioned expression can be understood as a
parametrization and study of the positivity of the quadratic
form can be recast into a comparison with 0 the smallest
eigenvalue of the eigenproblem,

Et″ �ut, �ϕt, �αt; k( ) − μkI( ) vk1, v
k
2,φ

k
1, β

k
1( )2 � 0, ∀k ∈ N, (70)

where μk denotes the eigenvalues and (vk1, vk2,φk
1, β

k
1) the

eigenvectors for each k.

FIGURE 7 | Evolution of the functions, �πt′, with St at the boundary x2 = 0m and two locations within the domain close to this boundary. The different values of w1

used are (A) 2000 N.m−3, (B) 1000 N.m−3, (C) 500 N.m−3, and (D) 100 N.m−3. In each plot, the possible evolution if damage remains vanishing π′(Sw , 0) is also plotted
for reference.
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Accordingly, the criterion for bifurcation, Eq. 66, at each time
t > 0 can be translated to,

∀k ∈ N∀

vk1, v
k
2,φ

k
1, β

k
1( ) ∈ H1 ~Ω( ) × H1

0
~Ω( ) × H1 ~Ω( ) × H1

t
~Ω( )

inf R μk( ){ }> 0 0 no bifurcation
inf R μk( ){ }≤ 0 0 bifurcation possible,

{ (71)

withH1
0(~Ω) being the space of H1 functions in ~Ω, vanishing at x2

= H and H1
t(~Ω) are those vanishing in the undamaged region x2

∈ (dt, H).

4.4.1 Indicative Study of Bifurcations
While the true possibility of bifurcations could be understood
by the criterion Eq. 71, we can investigate the behavior of the
coefficients of the quadratic form Et″(�ut, �ϕt, �αt)(v̂, φ̂, β̂)2 which
gives a qualitative indication. This is the purpose of the current section.
It is to be noted that while by itself this quadratic form does not merit
any physical interpretation, its evaluation in Eq. 50, Eq. 66 with
respect to relevant directions informs us on the stability of solutions
and the possibility of bifurcations.

By virtue of Eq. 21, we can classify the various terms within the
functional as follows:

Et″ �ut, �ϕt, �αt( ) v̂, φ̂, β̂( )2 � At �ut, �ϕt, �αt( ) v̂, φ̂, β̂( )2
+ Bt �ut, �ϕt, �αt( ) v̂, φ̂, β̂( )2, (72)

with

At �ut, �ϕt, �αt( ) v̂, φ̂, β̂( )2 � ∫
Ω

C
0ε v̂( ) · ε v̂( ) +N bϵ v̂( ) − φ̂( )2{

−�ϕt�πt″β̂
2+w1ℓ

2∇β̂ · ∇β̂}dx,
Bt �ut, �ϕt, �αt( ) v̂, φ̂, β̂( )2 �−∫

Ω

2�πt′φ̂β̂ dx. (73)

We can conclude that the first term, At(�ut, �ϕt, �αt)(v̂, φ̂, β̂)2, is
positive definite because N and w1 are positive constants, the
stiffness tensor, C0, is positive definite, �ϕt ∈ P and
�πt″ � 2(−~pc(�St)�St − U(�St))< 0. Thus, this term acts to prevent
any bifurcations from occurring.

The termBt(�ut, �ϕt, �αt)(v̂, φ̂, β̂)2 on the other hand contributes to
the possibility of bifurcations. Even if the sign of the cross term in (φ̂β̂)
could only be determined by solving the eigenproblem, its coefficient,
however, is positive since �πt′ � −2(1 − �αt)(−~pc(�St)�St − ~U(�St))> 0.
For the sake of being conservative, this cross term is considered
negative in the following analysis.

In view of the above analysis, one can study the strength of Bt by
studying the strength of its coefficient as a function of time in order to
understand the behavior of bifurcations, if they occur. It can be
observed that this coefficient is a function of the fundamental states
that were resolved in Section 4.2. Figure 7 shows the evolution of �πt′,
with respect to the saturation degree for different values of the
threshold w1. As the saturation degree reduces with time
during the drying process, it can be seen that this function deviates
from its undamaged path as soon as damage is initiated and its

magnitude tends to reduce as damage propagates into the domain.
This indicates that the term Bt reduces with time, and one can infer
that the tendency to bifurcate from the fundamental branch reduces as
well. For higher values of w1, however, the magnitude of �πt′ starts to
pick up after the initial reduction. However, the rate of this increase
was found to be extremely slow due to the saturation degree being
close to vanishing and the path followed is on a very steep degraded
retention curve as seen in Figure 5A. One canmake similar inferences
for the loss of stability aswell since, as remarked earlier, it also amounts
to the study of a quadratic form involving the same operator,
Et″(�ut, �ϕt, �αt) according to Eq. 50.

5 CONCLUSION

In this study, a novel approach to modeling of capillary force–driven
fracturing phenomenon has been proposed, inspired by the
experimental results mainly obtained by Shin and Santamarina
(2010, 2011). For this purpose, the required ingredient, a damage
mechanism, is postulated and described by a scalar damage variable,
following a similar approach as the one proposed by Marigo et al.
(2016) that describes fractures in brittle materials. However, the
driving force behind the damage evolution is revisited to
replicate the capillary forces that are in action at the pore-
scale. The analysis starts with the postulation of a damaged
porous solid and its associated energy density. Following this,
the evolution problem for damage is derived starting from a
total energy of the porous solid and in accordance with the
variational approach based on the three principles of the
irreversibility of damage, stability, and energy balance,
assuming a minimization principle to hold true at each
time. This lays the foundation for studying the possibility of
fracture initiation in a two-dimensional desiccation problem.
A loss of stability and bifurcation analysis is carried out
starting from the resolution of one-dimensional solutions.
An indicative study reveals that at the current state, the
model does not exhibit a clear bifurcation and similarly loss
of stability of the base solution, which should induce damage
localization, notwithstanding the behavior of �πt′ that seems to
indicate this possibility for relatively large values of w1.

While the solution of an eigenproblem could reveal more details, we
claim that the lack of clear bifurcation is due to the simplified approach
adopted in this study. Specifically, we did not account comprehensively
for the degradation of the resistance to fluid flow within the damaged
zone and eventually along localized fracture planes. This could, in
principle, be achieved via a suitable coupling between the intrinsic
permeability and the damage parameter, for instance, as proposed in
Miehe et al. (2015). This will be part of our future investigations.
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