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Two-dimensional (2D) irregular packing problems are widespread in

manufacturing industries such as shipbuilding, metalworking, automotive

production, aerospace, clothing and furniture manufacturing. Research on

2D irregular packing problems is essential for improving material utilization

and industrial automation. Much research has been conducted on this problem

with significant research results and certain algorithms. The work has made

important contributions to solving practical problems. This paper reviews

recent advances in the domain of 2D irregular packing problems based on a

variety of research papers. We first introduce the basic concept and research

background of 2D irregular packing problems and then summarize algorithms

and strategies that have been proposed for the problems in recent years.

Conclusion summarize development trends and research hotspots of typical

2D irregular shape packing problems. We hope that this review could provide

guidance for researchers in the field of 2D irregular packing.
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1 Introduction

Two-dimensional (2D) irregular packing problems are widespread in industries such

as machinery manufacturing, aviation, shipbuilding, automobile manufacturing, clothing

and furniture manufacturing. An efficient 2D irregular packing algorithm can effectively

improve material utilization and reduce processing costs. The reduction in material

consumption will also have a beneficial impact on the environment (Ke et al., 2020).

Therefore, research of the packing problem is of great significance for technology and

social interest.

The 2D packing problem is a type of combinatorial optimization problems to locate

parts with different shapes compactly in one or more master sheet material to minimize

the occupied space or maximize the utilization of the material. The 2D packing problem is

currently recognized as a NP problem, which is mainly solved by heuristic algorithms. In

recent years, many scholars have conducted research on 2D irregular packing problems

with a verity of solutions.

There exists a number of review articles on packing and cutting problems. We

have summarized the main review literature in the field of 2D packing and cutting as
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shown in Table 1. Brown (Brown, 1971) introduced an

optimum packing and depletion problem with

optimization of space and resource usage. Harvey (Salkin

and De Kluyver, 1975) surveyed the application of

mathematical optimization models such as linear

programming to the knapsack problem. Bruce (Golden,

1976) surveyed various approaches to the cutting stock

problem. Hinxman (Hinxman, 1980) surveyed the trim-

loss and assortment problems, this research paid more

attention to cutting and packaging problems in practical

applications, and did not mention much about theoretical

methods. Garey and Coffman (Garey and Johnson, 1981;

Coffman et al., 1984) surveyed the approximation algorithms

for bin packing problems. Israni (Israni and Sanders, 1982)

reviewed the 2D cutting stock problem including almost all

2D packaging problems. The author also proposed a

rectangular layout method. Sarin (Sarin, 1983) reviewed

methodologies and literature to solve 2D stock cutting

problems and introduced an interactive optimization

procedure for a general 2D stock cutting problem.

Dyckhoff (Dyckhoff et al., 1985) described a trim loss and

related problems and categorized them briefly. Dudziński

(Dudziński and Walukiewicz, 1987) summarized the exact

methods for knapsack problems, such as linear

programming. Matthias (Rode and Rosenberg, 1987)

analyzed the algorithm for the trim-loss problems.

Haessler (Haessler and Sweeney, 1991) reviewed the

solution process of cutting stock problems, including

placement algorithm and sequence optimization algorithm.

Dowsland (Dowsland and Dowsland, 1992) reviewed the

application of operations research methods to the packing

problem and summarized some exact heuristics. Sweeney

(Sweeney and Paternoster, 1992) categorized cutting and

packing problems and made application-oriented research

records. Cheng (Cheng et al., 1994) discussed 2D cutting

stock problems and their application cases including the

TABLE 1 Review literature in the field of cutting and packing problems.

Author Title Journal Year

Brown Optimum packing and depletion Book 1971

Salkin The knapsack problem: A survey Naval Research Logistics Quarterly 1975

Golden Approaches to the Cutting Stock Problem A I E Transactions 1976

Hinxman The trim-loss and assortment problems: A survey European Journal of Operational Research 1980

Garey Approximation Algorithms for Bin Packing Problems: A Survey Book 1981

Israni Two-dimensional cutting stock problem research: A review and a new rectangular layout algorithm Journal of Manufacturing Systems 1982

Sarin Two-Dimensional Stock Cutting Problems and Solution Methodologies Journal of Engineering for Industry 1983

Coffman Approximation Algorithms for Bin-Packing — An Updated Survey Book 1984

Dyckhoff Trim loss and related problems Omega 1985

Dudziński Exact methods for the knapsack problem and its generalizations European Journal of Operational Research 1987

Rode An analysis of heuristic trim-loss algorithms Engineering Costs and Production Economics 1987

Dyckhoff A typology of cutting and packing problems European Journal of Operational Research 1990

Haessler Cutting stock problems and solution procedures European Journal of Operational Research 1991

Dowsland Packing problems European Journal of Operational Research 1992

Sweeney Cutting and Packing Problems: A Categorized, Application-Orientated Research Bibliography Journal of the Operational Research Society 1992

Cheng The cutting stock problem — a survey International Journal of Production Economics 1994

Dowsland Solution approaches to irregular nesting problems European Journal of Operational Research 1995

Mavridou Simulated Annealing and Genetic Algorithms for the Facility Layout Problem: A Survey Computational Optimization and Applications 1997

Hopper Application of Genetic Algorithms to Packing Problems — A Review Conference paper 1998

Hopper A genetic algorithm for a 2D industrial packing problem Computers and Industrial Engineering 1999

Hopper A Review of the Application of Meta-Heuristic Algorithms to 2D Strip Packing Problems Artificial Intelligence Review 2001

Hopper An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem European Journal of Operational Research 2001

Lodi Two-dimensional packing problems: A survey European Journal of Operational Research 2002

Lodi Recent advances on two-dimensional bin packing problems Discrete Applied Mathematics 2002

Wäscher An improved typology of cutting and packing problems European Journal of Operational Research 2007

Bennell The geometry of nesting problems: A tutorial European Journal of Operational Research 2008

Bennell A tutorial in irregular shape packing problems Journal of the Operational Research Society 2009

Leao Irregular packing problems: A review of mathematical models European Journal of Operational Research 2020
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pallet loading problem and VLSI placement problem. With

the gradual deepening of research on 2D layout problems,

typology becomes a common research topic. 2D regular and

irregular layout problems are clearly distinguished in

practical applications and theoretical methods. Dowsland

(Dowsland and Dowsland, 1995) gave a special review of

the 2D irregular nesting problem for the first time. Mavridou

(Mavridou and Pardalos, 1997) summarized applications of

the genetic algorithm and simulated annealing algorithm in

the optimization of facility layout problems. Dyckhoff

(Dyckhoff, 1990) made a typology of the cutting and

packing problems in detail, and Wäscher (Wäscher et al.,

2007) improved the typology later. Hopper (Hopper and

Turton, 1999; Hopper and Turton, 2001a; Hopper and

Turton, 2001b) investigated the application of meta-

heuristic and heuristic algorithms in 2D and 3D packing

problems. Lodi (Lodi et al., 2002a; Lodi et al., 2002b)

reviewed algorithms proposed in the 1990s of 2D packing

problems. Bennell et al. (Bennell and Oliveira, 2008; Bennell

and Oliveira, 2009) discussed 2D irregular packing problems

and related geometric problems. Leao (Leao et al., 2020)

introduced the mathematical models in the 2D irregular

packing problem.

The scope of these reviews is broad, mainly for all 2D packing

problems including rectangular packing and other regular

packing problems. These review papers are out of date with

missed innovative algorithms of 2D irregular packing. Since

2010, only Leao (Leao et al., 2020) reviewed 2D irregular

packing problems. But he only introduced the mathematical

models, instead of reviewing 2D irregular packing problems

comprehensively. In recent years, there is not a

comprehensive review paper of the 2D irregular packing

problems.

The mathematical models of 2D packing problems are

mature, and few disruptive technologies have emerged in

recent years. Most of works are to improve original

methods (Liu et al., 2021). Due to the rapid development of

computer technology, many people studied heuristic

algorithms and applied them to 2D irregular packing

problems (Rakotonirainy and van Vuuren, 2021). In this

paper, we review recent advances in the domain of 2D

irregular packing problems based on a variety of research

papers. We also summarize and classify new 2D irregular

packing algorithms especially some very innovative ideas

proposed in recent years. We hope that this review could

provide guidance to researchers in the field of 2D irregular

packing.

The structure of this paper is organized as follows.

Section 2 introduces the packing and 2D irregular packing

problems. In Section 3, we summarize the current state of

research on 2D irregular packing problems, followed by

conclusions in Section 4.

2 Problem description

The general trim-loss problems refer to the optimal

allocation of various resources, such as time, space, capital,

value, and tasks. The layout or packing optimization is mainly

for the optimal allocation of spatial resources (Cook, 1971). The

ultimate optimization goal of a cutting and packing problem is to

maximize the utilization of the sheet material or to minimize the

amount of sheet material left over.

The performance evaluation indicators of packing algorithms

include material utilization (or filling rate) and time

computational overhead. For strip materials, the material

utilization rate is mainly reflected by the final height value

after the packing has been completed. Since there is no

posture constraint, a part can be placed anywhere in the

master surface with any angle, and the same batch of parts

can have multiple orders, the solution space for the 2D

irregular packing problem is very large. The packing

problem is therefore an NP-complete (NP-C) problem

(Zhang et al., 2022a; Li et al., 2022); that is, there is no

effective polynomial algorithm that can identify an optimal

solution in polynomial time. For NP-C problems, the

existing solution is to find an approximate optimal

solution using a heuristic algorithm.

2.1 Packing problem classification

The packing problem can be divided into three categories

according to spatial dimensions and application types: the

one-dimensional (1D) packing problem (wire packing

problem) (Loh et al., 2008; Fleszar and Charalambous,

2011; Kucukyilmaz and Kiziloz, 2018), as shown in

Figure 1; the 2D packing problem (planar packing

problem); and the three-dimensional (3D) packing problem

(Martello et al., 2000; Allen et al., 2011; Paquay et al., 2018;

Lamas-Fernandez et al., 2022; Zhao et al., 2022), as shown in

Figure 2. According to the regularity of shapes of participating

parts, the 2D packing problem can be further divided into 2D

regular (such as Figure 3) and irregular packing problems. The

2D regular packing problem includes the layout problem of

regular polygons such as rectangles (Martello and Monaci,

2015; Wu et al., 2016; Wu et al., 2017; Joós, 2018; Erzin et al.,

2021) and circles (George et al., 1995; Nurmela and Östergård,

1997; Huang and Xu, 1999; Wang et al., 2002; Zhang and

Deng, 2005; Liu et al., 2016; Fekete et al., 2019). The 2D

irregular layout problem mainly involves the layout of

irregular shapes.

We have summarized the classification and application of

some packing problems, as shown in Table 2. The problem of

packing is widely experienced in production with different

characteristics in different industries. The nomenclature of
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packing problems in different fields is also different. The

literature (Dyckhoff, 1990) provides a detailed introduction to

various type names, which can be divided into following five

categories:

1) cutting stock and trim loss problems,

2) bin packing, dual bin packing, strip packing, and knapsack

(packing) problems,

3) vehicle loading, pallet loading, container loading, and car

loading problems,

4) assortment, depletion, design, dividing, layout, nesting, and

partitioning problems,

5) capital budgeting, change making, line balancing, memory

allocation, and multiprocessor scheduling problems.

According to the literature published by a large number of

scholars in the past (Hartmanis and Johnson, 1982;

Hemaspaandra and Williams, 2012; Bodas et al., 2021; Fang

et al., 2021;Wang et al., 2022), we define 2D irregular problems as

the problem in which a set of pieces that contain at least one piece

of the irregular shape must be placed in a non-overlapping

configuration within a given placement area in order to

optimize an objective. A piece is irregular if it requires a

minimum of three parameters to identify it (Bennell and

Oliveira, 2008). The placement area may include one or more

regular or irregular master surface. Figure 4 describes a simple 2D

irregular shape layout process.

2.2 Mathematical model of 2D irregular
packing problem

The 2D irregular packing problem is described as: some

shapes are placed into a plate with a certain width and unlimited

length, so that the length occupied by the shapes in the plate is the

shortest (Zhang et al., 2022b; Hawa et al., 2022), as shown in

Figure 5. The definition of variables is shown in Table 3.

The mathematical model is defined as follows.

Objective function:

FIGURE 1
1D packing problem.

FIGURE 2
3D bin packing problem.

FIGURE 3
2D regular packing problem.
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minF � max{x|(x, y) ∈ ri, ri ∈ R} −min{x|(x, y) ∈ ri, ri ∈ R}
(1)

Constraints:

ri ∩ rj � ∅(i ≠ j) (2)
r ∈ R (3)
Oi ∈ O (4)

T � ∑
n

i�1
ri (5)

where, Eq. 1 indicates that the goal is to minimize the length of the

area occupied by the shapes in the plate; Eq. 2 ensures that shapes do

not overlap each other; Eq. 3 ensures that shapes do not exceed the

plate area; Eq. 4 ensures that rotation angles of each shape are within

the index range; Eq. 5 ensures that all shapes are placed on the plate.

TABLE 2 Classification of packing problems and their applications.

Classification Applications Example Quality
evaluation index

Cutting or
Packing
Problems

1D-Packing Mechanical manufacturing, Building industryetc. Bar material, wire stock and section steel
cutting

Material utilization or
scrap rate

2D-
Packing

Regular
Packing

Paper industry, Glass industry, Printing Industry,
Microelectronics industry, Building industryetc.

Paper, glass, and stone cutting;
Microelectronic unit arrangement; Sheet
metal blanking

Filling rate or fill
height

Irregular
Packing

Mechanical manufacturing, Shipbuilding industry,
Aviation, Automotive industry, Clothing industry,
Leather processing, Furniture manufacturing, Building
industryetc.

CNCmachining; Sheet, wood, slate, cloth,
and leather cutting

Filling rate or packing
height value

3D-
Packing

Regular
Packing

Transportation industry, Logistics industryetc. Express shipment; Ship cabin layout Filling density

Irregular
Packing

3D-printing, Aviationetc. 3D printing space layout; Spacecraft cabin
layout

Filling density

Other Trim-loss
Problems

Time Mechanical manufacturing, Transportation industryetc. Process planning; Vehicle scheduling —

Funds Financial industryetc. Capital budget. —

Weight (Value) Transportation industry, Logistics industryetc. Vehicle and ship loading —

Other IT etc. Storage space allocation; Compute node
task assignment

—

FIGURE 4
A simple 2D irregular packing problem.

FIGURE 5
Mathematical model of 2D irregular packing problem.

TABLE 3 Variable definitions.

Variable Meaning

F Evaluation criteria for packing results

L The occupied length of the plate

(x,y) Coordinate of shape vertices

ri Shape label

R Plate

O Rotation angle

T Placed shape
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3 Research status

Two phases are involved in solving an irregular packing

problem: optimization phase and placement phase. The

optimization phase searches for the packing sequence that

minimizes the waste of the motherboard, and the placement

phase determines the final solution of the shape. The placement

optimization algorithm is used to solve the problem of mutual

matching among parts, the ultimate goal is to find the best match

strategy between two parts and reduce the placement gap to

increase the fill rate. The ultimate goal of the sequential

optimization algorithm is to find the optimal placement order

for a batch of parts.

The 2D irregular packing problem generates multiple sub-

problems, but the two main sub-problems are the geometric

problem of the shape and the optimization of the placing

sequence (Li et al., 2022). The two sub-problems are reviewed

separately. In a sub-problem, we categorized the solution to 2D

irregular packing problems. And some representative literatures

are summarized based on the development of these algorithms.

3.1 Geometric approach

The envelope polygon is a relatively simple method for 2D

irregular shape packing problems (Adamowicz and Albano,

1976; Grinde and Cavalier, 1995; Del Valle et al., 2012;

Peralta et al., 2018). Its main idea for the irregular shape

layout is to envelop the irregular shape with a regular

polygon, and place the regular shape instead of the original

irregular shape after the envelope is formed. The irregular shape

can be enveloped using rectangles, circles, triangles, or other

regular polygons. Although the envelope polygon can simplify

the irregular shape layout problem, its packing density is very low

due to the waste area generated by the envelope process, as shown

in Figure 6. In addition to the enveloping polygon method, early

methods for solving simple irregular packing problems included

the clustering feature combination method and fitting method

(Koroupi and Loftus, 1991). Elkeran (Elkeran, 2013) proposed an

envelope polygon method based on pairwise clustering. Shapes

were combined according to their contour features, and the

envelope polygon method was then used for the layout.

Stoyan et al. (Stoyan et al., 2016) proposed an improved

starting point algorithm (SPA) to solve the problem of

positioning a convex polygon with a minimum area. But the

solution to the non-convex polygon was not good enough. The

core idea of the above methods is to convert irregular parts into

regular parts by specific methods, and then to packing regular

parts instead of (the initial) irregular parts. However, above

method does not essentially avoid the waste area. Also, for

parts with a complex shape, it is difficult to solve for the

smallest possible enveloping polygon.

To better solve the 2D packing problem of complex shape

parts, researchers in the late 1970s began to study contour

features of irregular parts themselves. They explored ways to

match up the contour features of items. The no-fit polygon (NFP)

method was suggested at that time. NFP is an effective means of

solving 2D packing problems (Oliveira et al., 2000; Bennell et al.,

2001; Burke et al., 2007). A brief definition of the no fit polygon

(NFP) is as follows: given two polygons, one of which is fixed, the

other polygon does non-rotating rigid body motion around a

fixed polygon, and slides around the fixed polygon until it returns

to the starting position, in the process of motion when a point is

selected as a reference point on the polygon, the trajectory

formed by the reference point during the circular motion is

called a no fit polygon, as shown in Figure 7. The NFPmethod is a

popular method used to calculate an area in which no two shapes

will overlap, and in which it is possible to find all possible match

positions between two shapes. The NFP method obtains the best

placement position by finding all relative positions of two shapes

in different postures, which provides an exact solution. Although

the NFP method is effective in solving 2D packing problems, it

also has following two limitations: 1) The NFP method requires

multiple rotations of the shape when searching an optimal

placement position, which results in an increase in

computation time overhead and even miss the optimal

placement position. Some scholars have proposed using the

NFP method combined with a free rotation for the layout

(Martinez-Sykora et al., 2017; Abeysooriya et al., 2018), but it

was only applied in a very simple data set, and the applicability

has not been sufficiently verified. 2) It is very difficult to solve the

NFP of non-convex polygons, especially with deformed contours.

The NFP method also has another problem for the 2D free-form

shape layout. It uses vertices of the shape to determine the relative

position between shapes. For 2D free-form shapes, after the

layout is completed by the NFP method, the shapes mainly

rely on the point contact, which reduces the filling rate. In

summary, a significant drawback of the NFP approach is the

non-trivial task of developing a robust NFP generator for general

nonconvex polygons. Art (Art, 1966) first used the NFP in its

most basic form as the placement envelope. However, the

potential of the NFP was not fully exploited until the work of

FIGURE 6
The polygon enveloping method for 2D irregular packing.
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Milenkovic et al. (Milenkovic et al., 1992). Other methodologies

to generate NFP can be found in publications of relevant scholars

(Agarwal et al., 2002; Dean et al., 2006; Huyao et al., 2007; Burke

et al., 2010).

Raster methods (also called pixel methods) divide the

continuous stock sheet into discrete areas, hence reducing

geometric information to code data by a grid represented by a

matrix. The raster method performs packing by discretizing the

master surface and parts into dots or pixels. The master surface

and parts are discretized into lots of grids; the pixel value of

occupied areas is set to 0 or 1, and the pixel value of unoccupied

areas is set to 1 or 0. It relies on the discrete pixels to complete the

positioning, docking, and overlap judgment among the parts. In

each case the process of eliminating overlap between pieces or

identifying non-overlapping placement positions is just a matter

of counting cells in the grid. A simple raster method for 2D

irregular packing is shown in Figure 8. In earlier times, three

scholars (Segenreich and Faria Braga, 1986; Oliveira and Ferreira,

1993; Ramesh Babu and Ramesh Babu, 2001) gave different

interpretations of the raster method. In recent years, the raster

method has been widely used in 2D irregular layout packing

problems (Guo, Peng, Cheng, Dai; Sato et al., 2016; Mundim

et al., 2017). Computer vision was also used in 2D irregular

packing problems (Bouganis and Shanahan, 2007). By

discriminating the part and master surface using assigned

black and white pixel values, it can be determined whether

there is sufficient placement space on the master surface for

the part. These approaches reduce the complexity of packing

problems. However, disadvantages are that these methods are

memory intensive and cannot exactly represent pieces with non-

orthogonal edges. In addition, the size of the final discrete point

of shapes affects the placement accuracy, and the size of the

discrete points is often difficult to determine.

Linear programming (LP) and mixed-integer linear

programming (MIP) models are also used for 2D irregular

packing problems. The LP method and MIP model were first

used to deal with 1D packing problems. This method was later

used for irregular packing problems with good results. The MIP

and LP methods solve the problem by establishing an exact

mathematical model of the packing process under constraints

that do not allow overlaps between parts, and the parts must be

included in the master surface. The idea of solving 2D irregular

layout problems by MIP and LP methods can be referred to

literature (Gomes and Oliveira, 2006; Fischetti and Luzzi, 2009;

Toledo et al., 2013; Santoro and Lemos, 2015; Cherri et al., 2016;

Leao et al., 2016; Rodrigues and Toledo, 2017; Cherri et al., 2018).

Mixed integer programming (MIP) and other operational

research methods were often combined with the NFP method

for 2D layout problems (Silva et al., 2010). The method works

well for most of 2D irregular shape layout problems. But if the

shape vertices are numerous, the determination of constraints of

the MIP model will be difficult.

3.1.1 Placement rules
During the part placement process in 2D irregular packing,

the placement algorithm is a rule to evaluate the candidate

position. Commonly used placement algorithms are as follows.

The BL algorithm prioritizes placing the reference point of

the piece in the leftmost feasible position on the stock sheet

breaking ties by selecting the bottom-most of left most positions.

This rule iteratively moves each piece horizontally as far to the

left as possible and then vertically until it is able to move

horizontally again or touches another piece or the bottom of

the stock sheet, as shown in Figure 9. This rule may equally apply

to other directions such as top right. The final piece position is

constrained to be inside the stock sheet and should not overlap

previously placed pieces. This placement strategy was first

applied to nesting problems by Chazelle (Chazelle, 1983), and

the same principles were still applied in more recent solution

approaches (Dowsland et al., 2002). The implementation of the

BL placement heuristic depends on the geometric representation

adopted for the pieces. If the raster or polygonal representations

are adopted, we must use a strategy of moving the pieces in steps

over the layout while checking for feasibility at each step. If

overlap is detected after a movement to the left, the previous

position is resumed and a movement towards the bottom is tried.

If this move is feasible, the algorithm returns to movements

towards the left and the algorithm continues. The piece finds its

FIGURE 7
The process of solving NFP of two polygons.
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final position when it cannot move to the left or towards the

bottom. This implementation of the BL strategy basically imitates

the sliding of a piece over the layout. Some scholars have

proposed iBL (improving bottom-left) (Liu and Teng, 1999)

and BLF (bottom left fill) algorithms (Gomes and Oliveira,

2002) on the basis of the BL algorithm. As an alternative

method to BL, the above placement rules are also widely used.

Three alternative placement rules to BL were proposed with

the aim of keeping the layout as compact as possible while trying

to avoid an increase in length as follows.

1) Maximum utilization (Burke et al., 2006): The Maximum

utilization placement rule selects the position that provides

the maximum area utilization in the earliest bin. The rule

calculates the utilization after each iteration of the part

placement, and then selects the location where the

utilization is maximized.

2) Minimum length (Burke et al., 2006): The minimum length

placement rule minimizes the length of the rectangular

enclosure of the newly generated partial solution.

3) Lowest gravity center: This method first finds the center of

gravity (geometric center) of the polygon, and then selects the

position with the lowest center of gravity of the part as the

final entry position of the part during the nesting process. To

get a fast and effective placement principle for pieces, Liu and

He (Liu and He, 2006) proposed a principle named the

lowest-gravity-center principle to rapidly find the

FIGURE 9
BL placement rules.

FIGURE 10
Solve the IFP between the remaining space of the master
surface and shape.

FIGURE 8
The pixel (or raster) method.
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placement position on NFP. In this placement principle, the

placement position on NFP is chosen where the piece has the

lowest gravity center. This principle is aimed to “push” the

piece to the nested pieces as closely as possible, and make a

relatively flat nesting boundary for the remaining pieces to be

nested in. Dowsland (Dowsland, Dowsland, Bennell)

proposed the classic Jostle approach. By simulating the

action of a gravitational field, this method arranges parts

in the lower area of the motherboard, minimizing the overall

center of gravity of all parts and thus rendering them stable.

The above placement rules were used in many of methods

proposed in literature (Wang et al., 2018).

Referring to NFP, inner fit polygon (IFP) (Bennell and Song,

2008) is also an effective placement algorithm. By finding the IFP,

the optimal placement position of the shape in the remaining space

of the master surface can be calculated, as shown in Figure 10. One

of the advantages of IFP is that it can fill holes generated by the

combination of shapes during the layout process to improve the

layout density. As shown in Figure 11, suppose H1 is a hole formed

by shapes P1, P2, P3, P4, P5, and the hole can be filled by solving IFP.

First, the IFP of hole H1 and shape Pi is obtained. According to the

IFP, a feasible solution of the placement position of shape Pi in hole

H1 can be obtained. Before filling the hole, we can determine

whether the shape meets conditions for placing in the hole. If

the area of arbitrary shape Pi is larger than the area of the hole,

shape Pi cannot be placed in the hole.

In addition to placement algorithms mentioned above, we

have also summarized some new placement algorithms proposed

in recent years. Bennell (Bennell and Song, 2010) proposed a

beam search algorithm that combines placement strategies with

search strategies to place instances. To overcome complex

constraints of geometry (non-convex polygons and holes) and

produce robust mathematical programming models, Cherri

(Cherri et al., 2016) used non-overlapping constraints for

direct triangulation functions. This method can solve the

problem of any non-convex polygon, and be still applicable to

any geometry with holes, and the method is stable in numerical

stability. Guo (Guo et al., 2019) proposed a placement strategy

based on curve coding and feature matching. This is a new

placement strategy based on curve similarity feature matching.

The above-mentioned placement algorithms have very good

results for specific problems, but the reliability and

applicability need to be further verified.

3.1.2 Collision algorithms
During the packing process of irregular parts, regardless of

the method is used, the collision should be considered to

determine the exact part placement position and avoid any

overlap among the parts. In short, how exactly the shape is

placed in a predetermined position during layout.

In addition to solving problems of 2D irregular packing, the

pixel method is also an effective method of collision detection.

Boundary pixels of the shape are usually used to determine the

angle of rotation and the distance that the shape needs to bemoved

to place it in a predetermined position. Therefore, we can make a

collision between shapes using judgment of distance. This method

determines the amount of movements required for a collision to

occur between parts by calculating the distance between the two

parts. Generally, the shortest collision distance between parts is

selected by calculating the distance between line and line, between

line segment and arc, between arc and arc, etc. As shown in

Figure 12, shape M is placed on the boundary of shape Q. The

shortest distance is first calculated between boundary pixels of

shapesM andQ, and shapeM can then be accurately placed onQ’s

boundary as long as it moves along the Y-axis by a shortest

distance. Liu et al. (Liu et al., 2015) proposed a point-to-point

interactive collision algorithm to determine the intersection and

distance along the collision direction. Cherri (Cherri et al., 2018)

and Peralta (Peralta et al., 2018) noticed the relationship between a

point and a line, and used D-Function to calculate the distance

between line and point to measure overlapping.

The mobile collision method is an effective method of collision.

This method moves the part into a collision with another part to

determine whether the two parts are overlapping. If the two parts do

overlap, the parts are separated; if they do not overlap, they are

moved toward each other in steps until the appropriate placement is

achieved. The mobile collision method was described in literature

(Riff et al., 2009) as a theoretical method. Burke et al. (Burke et al.,

2007) proposed an improvedmoving collisionmethod for solving all

placement positions between two polygons. Stoyan (Stoyan et al.,

2016) and Akang Wang (Wang et al., 2018) improved the circular

fill algorithm. They relaxed problems using quadratic programming

for optimality.

3.2 Sequence optimization

Another sub-problem involved in 2D irregular packing

problems is the sequence optimization of parts during the packing

FIGURE 11
Use IFP to complete Hole-filling.
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process. Specifically, for a batch of parts, the goal of the optimization

phase is to determine the order to place the parts. The order of the

parts placed is critical to the final packing result. A slight change in

sequence can affect the overall packing effect. Therefore, an efficient

sequential optimization algorithm is critical to increase the fill rate of

final nested results. Since the nesting problem is combinatorial and

NP-complete, most of the core meta-heuristics have been applied to

nesting problems, including Tabu Search (Glover and Marti, 1998),

Simulated Annealing (van Laarhoven and Aarts, 1987), Genetic

Algorithm (Cinat et al., 2020), Colony Algorithm (Dorigo et al.,

1996) and other meta-heuristic or heuristic algorithms.

Genetic algorithm is a widely used intelligent algorithm. It is

widely used in industrial engineering, artificial intelligence,

biological engineering, automatic control and other fields to

solve complex optimization problems. The genetic algorithm

simulates the genetic laws of nature. A nearly optimal solution is

obtained by setting the genetic code of the population and

individuals, and simulating operations of selection, crossover,

and mutation in the natural world to produce a better feasible

solution with several generations of iterations. When using a

genetic algorithm to solve the 2D irregular alignment problem, a

complete shape sequence is encoded as an individual, and a new

solution is then generated through operations of each genetic

operator. The packing density or filling rate can be defined as the

fitness function used to evaluate the quality of solutions. After

multiple iterations, a better sequence will eventually be obtained.

Genetic algorithms have been used as an efficient method for

optimizing layout problems. Specific literature can refer to

(Goodman et al., 1994; Jakobs, 1996; Tay et al., 2002;

Onwubolu and Mutingi, 2003; Bortfeldt, 2006; Soke and

Bingul, 2006).

The simulated annealing algorithm simulates the annealing

process of solid metals, and its essence is to optimize the

objective function by imitating the movement process of metal

particles in the process of temperature rise and fall so that the

particles finally reach the ground state and have low internal energy.

For the 2D irregular packing problem, each part can be regarded as a

metal particle. In the process of temperature rise or fall, all shapes

will produce different permutations and combinations. When the

layout shapes are most compactly, that is, when the material

utilization of the master surface is the highest or the layout

density is the highest, the ground state is reached, and the

optimal solution of the layout problem is obtained. The

simulated annealing algorithm has advantages of the strong

robustness, simple and flexible operations. The simulated

annealing algorithm was also used in optimizing the shape

sequence of 2D layout problems, such as (Mancapa et al., 2009;

Mundim et al., 2018).

The ant colony algorithm was inspired by the process of an

ant colony searching for food. Unlike other meta-heuristic

algorithms, the ant colony algorithm has the characteristics of

distributed computing, positive information feedback, and

heuristic search. It is essentially a heuristic global optimization

algorithm in evolutionary algorithms. When dealing with 2D

irregular layout problems, the walking path of the ant is used to

represent the feasible solution of the shape sequence, and all the

paths of the entire ant colony constitute the solution space of the

shape sequence. Ants with shorter paths release more

pheromone. As time progresses, the concentration of

pheromone accumulated in shorter paths gradually increases,

and the number of ants who choose this path (shape sequence) is

increasing. In the end, the entire ant will focus on the best path

under effect of the positive feedback. At this time, it corresponds

to the solution with the highest packing density in the solution

space. References on the use of ant colony algorithms to optimize

2D irregular layout can refer to (Heckmann and Lengauer, 1995;

Souilah, 1995).

Particle swarm optimization and Tabu Search were also used in

the optimization of 2D irregular layout problems. Unlike the

previous methods, these two algorithms are more suitable for the

FIGURE 12
Make a collision using judgment of distance.
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local search. Particle swarm optimization takes the clustering

behavior of organisms as a model, focusing on the collaboration

and competition among individuals. Compared to the uniform

search strategy of the genetic algorithm, the particle swarm

optimization algorithm guides the search process in the direction

of the current optimal solution. Relatively speaking, the particle

swarm algorithm is simpler and faster than the genetic algorithm,

but it often converges prematurely and is greatly affected by its

parameters. References on the use of particle swarm optimization to

optimize 2D irregular layout can refer to (Levine and Ducatelle,

2004; Mohamed and Adnan, 2009; Arnaout et al., 2020). The Tabu

search algorithm is different from other heuristic algorithms, such as

simulated annealing and genetic algorithms. The Tabu search

algorithm prevents backtracking in multiple iterations when

performing a search. References on the use of Tabu search to

optimize 2D irregular layout can refer to (Bennell and Dowsland,

1999; Liu et al., 2008; Omar and Ramakrishnan, 2013; Shalaby and

Kashkoush, 2013).

In addition to the above methods, some new optimization

methods have been proposed in recent years. Gomes et al.

(Gomes and Oliveira, 2002) proposed a 2-exchange heuristic to

guide the search through the solution space consisting of sequences

of pieces. Cherri et al. (Cherri et al., 2016) proposed an improved

mixed-integer linear programming model which was easier to

implement than previous models for problems of non-convex

polygons with or without holes. Beyaz et al. (Beyaz et al., 2015)

proposed a hyper-heuristic algorithm for solving the 2D irregular

packing problem with the good robustness. Fernández et al.

(Fernández et al., 2013) proposed a parallel multi-objective

algorithm for 2D bin packing with rotations and load balancing.

Mundim et al. (Mundim et al., 2017) used a biased random key

genetic algorithm to solve the sequential optimization problem of

2D irregular packing. Segredo et al. (Segredo et al., 2014) combined

Mimetic and hyper-heuristic algorithms for certain multi-objective

optimization problems of 2D irregular packing. Hong et al. (Hong

et al., 2014) proposed combining a heuristic packing algorithm with

the best fit algorithm to solve the single bin problem. Elkeran et al.

(Elkeran, 2013) developed an approach for sheet packing problems

using a guided cuckoo search (Yang and Deb, 2014) and pairwise

clustering. Gomez (Gomez and Terashima-Marín, 2018) used

integer programing models to determine the association between

geometries, and then applied themixed integer programming (MIP)

to locate geometries in themotherboard. Bennell (Bennell and Song,

2010) proposed a heuristic algorithm with the beam search using a

search structure for nodes and branch trees that are similar to

branch ingesting, but only a subset of nodes was evaluated in the

search tree.

4 Conclusion

This paper reviewed literature on 2D irregular packing

problems and solutions. Main algorithms for 2D irregular

layout problems were summarized including the placement

and sequence optimization.

For the packing process of 2D irregular parts, mature solutions

mainly include the envelope polygon method, pixel method, NFP

method and MIP method. Each method has its own advantages,

but the current mainstream method is the NFP method. The

envelope polygon method is more suitable for processing the

packing problem of parts with simple shapes. However, for

deformed parts, the envelope polygon method could not

achieve good results. The pixel method is easier to complete

collisions and determine whether two parts overlap, but the

pixel method is not good at searching for the best layout

position. The MIP method was an early method for solving

packing problems. At present, many scholars still use the MIP

method in the packing problem with good results. Although the

NFP method performs well in dealing with 2D irregular packing

problems, it still has its limitations. For complex free shapes, the

current NFP algorithm could not find the satisfied solution.

Therefore, for the problem of NFP, further research is required

for a more efficient method. Heuristic and meta-heuristic

algorithms are the mainly methods used in the sequential

optimization of 2D irregular packing (Gardeyn and Wauters,

2022; Sato et al., 2022). Machine learning and deep learning

algorithms may help the sequential optimization of packing in

the future, but there is a lack of research in this area currently.

Most of the research on 2D irregular packing approaches are

from two aspects. On the one hand, the problem of packing is

regarded as an optimization problem from the perspective of

mathematics, physics, and geometry. On the other hand, from the

perspective of engineering, the packing problem is regarded as

practical applications of the project. The focus and expected goals

of these two perspectives are different. Research on packing problems

from the perspective of mathematics, physics, and geometry focuses

on to achieve placement operations and compile a reasonable

description of the shape of parts. The biggest difference in solving

packing problems from the engineering perspective is that the process

constraints and feasibility of manufacturing must be considered. In

addition to this, the efficiency of packing algorithms is an important

factor. In general, the starting point of the two viewpoints is different,

but the same issues are at stake for the same problems, the final

problem to be solved is the same, and the ultimate goal is to improve

the efficiency and quality of the packing. Currently, 2D irregular

layout algorithms have been applied to industry, such as additive

manufacturing (Zhang et al., 2016; Griffiths et al., 2019), factory

layout (Jeong et al., 2018; Qin et al., 2018), and other manufacturing

industries (M’Hallah and Bouziri, 2016; Xu, 2016; Ciulli, 2019;

Hamada et al., 2019).

Although the existing research on 2D irregular layouts has

achieved significant results and has been applied in practical

engineering problems, some problems remain to be solved. First,

the current algorithms are less versatile with significant differences in

performance across different data sets. There are two reasons for this

phenomenon. One is due to the diversity of the contours of parts, but
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we think this is not the main reason. The main reason for this

phenomenon is that the current methods cannot rely on the shape

characteristics of the parts to match them. Although scholars have

proposed some packing algorithms based on the contour features of

the part, there is no complete theoretical basis and mathematical

model, and the reliability also needs to be verified. Therefore, the

future research on 2D irregular packing should focus on solving this

problem. Using a more accurate mathematical language to describe

contour features and guide matching of parts should be the main

direction of future research.

Another shortcoming of current methods is in solutions of the

NP-C problem. There is currently no good way to solve the NP-C

problem. However, to some extent, the reason that 2D irregular

packing as an NP-C problem is mainly due to the current packing

strategy. At present, all mainstream packing strategies place parts

into the packing motherboard according to the optimal sequence,

or they search for the bestmatching parts and collision locations by

constantly searching. In this case, 2D irregular packing problems

will undoubtedly become an NP-C problem. Although the existing

search algorithms and optimization methods are able to perform

the packing strategy well, the computational overhead is high. Let

us envision another packing strategy: put all parts into a

motherboard at the same time, regardless of the order and

position, but treat each part as an individual that follows

physical laws to achieve independent motion or relative motion.

This method may achieve the steady state of the entire packing

system by means of the free movement of parts. This concept is

modeled on natural phenomena and has not been realized at

present, but we believe that this is the direction of the future

packing strategy development. This idea can be seen as a key to

solving packaging problems in the future. In theory, this idea can

ignore dimensional boundaries. Of course, to continually find the

solution of NP-C problems is still a challenge for academics.
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