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Tube hydroforming has been widely applied by the automotive sector to produce hollow
parts. As a popular tube hydroforming test method, tube hydro-bulging needs an analytical
failure model to analyze the formability of tubular materials. In the present work, a failure
prediction model has been developed to predict the bulging height limit (BHL) of the hydro-
bulging test. The model utilized Hill’s orthogonal anisotropic model to characterize the tube
material, a geometry model to characterize the non-loading path and the M-K model to
predict failure. Defects in multiple directions were taken into consideration. The developed
model was applied on two tubes of different materials as case studies to verify its validity. It
is shown that the developed model is capable of predicting the forming limit or determining
the imperfection factor of tubular materials.

Keywords: tube hydro-bulging test, bulging height limit, Hill’s orthogonal anisotropic model, M-K model, non-linear
loading

1 INTRODUCTION

Hydroforming technology has been widely adopted by the automotive sector in recent decades due to
the capability of forming complex geometries from lightweight materials, whilst avoiding joining
processes. Tube hydroforming (THF) uses tubes as the raw material and applies internal pressure
and/or axial compression to form hollow parts, including tubular parts, irregular cross-sections, or
multi-way tubes.

Forming limit test methods of THF is essential to the prediction of failure. Nakajima test is
the standard way to determine the forming limit (International Standard Organization, 2021)
for sheet materials. However, this standard does not apply to tubular materials. One of the most
popular methods to solve this problem is the tube hydro-bulging test (or hydraulic/tube
bulge test). Numerous research studies have developed experimental devices to perform such
tests (Fuchizawa et al., 1993; Sokolowski et al., 2000; Fllice et al., 2001; Aue-u-lan, 2007),
and the hydro-bulging test has been effectively used to predict the forming limit (Zhu et al.,
2020).

However, an analytical derivation of the forming limit prediction for the hydro-bulging test has
not been developed yet, which is the primary aim of the article. There are many existing analytical
models for forming limit prediction, including Swift’s diffuse necking model (Swift, 1952), Hill’s
localized necking model (Hill, 1948), and the M-K model (Marciniak and Kuczyński, 1967). The
original M-K model assumes that an imperfection area only exists across the width of the sheet.
Hutchinson and Neale (1978) modified the M-K model by assuming that the imperfection area
direction is arbitrary. The modified M-K model was adopted in the present work to study the
potential necking behavior in all directions.
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The M-K model takes the loading path of a point as input. In
the context of the hydro-bulging test, the point is the pole point,
as it undergoes the largest deformation. The loading path of the
point can be obtained from stress and strain analysis, which
depends on the geometry model of the tube. The key difference
between the published geometries is the assumption of the
bulging zone’s profile, such as the circular arc (Boudeau and
Malécot, 2012), cosine-like function (Strano and Altan, 2004),
and elliptical curve (Hwang and Lin, 2007; He et al., 2014a). He
et al. (2014a) proposed two models with elliptical curve
assumption. The first assumed that the filleted corner was
negligible, and the bulging tube can be approximated by only
one elliptic arc. The second took the filleted corner into account,
and the bulging profile was approximated by the combination of
two circular arcs and an elliptic arc. The latter geometry model
has better accuracy and was adopted in the present study.

After determining the geometry model, stress and strain
analysis should be conducted at the pole point to obtain the
loading path. As one of the most important conditions to be
analyzed, the end-conditions have four different types, namely,
free-ends (Imaninejad, Subhash and Loukus, 2004), closed-ends
(Fuchizawa, Narazaki and Yuki, 1993), fixed-ends (Sokolowski
et al., 2000; Imaninejad, Subhash and Loukus, 2004; Hwang and
Lin, 2007; Hwang and Wang, 2009; Boudeau and Malécot, 2012;
He et al., 2014a), and forced-ends (Imaninejad, Subhash and
Loukus, 2004; Kuwabara et al., 2005), which can be applied in
tube hydro-bulging test. The fixed-ends condition was mostly
used in previous studies due to the simplest mathematical
expression. Thus, it was adopted in the present study.

Hill’s orthogonal anisotropic model (Hill, 1950) was used to
describe the plastic mechanical behavior of the tubular material.
For the convenience of model derivation, a tube-friendly version
of the model was derived in advance.

Combining Hill’s orthogonal anisotropic model, hydro-
bulging geometry model, and M-K model, the present study
developed a mechanics-based hydro-bulging test failure model to
enable the prediction of bulging height limit (BHL) in tube hydro-
bulging tests. Two case studies were reviewed to show the
prediction capability of the model. The case studies illustrated
how to fit initial imperfection factors f0 from experimental
results, found a way to simplify the model, and verified the
validity of the model by comparing the required pressure
evolution and pole point thickness prediction with experiments.

2 MECHANICS-BASED FAILURE MODEL

2.1 Hill’s Orthogonal Anisotropic Model for
Tubular Materials
The original form of Hill’s orthogonal anisotropic model is too
general to be applied in the specific file of the tube hydro-bulging
test. In this section, a specific form for tubular materials was
derived, as a footstone for further strain and stress analysis.

2.1.1 Derivation of Equivalent Stress
The general form of the Hill yield function (Hill 1950) is as
follows:

(σ22 − σ33)2 + G(σ33 − σ11)2 +H(σ11 − σ22)2 + 2Lσ2
23

+ 2Mσ2
31 + 2Nσ212 � 1 (1)

where F, G,H, L,M,N are anisotropy constants and determined
experimentally. By using the coordinates/subscripts zθr to
replace the numerals and the elimination of shear stress due
to the material undergoing plane stress conditions, the yield
criterion can be derived as follows:

f � F(σθ − σr)2 + G(σr − σz)2 +H(σz − σθ)2 + 2Nσ2zθ � 1 (2)
Since the material anisotropy is assumed to be orthogonal,

once the uniaxial normal yield stress is achieved, the yield
criterion can be expressed as follows:

(G +H)(σyz)2 � (F +H)(σyθ )2 � (F + G)(σyr )2 � 1 (3)
where σyθ , σ

y
z , σ

y
r are the uniaxial yield stresses on the axes of

anisotropy. By solving for the constants F, G,H from Eq. 3, we
derive the following:

F � 1
2
⎡⎣ 1(σyθ )2 + 1(σyr )2 − 1(σyz)2⎤⎦ (4)

G � 1
2
⎡⎣ 1(σyr )2 + 1(σyz)2 − 1(σy

θ )2⎤⎦ (5)

H � 1
2
⎡⎣ 1(σyz)2 + 1(σyθ )2 − 1(σyr )2⎤⎦ (6)

Subsequently, the associated flow rule is applied:

dεij � dλ
zf

zσ ij
→ dλ � dεij/ zf

zσ ij
(7)

where the ratio between dεz, dεθ , dεr, and dεzθ can be obtained as
follows:

dεz
2(G +H)σz − 2Hσθ − 2Gσr

� dεθ
2(F +H)σθ − 2Hσz − 2Fσr

� dεr
2(F + G)σr − 2Gσz − 2Fσθ

� dεzθ
2Nσzθ

(8)

Note that the last item is not dεzθ
4Nσzθ

, because the term of 2Nσ2zθ is
divided intoNσ2zθ +Nσ2θz when calculating the partial derivative

zf
zσ ij
.

The wall thickness at the pole point of the tube is low ( t0R0
< 1

10),
and thus the radial stress components can be ignored (σr � 0),
resulting in the state of plane stress (Zhu et al., 2020). For plane
stress σr � 0, Eq. 8 is simplified as follows:

dεz
2(G +H)σz − 2Hσθ

� dεθ
2(F +H)σθ − 2Hσz

� dεr
−2Gσz − 2Fσθ

� dεzθ
2Nσzθ

(9)

by defining the ratio rz � dεθ
dεr
, rθ � dεz

dεr
, and rzθ � dε45

dεr
(note that

εzθ is shear strain while ε45 is normal strain) under uniaxial
tensile stress. σz, σθ , or σ45 can be obtained by uniaxial tensile tests
with directions shown in Figure 1.
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Note that in the uniaxial tensile tests used to calculate rz, σθ
equals to zero; similarly, in the uniaxial tensile tests used to
calculate rθ , σz equals to zero. Thus, simplified expressions for
rz and rθ can be obtained from Eq. 9:

rz � dεθ
dεr

� H

G
; rθ � dεz

dεr
� H

F
(10)

For rzθ , the expression is more complex because the
principal axes are not coincident with the axes of
anisotropy. Additional transformation is needed to express
rzθ by F, G, H, N:

⎡⎢⎢⎢⎢⎢⎣ σz
σθ

σzθ

⎤⎥⎥⎥⎥⎥⎦ � S⎡⎢⎢⎢⎢⎢⎣ σ450
0

⎤⎥⎥⎥⎥⎥⎦ (11)

⎡⎢⎢⎢⎢⎢⎣ dεz
dεθ
dεzθ

⎤⎥⎥⎥⎥⎥⎦ � S⎡⎢⎢⎢⎢⎢⎣ dε45
−dε45 − dεr

0

⎤⎥⎥⎥⎥⎥⎦ (12)

where

S � ⎡⎢⎢⎢⎢⎢⎣ cos2(45°) sin2(45°) 2sin(45°)cos(45°)
sin2(45°) cos2(45°) −2sin(45°)cos(45°)

−sin(45°)cos(45°) sin(45°)cos(45°) cos2(45°) − sin2(45°)
⎤⎥⎥⎥⎥⎥⎦

is the transformation matrix.
By substituting σz, σθ , σzθ , dεzθ obtained from Eqs 11, 12 into

Eq. 9, rzθ can be expressed as follows:

rzθ � dε45
dεr

� N
G + F

− 1
2

(13)

By eliminating σyθ and σyr in Eqs 4, 5, 6, 10 and 13,
F, G, H, N can be expressed by using anisotropy coefficients
and σyz :

F � rz

rθ(1 + rz)(σy
z)2 (14)

G � 1

(1 + rz)(σyz)2 (15)

H � rz

(1 + rz)(σyz)2 (16)

N � (2rzθ + 1)(rz + rθ)
2rθ(1 + rz)(σy

z)2 (17)

By defining �σ2 � 3rθ(1+rz)
2(rzrθ+rθ+rz)(σ

y
z )2, the anisotropy constants

and the equivalent stress can be expressed as follows (Hwang and
Lin, 2006; Hwang and Wang, 2009):

F � 3rz
2(rzrθ + rθ + rz)�σ2 (18)

G � 3rθ
2(rzrθ + rθ + rz)�σ2 (19)

H � 3rzrθ
2(rzrθ + rθ + rz)�σ2 (20)

N � 3(2rzθ + 1)(rθ + rz)
4(rzrθ + rθ + rz)�σ2 (21)

�σ �
�
3
2

√ [(1 + (1/rz))σ2z − 2σzσθ + (1 + (1/rθ))σ2θ + ((1/rθ) + (1/rz))(2rzθ + 1)σ2zθ
(1/rθ) + 1 + (1/rz) ]1/2

(22)

Consequently, the associate flow rule Eq. 9 can be expressed by
rθ , rz, and rzθ :

dεz
rθ(σz + rzσz − rzσθ) �

dεθ
rz(σθ − rθσz + rθσθ)

� dεzθ
σzθ(2rzθ + 1)(rz + rθ) (23)

2.1.2 Derivation of Equivalent Strain Increment
The equivalent stress can also be expressed in matrix notation
(Mohr et al., 2010):

�σ �
�������(pσ) · σ√

(24)
where σ is the vector form of stress components:

σ � ⎡⎢⎢⎢⎢⎢⎣ σz

σθ
σzθ

⎤⎥⎥⎥⎥⎥⎦
p is the factor matrix:

p � 3
2[(1/rθ) + 1 + (1/rz)] ⎡⎢⎢⎢⎢⎢⎣ 1 + (1/rz) −1 0

−1 1 + (1/rθ) 0
0 0 [(1/rθ) + (1/rz)](2rzθ + 1)

⎤⎥⎥⎥⎥⎥⎦
By applying the associate flow rule under matrix notation, the

following is derived:

dε � dλ
d�σ
zσ

� dλ[d((pσ) · σ)
2�σdσ

] � dλ(pσ
�σ
) (25)

where dε is the vector form of strain increment components:

dε � ⎡⎢⎢⎢⎢⎢⎣ dεz
dεθ
2dεzθ

⎤⎥⎥⎥⎥⎥⎦
By applying work conjugation σ · dε � �σ · d�ε , the equivalent

strain increment d�ε can be expressed as follows:

d�ε � σ · dε
�σ

� σ · [dλ(pσ�σ )]
�σ

� σ · pσ
�σ2 dλ � dλ(�σ2

�σ2
) � dλ (26)

By Substituting dλ � d�ε into Eq. 25

FIGURE 1 | Directions of the anisotropy coefficients.
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dε � d�ε(pσ
�σ
)

σ � �σ

d�ε
(p−1dε) (27)

By Applying Work Conjugation σ · dε � �σ · d�ε Again

σ · dε � �σ

d�ε
[(p−1dε) · dε] � �σ · d�ε

d�ε �
����������(p−1dε) · dε√

(28)
where

p−1 � 2(rθ + rz + rθrz)
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rθ + 1

rθ + rθrz+2
θr

1
rθ + rz + 1

0

1
rθ + rz + 1

rz + 1

rz + rθrz+2
zr

0

0 0
1

rθ + rz + 2(rθ + rz)rzθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Thus, the equivalent strain increment can be expressed as follows:

d�ε �
��������������
2(rθ + rz + rθrz)

3

√ ������������������������������������������������������������
1

(rθ + rz + 1)(2dεzdεθ + (rθ + 1)dεz
rθ

+ (rz + 1)dεθ
rz

) + 4dεzθ
(2rzθ + 1)(rθ + rz)

√
(29)

2.2 Geometry Model of Hydro-Bulging Tube
The geometry model was applied to describe the plastic
deformation of the bulging profile. Once the bulging profile
can be expressed in mathematical ways, the strain can be
calculated, and thus the loading path for the M-K model can
be established.

The geometry model adopted in the present study is
shown in Figure 2. The failure prediction model begins
from the bulging height at the pole point hi � 0. In the

following iteration, hi � hi−1 + dh, where i indicates the
step number. The expression of the circular and the
elliptical arc in the first quadrant in step i is expressed as
follows:

[r − (R0 + Rd)]2 + (z − L

2
)2

� R2
d (z<� L

2
, r<� rA) (30)

z2

a2i
+ r2

b2i
� 1(0< z< zA, r>� rA) (31)

where L is the total length of the tube, R0 is the initial radius of
the tube, Rd is the corner radius, and ai, bi are the length of the
major and minor axes of the elliptic arc. The elliptic arc passes
through the pole point P(rP,i, 0), which gives the explicit
expression of bi:

bi � rP,i � R0 + hi (32)
The profile equations can be written in the form of r � F(z):

r � (R0 + Rd) −
������������
R2
d − (z − L

2
)2

√
(33)

r �
��������
b2i − z2b2i

a2i

√
(34)

These functions pass through the intersection point
A (rA,i, zA,i):

rA,i � R0 + Rd −
��������������
R2
d − (zA,i − L

2
)2

√
(35)

rA,i � bi

������
1 − z2A,i

a2i

√
(36)

The derivative of the two profile functions at point A
(rA,i, zA,i) is continuous:

2zA,i − L

2
�������������
R2
d − (zA,i − L

2)2√ � − bizA,i

ai
�������
a2i − z2A,i

√ (37)

Once bulging height and the geometry of the initial tube and
die are determined, rA,i, zA,i, ai can be solved numerically from
Eqs 35–37. This system of equations can be simplified as one
equation with only one unknown zA,i:

zA,i
Ai

− L

2Ai
� − R0 + hi

zA,i
��
Bi

√ �����
Bi − 1

√ (38)

where Ai �
�������������
R2
d − (L2 − zA,i)2

√
and Bi � (R0+hi)2

(R0+Rd−Ai)2−(R0+hi)2.
Substituting the function of the elliptic arc Eq. 36 into

ρz � (1+r′2)3/2
|r″| , the curvature radius in the axial direction at the

pole point P(rP,i, 0) can be obtained:

ρz,i �
a2i
bi

(39)

The curvature radius in hoop direction at the same point is as
follows:

ρθ,i � bi (40)

FIGURE 2 | Geometry of the die-related model.
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2.3 Strain and Stress Analysis at the Pole
Point
The pole point of the tube-hydro-bugling test undergoes the largest
plastic deformation and thus neck first. The loading path of the pole
point can be derived based on the geometry model. Figure 3 shows
the geometry and stress of the infinitesimal element at the hydro-
bulging tube’s pole. By analyzing this infinitesimal element, the
expression of stress and strain components can be derived (Hwang
and Lin, 2007; He et al., 2014a; He et al., 2014b; Zhu et al., 2020).

Radial strain and hoop strain components on the pole point
can be written as follows:

εθ,i � ln(ρθ,i − tp,i
2

R0 − t0
2

) (41)

εt,i � ln(tp,i
t0
) (42)

The expression of axial strain can be calculated through
volume constancy:

εz,i � −(εθ,i + εt,i) � ln⎛⎝ t0(R0 − t0
2)

tp,i(ρθ,i − tp,i
2 )⎞⎠ (43)

where t0, tp,i are the thickness at the undeformed and deformed
stage, respectively.

The force equilibrium equation in the radial (r) direction of
the element is as follows:

pi(ρz,i − tp,i)(ρθ,i − tp,i)dφdθ � 2σθ,idθ(ρz,i − tp,i
2
)tp,i sin dφ

2

+2σz,idφ(ρθ,i − tp,i
2
)tp,i sin dθ

2
(44)

where pi is the internal pressure during the process, and σθ,i, σz,i
are stress components in the hoop and axial direction. The
equilibrium equation can be simplified as follows:

pi

tp,i
� σθ,i(ρz,i − tp,i

2 )(ρz,i − tp,i)(ρθ,i − tp,i) + σz,i(ρθ,i − tp,i
2 )(ρz,i − tp,i)(ρθ,i − tp,i) (45)

By applying fixed-ends boundary condition on the axial
direction force equilibrium equation, the following is derived:

σz,iπ(2ρθ,i − tp,i)tp,i � piπ(ρθ,i − tp,i)2 (46)
where R0 and t0 are the initial radius and thickness of the tube.
From Eq. 46, the expression of σz can be written as follows:

σz,i �
pi(ρθ,i − tp,i)2
tp,i(2ρθ,i − tp,i) (47)

By substituting Eq. 47 into Eq. 45, the hoop stress components
can be expressed as follows:

σθ,i �
pi(ρθ,i − tp,i)(2ρz,i − ρθ,i − tp,i)

tp,i(2ρz,i − tp,i) (48)

By substituting Eqs 47, 48 into Eq. 23, the associated flow rule
can be expressed as follows:

dεz,i
dεθ,i

� −(dεθ,i + dεr,i)
dεθ,i

� rθ,i( − 2ρz,iρθ,i + 2ρz,itp,i + ρθ,itp,i − 2rz,iρ2θ,i − t2p,i + 2rz,iρz,iρθ,i)
rz,i(2ρz,itp,i − 4ρz,iρθ,i + ρθ,itp,i + 2rθ,iρ2θ,i + 2ρ2θ,i − t2p,i − 2rθ,iρz,iρθ,i) (49)

By converting the differential equation into difference form,
the associated flow rule can be expressed as follows:

εr,i − εr,i−1
εθ,i − εθ,i−1

� rθ(2ρz,iρθ,i − 2ρz,itp,i − ρθ,itp,i + 2rz,iρ2θ,i + t2p,i − 2rz,iρz,iρθ,i)
rz,i(2ρz,itp,i − 4ρz,iρθ,i + ρθ,itp,i + 2rθ,iρ2θ,i + 2ρ2θ,i − t2p,i − 2rθ,iρz,iρθ,i) − 1

(50)

By substituting Eqs 41, 42 into Eq. 50, a non-linear equation
with only one unknown, tp,i, can be obtained as follows:

ln(tp,it0
) − εr,i−1

ln(ρθ,i−
tp,i
2

R0− t0
2
) − εθ,i−1

� rθ(2ρz,iρθ,i − 2ρz,itp,i − ρθ,itp,i + 2rz,iρ2θ,i + t2p,i − 2rz,iρz,iρθ,i)
rz(2ρz,itp,i − 4ρz,iρθ,i + ρθ,itp,i + 2rθ,iρ2θ,i + 2ρ2θ,i − t2p,i − 2rθ,iρz,iρθ,i)

−1 (51)

Once tp,i is solved, all the strain components can be calculated
using Eqs41–43. The strain component increment can be
calculated by subtracting the total strain components in the

FIGURE 3 | Infinitesimal element at the hydro-bulging tube’s pole.
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previous step. Then, the equivalent strain increment can be
obtained by referring to Eq. 29:

d�εi �
��������������
2(rθ + rz + rθrz)

3

√ ��������������������������������������������������������������
1

(rθ + rz + 1)(2dεz,idεθ,i + (rθ + 1)dεz,i
rθ

+ (rz + 1)dεθ,i
rz

) + 4dεzθ,i
(2rzθ + 1)(rθ + rz)

√
(52)

The Total Equivalent Strain

�εi � �εi−1 + d�εi (53)
The equivalent stress in Zone a can be expressed by referring

to Eq. 22:

�σ i �
�
3
2

√ [(1 + (1/rθ))σ2θ,i − 2σθ,iσz,i + (1 + (1/rz))σ2z,i
(1/rθ) + 1 + (1/rz) ]1

2

(54)

The flow stress curve of the tubular material was expressed by
the following:

�σ i � σ0 + K�εni (55)
where σ0 is the initial yield stress,K is the strength coefficient, and
n is the strain hardening exponent. By substituting Eqs 47, 48, 52,
54 into Eq. 55, the expression of pi can be obtained as follows:

pi �
2(σ0 +K�εni ) ��������

1
rθ
+ 1

rz
+ 1

√
�
6

√
������������������������������������������������
( 1
rz
+1)(ρθ−tp,i)4

t2p,i(2ρθ−tp,i)2 + ( 1
rθ
+1)(ρθ−tp,i)2(ρθ−2ρz+tp,i)2

t2p,i(2ρz−tp,i)2 + 2(ρθ−tp,i)3(ρθ−2ρz+tp,i)
t2p,i(2ρz−tp,i)(2ρθ−tp,i)

√ (56)

All the stress components and equivalent stress can be
obtained by back substitution of pi. The collection of εθ,i and
εz,i under different step i formed the loading path that the M-K
model needs.

2.4 M-K Model
After acquiring the loading path at the pole point, the necking
prediction can be started. Hutchinson and Neale (1978) gave a
modified M-K model, which is shown in Figure 4.

The necking speed in Zone b is greater than in Zone a. The
fracture criterion can be expressed as follows (Barata da Rocha
et al., 1985; Graf and Hosford, 1990):

Ci � dεrb,i
dεra,i

> 10 (57)

By discretising, the following is derived:

Ci � εrb,i − εrb,i−1
εra,i − εra,i−1

> 10 (58)

Once the fracture criterion is fulfilled, the material is deemed
to be necking.

2.4.1 The Imperfection Factor
The initial imperfection factor is defined as follows:

f0 � tb0
ta0

(59)

where a, b are the subscripts indicating Zone a and b, and tb0,
ta0 are the initial thickness of these zones. f0 is a material

constant to describe the defect in the material and can be
obtained by regression. The imperfection factor is defined as
follows:

fi � tb,i
ta,i

(60)

Subsequently the relationship between fi and f0 can be
derived as follows:

εra,i � ln(ta,i
ta0

)0ta,i � ta0 exp(εra,i) (61)

εrb,i � ln(tb,i
tb0
)0tb,i � tb0 exp(εrb,i) (62)

fi � tb,i
ta, i

� f0 exp(εrb,i − εra,i) (63)

2.4.2 Strain and Stress Analysis in Zone a
Zone a is applied by external loading. Thus, its strain and stress
state are the same as the macroscopic geometric model in the
previous section:

εθa,i � εθ,i, εza,i � εz,i, εra,i � εr,i

σθa,i � σθ,i, σza,i � σz,i

In order to calculate the strain and stress state in Zone b,
the compatibility and equilibrium relations are applied in
the ntr coordinates. Thus, it is necessary to transform
Zonea’s strain and stress components from zθr
coordinates to ntr coordinates. Matrix notations are used
to describe the transformation (Ganjiani and Assempour,
2008).

σntr
a,i � Tiσ

zθr
a,i T

T
i (64)

εntra,i � Tiε
zθr
a,i T

T
i (65)

where

σzθr
a,i � ⎡⎢⎢⎢⎢⎢⎣ σza,i 0 0

0 σθa,i 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ εzθra,i � ⎡⎢⎢⎢⎢⎢⎣ εza,i 0 0
0 εθa,i 0
0 0 εra,i

⎤⎥⎥⎥⎥⎥⎦

FIGURE 4 | Schematic diagram of the M-K model.
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σntr
a,i � ⎡⎢⎢⎢⎢⎢⎣ σna,i σnta,i 0

σtna,i σta,i 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ εntra,i � ⎡⎢⎢⎢⎢⎢⎣ εna,i εnta,i 0
εtna,i εta,i 0
0 0 εra,i

⎤⎥⎥⎥⎥⎥⎦
Ti � ⎡⎢⎢⎢⎢⎢⎣ cos(φi) sin(φi) 0

−sin(φi) cos(φi) 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
φi is the angle between axes n and z, which changes during the
loading process.

As shown in Figure 5, φi can be calculated from the geometry
relation:

tan(φi) � lz,i
lθ,i

� lz0
lθ0

exp(εza,i
εθa,i

) � tan(φ0)exp(εza,iεθa,i
) (66)

Note that the width of Zone b is neglected.

2.4.3 Strain and Stress Analysis in Zone b
The stress and strain states in Zone b are calculated from
Zone a through compatibility of strain and force
equilibrium:

εtb,i � εta,i (67)
dεtb,i � εtb,i − εtb,i−1 (68)

σnb,i � σna,i
fi

� σna,i
f0exp(εrb,i − εra,i) � F1(εrb,i) (69)

σntb,i � σnta,i
fi

� σnta,i

f0exp(εrb,i − εra,i) � F2(εrb,i) (70)

where the capital F represents the functional relation with
unknowns in its bracket. In addition to the stress components,
all the strain and strain increment components can also be
expressed in the form of F(εrb,i):

εnb,i � −(εtb,i + εrb,i) � F3(εrb,i) (71)
dεnb,i � F3(εrb,i) − εnb,i−1 � F4(εrb,i) (72)
dεrb,i � εrb,i − εrb,i−1 � F5(εrb,i) (73)

Eq. 23 in Zone b can be transformed as follows:

dεnb,i + dεtb,i − 2dεntb,isin(2φi) + dεnb,icos(2φi) − dεtb,icos(2φi)
rθ[σnb,i + σtb,i + (σnb,i − σtb,i + 2rzσnb,i − 2rzσtb,i)cos(2φi) − (2σntb,i + 4rzσntb,i)sin(2φi)]
� dεnb,i + dεtb,i + 2dεntb,isin(2φi) − dεnb,icos(2φi) + dεtb,icos(2φi)
rz[σnb,i + σtb,i + ( − σnb,i + σtb,i − 2rθσnb,i + 2rθσtb,i)cos(2φi) + (2σntb,i + 4rθσntb,i)sin(2φi)]

� dεnb,i sin(2φi) − dεtb,i sin(2φi) + 2dεntb,i cos(2φi)
(2rzθ + 1)(rθ + rz)(2σntb,i cos(2φi) + σnb,i sin(2φi) − σtb,i sin(2φi))

(74)

There are only two equivalence relations and three unknowns
(σtb,i, dεntb,i, εrb,i) in Eq. 74. Thus, dεntb,i and σtb,i cannot be solved
explicitly and have to be expressed by εrb,i:

dεntb,i � F6(εrb,i) (75)
σtb,i � F7(εrb,i) (76)

The equivalent stress and strain increment can be calculated on
non-principal axes of anisotropy to make use of the constitutional
relationship. The transformed expression of equivalent stress and
strain increment components on the axes ntr is derived. The stress
and strain components in ntr coordinates are as follows:

σntr � Tiσ
zθrTT

i → σzθr � TT
i σ

ntrTi (77)
dεntr � Tidε

zθrTT
i → dεzθr � TT

i dε
ntrTi (78)

where the strain and stress are in matrix form:

σzθr
b,i � ⎡⎢⎢⎢⎢⎢⎣ σzb,i σzθb,i 0

σθzb,i σθb,i 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ dεzθrb,i � ⎡⎢⎢⎢⎢⎢⎣ dεzb,i dεzθb,i 0
dεθzb,i dεθb,i 0
0 0 dεrb,i

⎤⎥⎥⎥⎥⎥⎦
σntr
b,i � ⎡⎢⎢⎢⎢⎢⎣ σnb,i σntb,i 0

σtnb,i σtb,i 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦ dεntrb,i � ⎡⎢⎢⎢⎢⎢⎣ dεnb,i dεntb,i 0
dεtnb,i dεtb,i 0
0 0 dεrb,i

⎤⎥⎥⎥⎥⎥⎦
Ti � ⎡⎢⎢⎢⎢⎢⎣ cos(φi) sin(φi) 0

−sin(φi) cos(φi) 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
The solutions are shown in vector form:

σb,i � ⎡⎢⎢⎢⎢⎢⎣ σzb,i
σθb,i

σzθb,i

⎤⎥⎥⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(φi)2 sin(φi)2 −sin(2φi)
sin(φi)2 cos(φi)2 sin(2φi)
sin(2φi)

2
−sin(2φi)

2
cos(2φi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣
σnb,i

σtb,i
σntb,i

⎤⎥⎥⎥⎥⎥⎦
� Qiσb,i

′ (79)

dεb,i � ⎡⎢⎢⎢⎢⎢⎣ dεzb,i
dεθb,i
2dεzθb,i

⎤⎥⎥⎥⎥⎥⎦
�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(φi)2 sin(φi)2 −sin(2φi)
sin(φi)2 cos(φi)2 sin(2φi)
sin(2φi)

2
−sin(2φi)

2
cos(2φi)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣
dεnb,i
dεtb,i
2dεntb,i

⎤⎥⎥⎥⎥⎥⎦ � Qidεb,i
′

(80)
Note that σb,i′ and dεb,i′ can be written in the form of F(εrb,i):

σb,i
′ � ⎡⎢⎢⎢⎢⎢⎣F1(εrb,i)

F7(εrb,i)
F2(εrb,i) ⎤⎥⎥⎥⎥⎥⎦ dεb,i

′ � ⎡⎢⎢⎢⎢⎢⎣ F4(εrb,i)
εtb,i − εtb,i−1
2F6(εrb,i) ⎤⎥⎥⎥⎥⎥⎦

FIGURE 5 | Top views of the M-K model in (A) undeformed stage and
(B) deformed stage.
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Thus, by substituting Eqs 79, 80 into Eqs 24, 28, respectively,
the equivalent stress and strain increment can be expressed in ntr
axes:

�σb,i �
���������������(pQiσ′b,i) · Qiσ′b,i

√
� F8(εrb,i) (81)

d�εb,i �
������������������(p−1Qidε′b,i) · Qidε′b,i

√
� F9(εrb,i) (82)

The total strain is as follows:

�εb,i � �εb,i−1 + d�εb,i � F10(εrb,i) (83)
The constitutional relationship in Eq. 55 can be transformed

as follows:

F8(εrb,i) � σ0 +KF10(εrb,i)n (84)

It is clear that Eq. 84 is a non-linear equation with εrb,i as the
only unknown. Solving εrb,i and substituting the result into all of
the F functions, the stress and strain state in zone b can be
determined.

2.5 Numerical Process
All the equations necessary for the failure prediction model have
been derived in the previous sections and the procedure of
utilizing the model is demonstrated in the flow chart of
Figure 6. The core of the model requires the solution of three
non-linear equations, Eq 38, 51, 84. The equations are simplified
by eliminating to only one unknown that can be solved
numerically.

3 CASE STUDIES

3.1 Case Description
In the case studies, the derived model was applied on two tubes
made from annealed C26800 zinc copper and AISI 1215 carbon
steel, the material properties and geometry parameters of which
are shown in Table 1 and Table 2 (Hwang and Wang, 2009). rzθ

FIGURE 6 | Flow chart of the failure prediction model.

TABLE 1 | Mechanical properties of C26800 and AISI 1215.

Material rz rθ σ0 [MPa] K [MPa] n

C26800 0.805 0.592 0 526.275 0.451
AISI 1215 0.464 0.747 0 474.481 0.165

TABLE 2 | Geometry parameters of the tube.

Material R0 [mm] t0 [mm] Rd [mm] L [mm]

C26800 25.53 1.21 15 60
AISI 1215 25.41 1.48 15 60

FIGURE 7 | Effect of the initial imperfection factor f0 on the BHL.
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is not a commonly used parameter as it is challenging to
experimentally determine. In the present model, rzθ is
evaluated as the average of rθ and rz as it is found to
negligibly affect the results, which will be explained in the
next section.

3.2 Results and Discussion
Hwang and Wang (2009) conducted hydro-bulging tests on
C26800 and AISI 1215. They provided the evolutions of
bulging height, inner pressure, and pole point thickness.
The last bulging height recorded for each test was taken as
the BHL. Thus, the BHL of C26800 and AISI 1215 are 11.1 and
5.7 mm, respectively. The failures in the experiments are
developed along the axial direction. Therefore, Figure 7
used the derived model to predict the BHLs for both tubes
under different f0 and fixed φ0 � 90°. It is found that when f0

are 0.932 and 0.982, respectively, the BHL predictions are
corresponding to the experimental result. The factor can be
used in other studies that are associated with the M-K model,
such as a post-FE failure prediction module (Gao et al., 2017).

After determining f0 of each tube, Figure 8 studied the
influence of φ0 to explain why the failure appeared along the
axial direction. In Figure 8, both curves of C26800 and AISI
1215 undergo an increase, a plateau, and a decrease. Both
curves reach their minimum at φ0 � 90°, which suggests that
the failure should appear in the axial direction first and agrees
with the experimental result. In fact, in experiments on many
other materials, crack formations are also along the tube axis
(Mori et al., 2007; Zhu et al., 2020). Thus, when utilizing the
model, it is reasonable to cease the iteration of φ0 and set it to a
constant value. Once φ0 � 90°, all the terms including rzθ are
eliminated in the model. Consequently, the value of rzθ is not
an essential factor and the use of an average of rθ and rz in the
previous section is a reasonable assumption.

Figure 9 and Figure 10 predict the required pressure and pole
point thickness evolution during the predictions under given f0

and φ0 and then compare the data with experimental results. In
Figure 9, AISI 1215 shows a faster growth and a higher BHL than
C26800. In Figure 10, both tubes undergo a steady pole point
thickness decrease. The average relative error for the required
pressure and the pole point thickness are 3.81% and 5.75%,
respectively. Thus, it is reasonable to say that the model can
be used to reflect the process of hydro-bulging precisely.

4 CONCLUSION

A failure model to predict the bulging limit of the tube hydro-
bulging test is needed to evaluate the formability of a tubular
material without conducting real tests. In the present study, a
failure prediction model for the tube hydro-bulging test was
developed by the combination of Hill’s orthogonal anisotropic

FIGURE 8 | BHL under changing.φ0

FIGURE 9 | Required pressure evolution during the hydro-bulging
process.

FIGURE 10 | Pole point thickness evolution during the hydro-bulging
process.
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model, the geometry model, and the M-K model. The main
conclusions can be summarized as follows:

• Given f0, the model can predict the BHL of the tube hydro-
bulging test. On the contrary, the model can also be used to
fit f0 once the BHL is known. Figure 7 is an example of the
mapping relation between the BHL and f0.

• By assuming that the necking can only appear along the
axial direction, the model can be simplified by stopping the
iteration of φ0 and setting φ0 � 90°.

• In the case studies, the predictions of the required pressure
and the pole point thickness evolution demonstrate
marginal errors compared with the experimental results,
which are 3.81% and 5.75%, respectively. This verified the
validity of the model.
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