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Periodic structures exhibit frequency band gaps, in which the propagation of

certain waves is attenuated. A periodic structure can be designed such that its

band gaps cover the excitation frequencies and its vibration can be reduced.

However, perfectly periodic structures do not exist in reality due to inevitable

deviations in the material and geometric properties. The vibration reduction

performance can be significantly altered by the disorder, as reported by various

authors. Therefore, it is favorable to find approaches that can retune disordered

structures to the best possible state. In this way, robust vibration reduction

performance can be achieved. In this study, a sorting strategy is proposed to

rearrange the disordered unit cells. The aim is to reduce the performance

change of vibration reduction. Specifically, a diatomic lumped-mass model has

been used, where one mass coefficient in each unit cell is subject to random

error. The forced response is computed, and the frequency-averaged spatially

maximum amplitude is used as the indicator to quantify the influence of the

disorder. Then, we reveal the importance of the deviation at different unit cells

by a global sensitivity analysis. A variance-based approach termed Sobol’s

sensitivity analysis is used. The results show that the deviation in the unit cell

nearest to the excitation source is of the greatest importance. A theoretical

interpretation from the perspective of wave propagation is given. Eventually, a

simple sorting strategy is proposed, and the rule is to ensure that the unit cell in

the first position has the smallest deviation. This strategy can significantly

improve the similarity of the dynamic characteristics between the nominal

and disordered structures. Overall, the conducted work provides a reference to

the manufacture and assembly of periodic structures and a further

understanding of the vibration reduction in band gaps.
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1 Introduction

Periodic structures exhibit spatial periodicity in the material

phases, the internal geometry, or the boundary conditions

(Hussein et al., 2014) and are frequently encountered in

engineering, such as multi-span beams, stiffened plates, and

bladed disks. One of the most important characteristics is that

periodic structures display frequency band gaps, in which the

propagation of certain waves will be attenuated. Therefore, they

are widely applied in vibration and noise control (Sánchez-Pérez

et al., 1998; Richards and Pines, 2003; Collet et al., 2009), energy

harvesting (Carrara et al., 2013; De Ponti et al., 2020), seismic

protection (Huang and Shi, 2013; Krödel et al., 2015), and

acoustic cloaking (Cummer and Schurig, 2007), to mention a

few, and of increasing importance in modern technology

(Kushwaha, 2016).

In reality, periodic structures are not perfectly periodic due to

inevitable deviations in the material and geometric properties.

The effects of disorder on band gaps and vibration reduction are

critical and have attracted a great deal of attention. When Liu

et al. (2000) first proposed the concept of locally resonant

phononic crystals (PCs), an interesting result was shown

concurrently that disordered periodic structures still work in

band gaps. Wu et al. (2014) proved that the Bloch theorem still

holds in the perspective of expectation. More detailed issues on

the sensitivity to the disorder have been extensively explored for

different models, objective functions, and band gap formation

mechanisms (Jensen, 2003; Kwan et al., 2003; Li et al., 2006;

Hussein et al., 2007; Achaoui et al., 2013; Wagner et al., 2016; Jia

et al., 2018; De Ponti et al., 2019). Kwan et al. (2003) found that

the quality of the photonic waveguide with cylindrical inclusions

is very sensitive to the position and size randomness in the

boundary layer. Achaoui et al. (2013) reported that the locally

resonant band gap does not depend on the lattice symmetry and

is strikingly resilient to the position randomness of pillars. In

contrast, the Bragg band gap disappears with the random array.

Wagner et al. (2016) presented experimental studies for

investigating the influence of disorder on the hypersonic and

thermal properties of two-dimensional PCs. De Ponti et al.

(2019) demonstrated numerically and experimentally that

perturbing the periodicity inside structures does not

significantly affect its attenuation capabilities. However, only a

few research studies (Ma et al., 2022) investigated the effects on

wave propagation and vibration response from a statistical point

of view. Moreover, the general conclusions on the effects of

disorder and the corresponding solutions to the possible

outcomes are still absent, to the best of our knowledge.

This work hereby concentrates on the influence of random

disorder on periodic structures and gives engineering guidance.

A diatomic lumped-mass model is used, where one of the mass

parameters in each unit cell is subject to random error. A

harmonic excitation with frequency in band gaps is applied at

one tip, while the other tip is free. This model is used to find

general conclusions and accelerate calculations because it is

rather simple. The forced response of the model is computed

within the stop band. The frequency-averaged spatially

maximum amplitude is used as the indicator to quantify the

influence of the disorder. The statistical results based on the

indicator with different disorder strengths are described. Then,

we reveal the importance of deviations of cells at different

positions by global sensitivity analysis (GSA). Eventually, a

simple sorting strategy is proposed for improving the

similarity of the dynamic characteristics between the nominal

and disordered structures. The prospect of the strategy is given. It

has the potential application for the periodic structures

assembled by modules, for example, by piezoelectric materials

with shunt circuits. It can also guide the secondary modification

when the periodic structure is manufactured as a whole. Overall,

the conducted work provides a reference to the manufacture of

periodic structures and a further understanding of the vibration

reduction in band gaps.

This study is structured as follows: In Section 2, a diatomic

lumped-mass model is used. Based on the model, structural

dynamics description and wave propagation description are

given. In Section 3, the effects of random disorder from the

perspectives of modal and wave propagation are presented. The

mean response amplification factor in the target band is proposed

to quantify the vibration suppression performance and calculated

by frequency response functions (FRFs). The statistical

characteristics with different degrees of the disorder are

obtained. In Section 4, the method of Sobol’ is applied to

calculate the global sensitivity index. A theoretical

interpretation from the perspective of wave propagation is

given. In Section 5, a sorting strategy is proposed to inhibit

the random disorder and protect the periodicity by decreasing

the deviation of vibration reduction. Two tests with different

disorder strengths are conducted to validate the strategy. In

Section 6, the feasibility and the possible applications are

discussed. An application scenario of the periodic beam is

described.

2 One-dimensional diatomic
lumped-mass model

Bragg band gaps are generated by the interaction of incidents

and scattered waves in periodic structures (Hussein et al., 2014).

One-dimensional (1D) diatomic lumped-mass models are used

extensively to simulate periodic structures and form Bragg band

gaps. It is a periodic repetition of a unit cell comprising two

different masses. It should be noted that the unit cell, the simplest

repeating unit forming this model, is chosen by splitting equally

two neighboring masses (in red color) with parameter ma shown

in Figure 1A. The parameter of center mass (in orange color) is

mb. The spring parameters share the same index with the mass on

the left side, which is ka and kb. In this unit cell, although there are
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three masses, leading to the contradiction with the

diatomics, only two of them are independent, which will be

explained later. In effect, the choices of the unit cell are not

unique and do not influence the dispersion relation. n unit cells

constitute this model in series. We distinguish them by the

position, which is numbered from 1, the leftmost, to n, the

rightmost shown in Figure 1B. The boundary conditions are

free at both ends.

2.1 Structural dynamics description

The equation of motion for the j-th mass (j = 1, 2, . . . , 2n + 1.

For the center mass of the cell in position i, j = 2i.) from themodel

in Figure 1 is given by

mj€uj t( ) + kj−1 + kj( )uj t( ) − kjuj+1 t( ) − kj−1uj−1 t( ) � fj, (1)

where uj(t) is the displacement of the j-th mass mj, kj is the

constant of the j-th spring, and fj is the external force loaded on

the j-th mass. According to the periodicity of structure, the value

of parameters are

mj �

ma

2
, j � 1, 2n + 1

mb, j is even

ma, otherwise

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ , (2)

kj �
0, j � 0, 2n + 1
kb, j is even
ka, otherwise

⎧⎪⎨⎪⎩ . (3)

And so on, the equation ofmotion for eachmass in the structure can be

obtained. Under the assumption of harmonic solution, u(t) � ~ueiωt,

f(t) � ~feiωt, where ~u and ~f are the amplitudes of displacement and

force, and the equations of motion can be written in the matrix form:

FIGURE 1
1D diatomic lumped-mass model. (A) Unit cell, two types of masses with parameters ma and mb are marked by red and orange colors. (B) 1D
diatomic lattice containing n cells in series distinguished by position.

FIGURE 2
Dispersion curves showing the real part and imaginary part of
propagation constant kd. The start frequency and cut-off
frequency of the band gap are indicated by the dashed lines. The
parameters of the unit cell arema = 1,mb = 2, and ka = kb = 20.

FIGURE 3
Variation of natural frequencies for 104 samples with 10%
disorder strength. The pink diamonds are nominal natural
frequencies, and the red bars represent the range of variation.
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FIGURE 4
Variation of forced response at frequencies: (A) f = 4.7, (B) f = 4.9, (C) f = 5.1, (D) f = 5.4, (E) f = 5.7, and (F) f = 6.

FIGURE 5
Wave mode shapes at frequency (A) f = 4.7 and (B) f = 6.1. (C) Proportion of magnitudes of wave mode shapes for Mass 1, 2, and 3 in the
band gap.
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−ω2M ~U + K ~U � ~F, (4)
where ~U � [~u1, ~u2, . . . , ~u2n+1]T, ~F � [~f1,

~f2, . . . ,
~f2n+1]T,

M �

ma
2

mb

ma

mb

1

mb

ma
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2n+1

, (5)

K �

ka −ka
−ka ka + kb −kb

−kb 1 1
1

ka + kb −kb
−kb kb

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2n+1

. (6)

For free vibration, the external force is 0, and Eq. 4 becomes

K − ω2M( ) ~U � 0 (7)

The only non-trivial solutions of Eq. 7 correspond to the values of

ω2 that satisfy the characteristic equation

K − ω2M
∣∣∣∣ ∣∣∣∣ � 0 (8)

Then, the natural frequencies and modal shapes can be obtained.

Solving Eq. 4 directly when harmonic excitation is loaded gives

the amplitudes of displacement response,

~U � K − ω2M( )−1 ~F (9)

2.2 Wave propagation description

Individual mass and spring in the lumped-mass model are

analyzed to get the transfer matrix. From the relationship of

forces and displacement at both ends, and the harmonic

vibration assumption, equations of motion are obtained. For

mass,

uR

FR
[ ] � 1 0

−mω2 1
[ ] uL

FL
[ ], (10)

or

vR � TmvL, (11)

FIGURE 6
Probability density function with disorder strength varies
from 1% to 10%. For each situation, the PDF is estimated from the
results of 2 × 104 samples. The reference line indicates �β � 1.

FIGURE 7
Statistical characteristics with different disorder strength. (A) Variation ofmeans, 99.9th percentiles, and standard deviations. (B)Ratio of areas at
two sides of the reference line in PDFs.
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for spring,

uR

FR
[ ] � 1

1
k

0 1

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ uL

FL
[ ], (12)

or

vR � TkvL, (13)

where uL, uR, FL, and FR are the displacement and the forces acting

on the left and right ends, m and k are the parameters of mass and

spring, vL and vR are the state vectors of left and right ends, Tm and

Tk are the transfer matrix of mass and spring, respectively.

The unit cell in Figure 1 is composed of masses and springs in

series; thus, the transfer matrix of unit cell Tuc is the product of

transfer matrix of each component expressed as

vR � TucvL, (14)
Tuc � Tma

2
TkbTmb

TkaTma
2
. (15)

According to the Bloch theorem, when a free wave travels in the

periodic structure, the following condition should be satisfied:

vR � λvL (16)
where λ = eikd is a Floquet multiplier, k is wavenumber, and d is

lattice constant. Substituting Eq. 16 in Eq. 14 leads to the

following eigenvalue problem,

Tuc − λI( )vL � 0 (17)

By solving this eigenvalue problem, the eigenvalues appear in

pairs of (λ, 1λ) representing a positive- and a negative-going wave

along the propagating direction and the eigenvectors correspond

to wave shapes. The eigenvalues with ‖λ‖ = 1 and ‖λ‖ ≠ 1

correspond to propagating waves and evanescent waves,

respectively (Fan, 2016). Actually, for the case of the 1D

diatomic lumped-mass model, the expressions of the

boundaries of the band gap can be obtained easier by using

the equations of motion for two neighboring masses and the

Bloch theorem directly (Hussein et al., 2014). Also, the range of

the first Bragg band gap is���������������������
ma +mb( ) ka + kb( ) − ��

Δ
√

2mamb

√
,

���������������������
ma +mb( ) ka + kb( ) + ��

Δ
√

2mamb

√⎛⎝ ⎞⎠,

(18)
where

FIGURE 8
Global sensitivity indices of ten inputs corresponding to
10 cells marked by position number to the indicator.

FIGURE 9
Proportion of position where the mass has maximum
displacement response in the target band with and without the
disorder.

FIGURE 10
Positions where the mass has maximum displacement
response in the target band for 200 samples. The yellow line refers
to the frequency, where the mass changes from the first to the
second for the nominal model.

Frontiers in Mechanical Engineering frontiersin.org06

Li et al. 10.3389/fmech.2022.930946

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2022.930946


Δ � ma +mb( ) ka + kb( )( )2 − 16mambkakb. (19)

3 Influence of disorder

We consider the 1D lumped-mass model described before

with dimensionless parameters n = 10, ma = 1, mb = 2, and ka =

kb = 20. The dispersion curves are depicted in Figure 2 showing

the real part and imaginary part of propagation constant kd.

The ranges of frequency where the imaginary part of kd is non-

zero correspond to the band gaps. As the result of the Bragg

scattering, the band gaps only occur at wavelengths that are of the

same order as the unit cell size. In Figure 2, the minimum

wavelength in the range of the band gap equals 2d. In

addition, there is no local resonator in the model; thus, it is

impossible to generate a locally resonant band gap. Hence, the

band gap can be classified as the Bragg band gap.

The random disorder is introduced in every center mass mj

(j = 2i, i is position number) of unit cells by supposing thatmj ~U

((1 − α)mb, (1 + α)mb), where α is defined as disorder strength.

FIGURE 11
PDFs of the indicator with and without sorting strategy when
disorder strength is 10%.

FIGURE 12
Variation of indicator caused by the sorting strategy for 2 ×
104 samples when disorder strength is 10%. The color red (green)
means an increase (decrease) of value.

FIGURE 13
PDFs of the indicator with and without sorting strategy when
disorder strength is 3%.

FIGURE 14
Variation of the indicator caused by the sorting strategy for
2 × 104 sampleswhen disorder strength is 3%. The color red (green)
means an increase (decrease) of value.
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3.1 Modal analysis

For 104 samples with α = 10%, the natural frequencies are

calculated by Eq. 8 and shown in Figure 3. The nominal natural

frequencies are marked by diamond, and the bars are the range of

variation of natural frequencies for the samples. The 1st Bragg

band gap of the model without disorder is also obtained as a

reference by Eq. 18, which is (4.47 and 6.32) consistent with the

result from Figure 2. It can be seen from Figure 3 that when

disorder does not exist, there is no natural frequency in the Bragg

band gap, and the 11th natural frequency is coincident with the

stop frequency of the band gap. Because this finite structure with

free ends is symmetric, the natural frequencies are within or at

the bounds of each propagation zone (Mead, 1975). Moreover,

the influence of disorder on natural frequencies at the beginning

of each propagation zone can be almost ignored but becomes

gradually important with the increase of order. The range of

variation of the 10th natural frequency, which is close to the start

frequency of band gaps, has overlapping areas with the Bragg

band gap.

Next, we consider forced response and calculate amplitudes

of displacement at some specific frequencies within the band

gap. The responses are shown in Figure 4, where the red diamond

markers are the amplitudes of the nominal displacement

response. It can be seen that the amplitude of masses in the

same cell decreases with the increase of the number of masses

for all the frequencies. This is the typical characteristic of band

gaps. The propagation of waves is prohibited within the band

gaps exponentially; thus, the energy is confined near the origin

of excitation and the structural response tends to be localized

to the immediate vicinity of the excitation source (Langley

et al., 1997).

We can also notice that the position of maximum amplitude

is the second mass for f = 4.7 and 4.9. For the rest of the

frequencies it is the first mass. This can be explained from the

perspective of wave mode. We calculated the wave mode shapes

in the 1st Bragg band gap. On a special note, we call that Mass 1,

2, and 3 are components of the unit cell, not the structure, and

Mass 2 is the center mass. When cells are assembled to a periodic

structure, Mass 2 corresponds to masses in the structure with an

even index, while Mass 1 and 3 do not correspond directly to

masses in the structure except the first and last masses. Mass

3 must be withMass 1 in the next unit cell together to constitute a

whole mass. Therefore, the amplitude of Mass 3 is equal to that of

Mass 1 in the next cell, of which the amplitude is decided byMass

1 in this cell according to Eq. 16. So, Mass 3’s amplitude is

decided by Mass 1’s in the same cell, and only Mass 1 (or Mass 3)

and Mass 2 are independent.

The wave mode shapes at frequencies f = 4.7 and f = 6.1 are

shown in Figure 5A, B. These two wave mode shapes change with

frequencies. Then, the proportion of magnitudes of wave mode

shapes in the band gap is calculated and presented in Figure 5C. It

can be seen that the proportion of Mass 2 is prominent at the

beginning, while the proportion of Mass 1 is almost zero. With

the increase of frequency, the proportion of Mass 2 decreases

gradually until to zero, and Mass 1 begins to dominate. Actually,

we can find the same phenomenon from the result of forced

response in Figure 4. The amplitudes of masses with an even

number, which corresponds toMass 2, are the largest in each unit

cell for f = 4.7, 4.9 and turn to be smaller gradually than those of

masses corresponding to Mass 1 for f = 5.1, 5.4, 5.7, 6.

For the samples with the disorder, the blue bars in Figure 4

are the ranges of variation of amplitudes. It is obvious that

amplitudes of displacement are affected by random disorder,

and the distributions of ranges differ in positions and

frequencies. It is especially noted that there are always cases,

where the maximum upper cap of bars exceeds the maximum red

diamond, which means the maximum amplitude is amplified.

Compared with the nominal situation, the difference for the

maximum amplitude position is that it changes to the first mass

FIGURE 15
Example of a sorting strategy, (A) is a piezoelectric beam, all the piezopatch with a shunted capacitor in yellow are the same; (B) is the practical
one with random errors in the capacitances; After the sorting strategy applied in (B), the final order is shown in (C).
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for f = 4.9 in rare cases, but still in the first unit cell. In vibration

control, the amplification of vibration is expected to be avoided.

Hence, it is necessary to describe the variation of maximum

amplitude quantitatively and figure out the effects of random

disorder on it.

3.2 Indicator of vibration reduction
performance

To quantify the influence of disorder on the maximum

response in a certain band gap (fa, fb), the frequency-averaged

spatially maximum response �β is proposed as follows,

�β � 1
fb − fa

∫fb

fa

maxUd

maxUo
dω (20)

where ω is the excitation frequency and Ud and Uo are the

amplitudes of displacement when the structure is disordered

and ordered. This indicator is normalized by the nominal

maximum response and averaged in the frequency domain.

So, it estimates the overall deviation of dynamic performance

in the target band.

In this work, we discretize the frequency band (fa, fb)

uniformly by N frequency points and calculate the maximum

response by FRFs at each frequency. The frequency-averaged

spatially maximum response �β turns out to be

�β � 1
N

∑N
i�1

maxUd

maxUo
ωi( ) (21)

It needs to be mentioned that the target frequency band does

not always coincide with the band gap (fa, fb). The magnitude

of the imaginary part of the propagation constant kd reflects

the degree of attenuation. At the beginning and ending parts

of the band gap, the magnitude is small (Hussein et al., 2014),

and so the vibration attenuation is limited. Therefore, it is

preferred that the target band is a proper subset of band gaps.

In this work, we suppose the target band is (fa + Δ, fb − Δ),
where Δ = 0.1 (fb − fa).

3.3 Stochastic results

We consider that disorder strength α varies from 1% to 10%.

For each situation, the frequency-averaged spatially maximum

response of 2 × 104 samples is calculated. The estimated

probability density functions (PDFs) are shown in Figure 6. �β �
1 means the same vibration performance with the nominal

structure. �β> 1 means the response amplification and �β< 1 is

the opposite. With the increase of α, some important results are

noticed. First, the majority values of �β is centered at the nominal

value 1. Specially, the means shown in Figure 7A do not change

significantly but still increase slowly. Second, the areas between

PDFs and the x axis at the two sides of the reference line are

almost the same. This is checked by the ratio of areas shown in

Figure 7B. So, the probability of �β> 1 and �β< 1 is almost equal.

The PDFs become flatter, which is consistent with the increase in

standard deviation shown in Figure 7A. Thus, �β greater than

1 originally will be more likely to be bigger. In addition, the range

of �β is enlarged. The 99.9th percentile shown in Figure 7A

increases even with the increase of disorder strength.

Specifically, when α = 10%, the 99.9th percentile nearly

reaches 1.1.

Once a periodic structure is manufactured, the disorder must

exist, and the stochastic results tell that we cannot foresee the

performance variation of this structure. The amelioration and

deterioration of performance are both possible. It might perform

better or worse with the same probability. But with greater

disorder strength, the deviation of vibration performance from

the nominal structure is bigger and the worst cases get worse in

terms of probability. So, the disorder strength needs to be

controlled to a minimum.

4 Global sensitivity analysis

4.1 Variance-based method

In this model, there are 10 independent variables (center

mass parameters of 10 cells) distinguished by the position

number. To investigate the impact of these variables on the

indicator defined before, GSA is used. GSA is a better choice than

local sensitivity estimated by the partial derivative. Derivatives

are only informative at the base point, where they are computed

(Saltelli et al., 2008). However, we need to estimate the

importance of variables in an n-dimensional box, not only at

a specific reference point. Moreover, the local sensitivity is not

able to capture the interaction among parameters (Christopher

Frey and Patil, 2002).

Variance-based methods have assessed themselves as

versatile and effective for sensitivity analysis and look at the

entire factor distribution, using customary Monte Carlo methods

of various sophistication modes (Saltelli et al., 2010). Among

them, Sobol’ method (Sobol, 2001) is extensively applied to

calculate the global sensitivity index. Supposing the model f(x)

defined in In, where I is the unit interval [0, 1], the variance-based

framework is described by the ANOVA-representation,

f x( ) � f0 +∑n
s�1

∑n
i1 </< is

fi1/is xi1, . . . , xis( ), (22)

where 1 ≤ i1 < / < is ≤ n, and

∫1
0

fi1/is xi1, . . . , xis( )dxk � 0 for k � i1, . . . , is. (23)
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It can be derived from Eq. 23 that the members in Eq. 22 are

orthogonal and can be expressed as integrals of f(x). Therefore,

by squaring Eq. 22 and integrating, we get

D � ∑n
s�1

∑n
i1 </< is

Di1/is, (24)

where

D � ∫f2dx − f2
0, Di1/is � ∫f2

i1/is
dxi1/dxis. (25)

D and Di1/is are the variances of f(x) and fi1/is. Equation 24

means the variance of output is decomposed into

fractions attributed to inputs. Then, sensitivity index is

defined as

Si1/is �
Di1/is

D
, (26)

where the integer s is the order of the index. This index reflects

the proportion of variance, which means the importance of

impact on the output. The bigger the index, the greater the

change of output produced by the variation of corresponding

inputs and vice versa.

Under this framework, the ranking of input variables can be

determined. In practice, the first-order indices also termed the

main effects (ME), and the total sensitivity index (TSI) are

computed, thus giving good information on the model

sensitivities (Iooss and Lemaître, 2015). For the variable xj, the

ME is Sj. It represents the share of the output variance that is

induced by the variable xj alone. A highMEmeans that a variable

is important, but a lowME does not mean that the variable has no

influence, as it can be involved in interactions (Wu et al., 2019).

The TSI,

STj � ∑n
s�1

∑n
i1 ,...,is{ } ∩ j{ } ≠ ∅

Si1/is. (27)

contains all the sensitivity indices that xj participates in, including

the first-order index Sj. It is a measure of the share of the variance

that is removed from the total variance when the considered

variable is fixed to its reference value (Christen et al., 2016).

Therefore, variables with low TSI can be considered not

influential.

4.2 Parametric sensitivity

We employ Sobol’method to calculate the ME and TSI of the

10 inputs mi (j = 2i, i = 1, 2, . . . , 10. i is the position number,

specifically, Position 1 is the closest to the excitation source, and

Position 10 is the farthest.) to the output �β. Sobol’ sequence is

used to get 1.5 × 105 samples uniformly distributed over the 10-

dimensional box. Sampling based on Sobol’ sequences performs

better than other common sampling techniques for most of the

analyzed aspects (Burhenne et al., 2011).

Figure 8 shows the results of ME and TSI. There are

10 inputs, which correspond to 10 cells, respectively. It is

obvious that the ME and TSI of the input at Position 1 are

prominent. Their values all exceed 0.9, while the rest is less than

0.1, and almost 0, when the position number is greater than 2.

This means that the model output (frequency-averaged spatially

maximum response) is most sensitive to the variation in Position

1. For the input at Position 1, the value of TSI is slightly greater

than that of ME, so the main contribution of TSI is the first-order

index (ME) and other order indices are little. This means the

interaction effect of the input at Position 1 with others is weak.

That is to say, if we want to achieve the biggest variation of the

output with individual change in a single input, the input at

Position 1 will be expected to be the best choice. And supposing

we changed the input at Position 1, the variation will not increase,

if we keep on changing inputs in other cells. In addition, the ME

and TSI decrease sharply with the increase in position number.

These conclusions can be understood in the view of wave

propagation. In the band gaps, the maximum energy arises in or

near the exciting source, and this energy is little affected by the

more remote parts of the system (Langley et al., 1997).

Specifically, the amplitude decreases dramatically after the

propagation in the first few cells due to the characteristic of

exponential decay. That is to say, only the variations in the first

few cells matter, and other cells far from the excitation point are

not able to influence the maximum energy, which is exactly what

the results of GSA reveal. The position, where maximum energy

arises is verified and shown in Figure 9. It shows the proportion

of positions, where the maximum amplitude occurs in the target

band. The first and second masses take up all the proportion and

they are both in the cell at Position 1. The difference in

proportion between the first and second mass is affected by

the wave mode vector illustrated in Section 3.1. From the

statistical view, the proportion of samples with the disorder is

the same as the nominal situation. It is explained by the

maximum position of 200 disorder samples shown in

Figure 10. The cut-off frequency of the maximum position

varies around that of the nominal case (yellow line). Overall,

the maximum amplitude still takes place in Position 1 in the

disorder situation.

5 Sorting strategy

The control of disorder strength is always difficult to

implement. In contrast, changing the spatial disorder pattern

is possible when the periodic structure is assembled by modules.

We try to sort the order of unit cells to affect the vibration

reduction performance for further finding a possible rule to

decrease the impact of the disorder.

Based on the conclusion of GSA that the cell in the first

position matters most, we propose a sorting strategy, and the rule

is to ensure the minimum parameter deviation in the first
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position (nearest to the excitation source). That is to say, we select

the most “perfect” cell and arrange it in the position nearest to the

excitation to achieve the minimum variation of the most

important factor.

We calculate the PDFs of two tests to validate the strategy. In

the first case, the disorder strength α = 10%, and we take 2 × 104

samples. For each sample it has an original disorder pattern, and

then we apply the sorting strategy. Both the �β before and after

sorting are calculated. The estimated PDFs are shown in

Figure 11. After sorting, the PDF is pulled up clearly and a

peak comes up centered at the reference line corresponding to the

nominal. The PDF of the case α = 10% with a sorting strategy is

similar to that of α = 3% without the strategy. The variation of

every sample is also shown in Figure 12. The variation of the

indicator is presented by vertical segments. The position of two

ends for a segment are the values of the indicator calculated

before and after sorting, and the color red (green) means an

increase (decrease) of value. It is found that the samples with �β

greater or smaller than 1 originally tend to arrive at the situation,

where �β is closer to 1 after sorting.

In the second case, the disorder strength α = 3%, the same

analysis process is conducted. The estimated PDFs are shown

in Figure 13. The pull-up effect of PDF is observed, and the

PDF of α = 3% with the sorting strategy is similar to that of α =

1%. The variation of each sample is shown in Figure 14, where
�β becomes closer to 1 after sorting. The result is the same as

what is obtained in the first case by applying the sorting

strategy, the disorder strength is significantly decreased

regarding the indicator.

The PDF and variation of samples valid the effectiveness of

this sorting strategy that the deviation of the dynamic

characteristics between the nominal and disordered structure

gets smaller. The impact of the random disorder on the vibration

reduction performance diminishes and the disordered periodic

structure is returned.

6 Prospect

The fast-growing popularization of functional meta-

structures brings new possibilities to industries like

transportation, civil, and aerospace. The topics, such as

piezoelectric metamaterials (Degraeve et al., 2015; Cardella

et al., 2016; Fan et al., 2016; Li et al., 2018), rainbow

metamaterials (Tsakmakidis et al., 2007; Krödel et al., 2015;

Meng et al., 2020), and coding metamaterials (Wang et al.,

2016; Li et al., 2020), have drawn a great deal of attention. In

particular, they are all modulated and detachable making the

sorting strategy feasible.

We take a piezoelectric metamaterial shown in Figure 15A as

an example. For the undamped piezoelectric beam, the discrete

dynamic equations are

M 0
0 0

[ ] €X
€V

[ ] + K Kme

KT
me −Cp

[ ] X
V

[ ] � F
Q

[ ], (28)

where X is the displacement vector of mechanical system,V is the

vector of voltage on each pair of electrodes, M and K is the mass

matrix and stiffness matrix of mechanical system, Kme is the

electromechanically coupled matrix, and Cp = CpI, where Cp is

the intrinsic capacitance of piezoelectric material and I is the

identity matrix. F is the external force vector applied to the

mechanical system, and Q is the vector of charge on each pair of

electrodes.

The piezopatch is connected with a shunted capacitor, of

which the capacitance is Ce. For the shunted capacitor,

Q � CeV , (29)

where Ce = CeI. By substituting Eq. 29 into Eq. 28, we obtain

M €X + K + Ce + Cp( )−1KT
meKme( )X � F. (30)

K + (Ce + Cp)−1KT
meKme is the effective stiffness, and can be

regulated by Ce.

The beam is excited at the right end. Eight identical pairs

of piezopatches with shunted capacitors are bonded to the

beam to construct a periodic structure. The tailor of band gaps

can be achieved by changing the capacitance to cover the

excitation frequency. However, there always exists differences

between capacitances due to errors in practice, even

malfunction of devices, and the performance will deviate

from expectation. Hopefully, there is still room for

improvement by sorting the order of capacitors. It is

supposed that the green piezopatch in Figure 15B possesses

a minimum deviation of capacitance. According to the sorting

strategy, we change the position of this shunted capacitor to

the first place (nearest to the excitation source at the right

end), which is the rightmost, and the others remain the same

as shown in Figure 15A. So, the first unit cell has the smallest

deviation of capacitance after sorting. Thus, the similarity of

dynamic characteristics between the nominal and disordered

structures is improved. The disordered piezoelectric

metamaterial is retuned by the sorting strategy.

7 Conclusion

The influence of disorder on vibration reduction

performance is investigated. The sensitivity indices of cell

variables at different positions to the vibration reduction

performance are calculated. Inspired by the sensitivity results,

a sorting strategy is proposed and verified. The conclusions are as

follows:

1. The effect of disorder on natural frequencies at the

beginning of the propagation zone can be almost
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ignored but becomes gradually important with the increase

of frequency order. The amplification of vibration may

occur. The change of position of maximum displacement

response in band gaps is explained by wave mode shapes.

The position is still in the first unit cell with the random

disorder.

2. The vibration reduction performance of periodic structures

in the target band indicated by frequency-averaged

spatially maximum amplitude is influenced. The

statistical results based on the indicator with different

disorder strengths are described. The amelioration and

deterioration of performance are both equally possible.

With greater disorder strength, the deviation of

vibration performance is bigger, and the worst cases get

worse in terms of probability. So, the disorder strength

needs to be controlled to a minimum.

3. The distribution pattern of disorder also influences the

vibration reduction performance. The sensitivities of

parameter variations of cells at different positions are

revealed by GSA. The vibration performance is most

sensitive to the variation in the first unit cell (nearest to

the excitation source) and insusceptible to the others.

The interaction effect of the variation in the first unit cell

with others is weak. A theoretical interpretation from the

perspective of wave propagation is given.

4. A sorting strategy to retune the disordered periodic

structures, of which the rule is to ensure the minimum

parameter deviation in the first position (nearest to the

excitation source) is proposed. This strategy can decrease

the disorder strength regarding the vibration performance.

Two tests show that disorder strength declines from 10% to

3% and from 3% to 1%, respectively, in a statistical sense.

The validity is also verified by samples. The deviation of the

dynamic characteristics between the nominal and

disordered structure becomes smaller. The

modularization and detachability of functional meta-

structures provide the feasibility of this strategy. A

prospect of application in piezoelectric metamaterials is

presented.
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