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Extreme value predictions typically originate from certain functional classes of

statistical distributions to fit the data and are subsequently extrapolated. This

paper describes an alternative method for extrapolation that is based on the

intrinsic properties of the data set itself and that does not pre-assume any

extrapolation functional class. The proposed novel extrapolation method can

be utilized in engineering design. To illustrate this, this study uses two examples

to showcase the advantages of the proposed method. The first example used

synthetic data from a non-linear Duffing oscillator to illustrate the newmethod.

The second example was an actual container ship sailing between Europe and

America and experiencing large deck panel stresses in severe weather. In this

example, actual onboard measured data were used in the present study. This

example represents a real and physical case that is challenging to model due to

the non-stationary and highly non-linear natures of the wave-ship load

responses. This is especially so in the case of extreme responses, where the

roles of second and higher-order responses tend to be more prominent and

have higher contributions. The prediction accuracy of the proposed method

was also validated versus the Naess–Gaidai extrapolation method. Finally, this

study discusses new methods for generic smoothing of distribution tail

irregularities due to underlying scarcity in the data set.
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Introduction

Extreme value analysis (EVA) is widely used in various disciplines, from engineering and

life sciences to finance. In engineering, EVA is applied to problems such as predicting the

probability of extreme events and corresponding values associated with long return periods

such as 50 or 100 years. The extreme values associatedwith long return periods are often used as

design values in the deterministic design of engineering structures and components. For

example, it is the norm for ultimate limit state checks to utilize 100-year stresses as the design

load for offshore structures. Confidence in the predicted extreme values is also essential and

usually represented by a user’s desired confidence interval band.

Accurate EVA can be a challenging engineering reliability task, especially when the

available data are scarce (Pickands, 1975; Naess, 1998a; Perrin et al., 2006; Berge et al.,
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2009). Numerous classical statistical extrapolation methods to

predict low probabilities using limited data have been proposed

to solve this challenge. These classic methods, including the

popular Pareto-based distribution peak over the threshold

(POT) (Naess, 1998b; Næss and Gaidai, 2009; Naess and

Moan, 2013; Zhang et al., 2019) and Gumbel distribution-

based fit (Gumbel, 2004), usually assume a specific

extrapolation functional class. The assumption of the

extrapolation function is crucial in these classic methods as a

pre-assumed function is required to determine the trend required

for the extrapolation. Thus, the assumed extrapolation function

results in these classic methods being biased towards the assumed

function. These methods can lead to the inaccurate prediction of

extreme values, particularly when applied to new engineering

applications with limited experience in the use of these methods.

However, due to their long history and engineers’ familiarity with

these classical methods, many of these methods are currently

used in engineering codes and standards and are still considered

standard in today’s engineering practice.

Due to the above-described constraints and a motivation to

improve the biased classical EVA methods, much research

interest and advances in non-biased extrapolation methods

have been reported in the last decade. These non-biased

methods do not assume any predefined extrapolation

functional class. One such method is the averaged conditional

exceedance rate (ACER) method (Naess et al., 2007; Gaidai and

Naess, 2008; Naess and Gaidai, 2008; Naess et al., 2009; Naess

et al., 2010), which uses the Naess–Gaidai model fitting

procedure. The ACER method was originally proposed as a

one-dimensional (1D) method; since then, it has received

much attention and has been successfully applied to many

engineering applications (Naess et al., 2007; Gaidai and Naess,

2008; Naess and Gaidai, 2008; Naess et al., 2009; Naess et al.,

2010). Based on the success of the 1D ACER method in recent

years, some authors (Valberg, 2010; Karpa, 2012; Naess and

Karpa, 2015; Gaidai et al., 2019a; Gaidai et al., 2019b; Hui et al.,

2019; Xu et al., 2019; Gaidai et al., 2021) have proposed a

bivariate version of the ACER method (ACER2D). The

ACER2D method can consider the non-linear and statistical

coupling between two variables and provide a two-dimensional

(2D) design point instead of the traditional 1D design point. This

2D design point is more accurate and provides engineers more

confidence to design the structures or components less

conservatively, thereby providing more optimized designs.

The ACER method uses the behavior at the tail of the

measured distribution for extrapolation and, thus, requires

some (although limited) data for accurate prediction.

Motivated by the need to reduce computational efforts and

further improve prediction accuracy when performing EVA,

the authors of the present study propose a novel

deconvolution method that performs EVA using a minimal

set of data. The uniqueness of this deconvolution method is

that, unlike the ACER method, it does not fit any model to the

measured data but instead uses the collected data to generate data

for extrapolation directly. Due to this data generation ability, the

deconvolution method requires only a minimum set of data,

which can save considerable time resources usually spent in data

collection and/or computation required for accurate EVA. This

method does not assume any predefined statistical distribution

and is, therefore, non-biased, like the ACER method. The

statistical properties within the collected data are also

preserved in the extrapolation process. The authors believe

that the advantages of a minimal required data set, an

unbiased extrapolation method, and the preservation of the

inherent statistical properties in the data makes this

deconvolution method suitable for use, particularly in new

and novel engineering applications where the knowledge and

experience of the load-effects and responses are not yet well

accumulated and documented. Furthermore, the proposed

method can also be used as a tool for engineers to cross-

validate predictions calculated using other design methods.

Deconvolution method

Let one consider a stationary stochastic process X(t), either
simulated or measured over a specific time period 0≤ t≤T,

which is represented as the sum of two independent

stationary processes X1(t) andX2(t), namely

X(t) � X1(t) +X2(t). (1)

Note that this study aims at a general methodology applicable

to extreme value predictions for a wide range of loads and

responses for various vessels and offshore structures.

For the process of interest X(t) one may obtain a marginal

PDF (probability density function) pX in two ways:

1) by directly extracting pA
X from the available data set; i.e., time

series X(t),
2) by separately extracting PDFs from the process components

X1(t) and X2(t); namely, pX1andpX2, and then applying

convolution pB
X � conv(pX1, pX2).

Both pA
X andpB

Xare approximations of the target PDF pX.

Approach 1) is more straightforward to use. However, 2)

provides a more accurate estimate of the target PDFpX. An

advantage of using convolution in case 2) is based on the fact that

convolution enables extrapolation of the directly extracted

empirical PDF pA
X without pre-assuming any certain

extrapolation functional class; e.g., generalized extreme value

distributions (GEV) needed to extrapolate the distribution tail

towards a design with a low probability level of interest.

The two independent component representations given by

Eq. 1 are seldom available; therefore, one may look for artificial

ways to estimate pX1and pX2, or in the simplest case, find two

identically distributed process components X1(t) and X2(t)with
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pX1 � pX2. This study focuses on the latter alternative; i.e., cases

in which processes X1(t) andX2(t) are equally distributed.

Therefore, the current study goal was to give a directly

estimated distributionpX as in option 1), to find a component

distribution pX1such that

pX � conv(pX1, pX1) (2)

thus restricting this study only to a deconvolution case. To

exemplify the latter idea regarding the method for robustly

estimating the unknown distribution pX1 and subsequently to

improve (say extrapolate) the given empirical distribution pX,

Eq. 2 can then be treated using the discrete convolution method

as presented below.

Discrete convolution

The convolution of two vectors, u and v, represents the area
of overlap under the vector components as v slides across u.
Algebraically, convolution is the same operation as multiplying

polynomials whose coefficients are the elements of u and v.
Letm � length(u) and n � length(v). Then w is the vector of

length m + n − 1, whose k-th element is

w(k) � ∑m
j�1
u(j)v(k − j + 1). (3)

The sum is over all the values of j that lead to legal subscripts

for u(j) and v(k − j + 1),
specificallyj � max(1, k + 1 − n): 1: min (k,m). When m � n,

as will be the main case in this study, the latter gives

w(1) � u(1) · v(1)w(2) � u(1) · v(2) + u(2) · v(1)w(3)
� u(1) · v(3) + u(2) · v(2) + u(3) · v(1)w(n)
� u(1) · v(n) + u(2) · v(n − 1) + . . . + u(n)

· v(1)w(2n − 1)
� u(n) · v(n). (4)

From Eq. 4, one can also observe that having found

u � v � (u(1), ., u(n)), one can obtain gradually reduced parts

of w-components w(n + 1), ., w(2n − 1) as the index increases

from n + 1 to 2n − 1. The latter clearly would extend vector w
into a support domain that is two times longer than the original

distribution support domain; i.e., doubling the pX distribution

support length (2n − 1) · Δx ≈ 2n · Δx � 2XL, as compared to

the original distribution support length n · Δx � XL with Δx the

constant length of each discrete distribution bin. In other words,

convolution may convect distribution tail properties further

«downstream»; i.e., further in the tail.

Note that w � (w(1), ., w(n)) is a discrete representation of

the target empirical distribution pX from the Introduction, and n

represents the length of distribution support [0, XL], for

simplicity in this study, one is limited to the case of one-sided

positive-valued random variables; i.e., X≥ 0.
Furthermore, this study considered only the deconvolution

case; i.e., u � v in Eq. 5.According to Eq. 2, pX and pX1 will be

distributions corresponding to vectors w and u, respectively.
From Eq. 4, given w � (w(1), ., w(n)), one can sequentially

find unknown components u � v � (u(1), ., u(n)), starting from
the first component u(1) � �����

w(1)√
, then the second u(2) � w(2)

2u(1),
and so on, until u(n).

As will be further discussed in this study, the authors suggest a

simple linear extrapolation of a self-deconvoluted vector

(u(1), .., u(n)) towards (u(n + 1), ., u(2n − 1)). In other words,

pX1will have its tail linearly extrapolated in the range (XL, 2XL).
Note that while pX1 can be called the deconvoluted distribution,

that in discrete form is represented by the estimated vector u.
Using Eq. 3, the original vector w will be extended and

extrapolated into a support domain that is two times longer

than the original distribution support domain; i.e., doubling the

pX distribution support length (2n − 1) · Δx ≈ 2n · Δx � 2XL, as

compared to the original distribution support length n · Δx � XL.

As the original data distribution tail obtained either by

measurements or by Monte Carlo simulations is not smooth,

the smoothing tail procedure is introduced. To smooth the tail of

FIGURE 1
(A)NG fit of the MC-simulated Duffing response for fX . (B)Deconvoluted distribution, linearly extrapolated (blue) fX1versus the analytic solution
(green).
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the original distribution pX(x), the authors smoothed the pX tail

interpolation as the CDF distribution tail is generally quite

regular for high tail values x. More specifically, the

Naess–Gaidai (NG) method was used. In the NG method, the

tail approaches exp{−(ax + b)c + d}, where a, b, c, andd are

constants fitted for a chosen x0 and x≥ x0. This is discussed

in more detail in the next Section, Eqs 6, 7, and in Naess et al.

(2007 and 2010). Next, linear extrapolation of pX1 tail was viewed

by authors as the most straightforward unbiased choice. Other

non-linear extrapolation approaches can easily plug into the

proposed method; however, these would introduce certain

assumptions and biases.

Numerical results for the exceedance
probability distribution tails

This section presents the numerical results from the

deconvolution method proposed in the Deconvolution Method

section. As discussed in the Introduction, the deconvolution

extrapolation technique does not pre-assume any specific

extrapolation functional class to extrapolate the distribution tail.

Since in most reliability analysis engineering applications, it

is more important to estimate the probability of exceedance;

i.e., 1−CDF, where CDF is the cumulative density function,

rather than the marginal PDF, the notationfX in the present

study reflects the probability of exceedance 1−CDF, analogous to
the marginal probability density function PDF pX in the

Introduction. However, the proposed methodology may be

suitable for any sufficiently regular monotonously decreasing

concave or convex function tail.

To validate the proposed extrapolation methodology, the

«shorter» version of the original data set was used for

extrapolation for comparison with predictions based on the

whole «longer» data set. Therefore, this study aimed to prove

that the suggested extrapolation methodology showed an

efficiency improvement of at least several orders of magnitude.

The above discussion follows that one can perform an

iterative scheme, whereas, in the marginal PDF, one can use

1−CDF and generate a new artificial smoother CDF using

integration. The latter can significantly facilitate extrapolation

FIGURE 2
Comparison of deconvolution methods (solid blue), analytic
(green), and NG (dashed blue). The MC-simulated response is
indicated in red (*).

FIGURE 3
Example of a loaded TEU container vessel (Gaidai et al., 2022).

FIGURE 4
North Atlantic routes, 2007—2010 (Gaidai et al., 2022).
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if there are distribution tail irregularities due to the scarcity of the

underlying data set.

Next, the procedure of discrete convolution, or rather de-

convolution (as the purpose was to find the deconvoluted

1−CDF distribution fX1, given the empirical distribution fX)

as outlined in the previous section, was based on the sequential

solving of Eq. 4. Since the resulting deconvoluted values u �
(u(1), ., u(n)) typically follow a monotonously decreasing

pattern (the same was assumed for the empirical parent

distribution fX), some last values of the resulting vector u,

say (u(n − L), ., u(n)) for some L< n, may become negative. The

latter is a numerical error and not acceptable since positive

values can only represent the distributions. To address this

numerical challenge, the following scaling procedure was

introduced.

The lowest positive value fLof the given distribution tail

offX was taken as a pivot value (see the green horizontal lines

indicating fL on the left side of Figure 1). The scaling was then

simply a linear transformation along the vertical y-axis of the

distribution on the decimal logarithmic scale

FIGURE 5
Layout of the mid-ship cross-section showing the measurement position in the upper deck and crack positions at stringer level 1 (Gaidai et al.,
2022).
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gX � μ(log 10(fX) − log 10(fL)) + log10(fL) (5)

with gX(x) the scaledlog 10 version of the empirical base

distribution fX, with an intact reference level fL. The scaling

coefficient μ was conveniently chosen to avoid negative

components in the resulting fX1. For both numerical examples

in this study, μ � 1/3 served that purpose well. Then, whenfX1was

found, and back convolution ~fX � conv(fX1, fX1) as in Eq. 2

was done, the inverse scaling with μ−1 was performed to restore the

original scale, with ~fX the extrapolated version of fX.

Finally, there is a note regarding the issue with the

interpolation of the «shorter» data record distribution tail fX.

The latter interpolation was necessary because the empirical fX

distribution is naturally highly irregular at the terminal tail

section, thus making the empirical fX distribution unsuitable

input for Eq. 4. Therefore, this study adopted a simple convex

(logarithmic scale) NG (Naess–Gaidai) interpolation form

fX(x) ≈ exp{ − (ax + b)c + d}, x≥ x0 (6)

with a proper optimization technique for minimizing the

following function F with respect to a, b, c, andd. F is the

mean square error function and a, b, c, andd are constants.

More details can be found in the reports by Naess and Moan

(2013) and Zhang et al. (2019).

F(a, b, c, d) � ∫XL

x0

w(x){ln(fX(x)) − d + (ax + b)c}2dx, x≥ x0,

(7)
where x0 is the tail marker indicating the beginning of the

extrapolation tail area (green squares in Figure 3). The weight

function w may be defined in various ways; e.g., as

w(x) � {lnC+(x) − lnC−(x)}−2. (C−(x), C+(x)) is the

confidence interval (CI). Simulated or measured data can be used

to empirically estimate the CI. The main difference in this study, as

compared to Naess andMoan (2013) and Zhang et al. (2019), is that

there is no extrapolation using Eq. 6, only interpolation. Note that

any other log-convex interpolation form, different fromEq. 6, would

also work. The Levenberg–Marquardt non-linear least-squares

algorithm (Kanzow et al., 2004; Lourakis, 2004; Numerical

Algorithms Group, 2010) was used to find the optimal fit

parameters a, b, c, d.

Synthetic example: Non-linear Duffing
oscillator

In this section, a non-linear Duffing oscillator that is

subjected to Gaussian white noise has been used as an

FIGURE 6
Time series of combined measured onboard stress.

FIGURE 7
DMP stress. (A) ScaledfX1 tail on a decimal log scale for the «shorter» data (cyan), linearly extrapolated (dark blue). (B) Unscaled raw «shorter»
data (green) fX tail on a decimal log scale, extrapolated by deconvolution method (dark blue), along with «longer» raw data (red) and NG
extrapolation (cyan).
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example to validate and benchmark the proposed method. The

mean up-crossing rate ]X of the Duffing oscillator response to a

stochastic loading was chosen as the target function fX to study

its distribution tail properties, similar to the previous section.

Note that in this case fX was not a probability distribution but is

rather a scaled mean up-crossing rate function closely related to

extreme response statistics.

As the first example system, we used the ubiquitous single-

degree-of-freedom Duffing oscillator excited by stationary

Gaussian white noise W(t)

E[W(t)W(t + v)] � δ(τ) (8)

with δ(τ) indicating the δ-function. That is, the Duffing oscillator

equation takes the specific form

€X + β _X +X + εX3 � W(τ), (9)

where for the present example ε = 1, β = 0.2 were chosen. This

choice of εmakes the Duffing oscillator strongly non-linear. This

model is attractive for illustration purposes because the mean up

crossing rate is in closed form (later in this study called «analytic

solution»), thus offering an easy way of verifying the

extrapolation approach.

The left side of Figure 1 presents the NG fit of the MC

simulated Duffing response. The right side shows the

deconvoluted distribution, linearly extrapolated versus analytic

solution. The deconvoluted function fX1 is more linear in the tail

than the original target function fX.

Figure 2 presents the results of the comparisons between the

deconvolution method, analytic, and NG for the target function

fX. The proposed deconvolution method performed

significantly better than the NG extrapolation.

Deck panel stresses on container ships

This section illustrates the efficiency of the proposed

method applied to actual onboard data measured on

container vessels. The accurate prediction of extreme stresses

in ships is essential. Serious accidents have involved ships

breaking apart during voyages. The MSC Napoli (ClassNK,

2014) and MOL Comfort (MAIB, 2008) are two such Post-

Panamax container ships that broke apart during their voyages

in January 2007 and June 2013, respectively. Both ships broke

due to overloading at the hull girder in the midship area. The

investigation reports are presented in (ClassNK, 2014)- (MAIB,

2008).

Figure 3 shows a vessel similar to that considered in this

study. This TEU2800 container ship is a 245 m long Panamax

vessel that was instrumented in August 2007. The routes taken by

the ship between 2007 and 2010 are shown in Figure 4. Figure 4

also shows the alterations to the route to avoid severe storms;

i.e., the ship sails around some areas to avoid storms in those

locations.

Figure 5 shows the location of the strain gauges installed in

the mid-ship area, where the ships normally experience the

largest stresses and, as mentioned above, where the MSC

Napoli and MOL Comfort broke apart. The same figure also

illustrates the locations where cracks were observed. The strain

gauges are installed according to the DNV container vessel rules

and regulations (DNV, 2005; DNV, 2009; DNV, 2015; DNV,

2018a; DNV, 2018b). The strain gauges are aligned along in the

vessel’s fore-aft direction thus, the measures strains and stresses

measured are aligned in the longitudinal direction of the ship.

Figure 6 presents over 70 available time series of measured

onboard DMP (deck mid port) stress during trans-Atlantic

voyages. The «shorter» data record was generated by taking

the tenth data point from the «longer» deck panel stress data

record. Therefore, the «shorter» data record had an equivalent

time length of only 1 year.

The left side of Figure 7 presents the «shorter» data record

fX1 tail, obtained by deconvolution as in Eq. 2, and subsequently

linearly extrapolated in the terminal tail section to cover the X1

range matching the «longer» data record. The right side of

Figure 7 presents the final unscaled results of the proposed

technique; namely, the «shorter » decimal log scale fX tail,

extrapolated by deconvolution, along with the «longer» data

distribution tail and Naess–Gaidai (NG) extrapolation.

The right side of Figure 7 shows that the proposed method

performs well, being based on the «shorter» data set and

presenting a distribution quite close to the one based on the

«longer» data set.

Conclusion

The results of the present study showed the practical advantages

in the application of the proposed deconvolutionmethod. Themain

advantage of this method is that, unlike most engineering fit

methods, it is based on the intrinsic properties of the data set

itself and does not assume any extrapolation functional class. To

highlight the accuracy and effectiveness of the method, this study

analyzed both synthetic and real onboard measured ship panel

stress data sets. The prediction accuracy of the proposed method

was validated versus the Naess–Gaidai method.

For the synthetic Duffing case, the predictions obtained by

the proposed method showed better agreement with the

analytical solution compared to the prediction using the

Naess–Gaidai method.

The proposed method performed well in the measurement of

onboard measured ship panel stress. The NGmethod predictions

agreed with those of the proposed method in this example.

The results of this study demonstrated that the novel

deconvolution method for particular cases increased the

prediction accuracy of extreme onboard measured ship panel

stress. The proposed method is unbiased regarding any pre-

chosen fitting functional class, which can be useful in engineering
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applications where more accurate unbiased characteristic design

values are essential. Moreover, the proposed technique is not

limited to only the prediction of extreme onboard measured ship

panel stress, as it has general potential in naval architecture and

offshore engineering applications. For example, this

extrapolation method could also be used to predict fatigue life

(Gaidai et al., 2020).
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