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This research applies the moving framemethod (MFM) to themulti-body dynamic
analysis of an OC3 phase IV spar buoy with the NREL 5MW turbine. Further, it
verifies previous results obtained through numerical comparisons with
commercial software. The long-term goal is to lay the foundation for
leveraging the MFM to create a self-contained software system for future
analyses that can incorporate effects that are more sophisticated, when
commercial codes fall short. In this first evidentiary phase, this project treats
the floating turbine as a three-bodied system consisting of the platform (platform
+ tower), nacelle and rotor (hub + blades). Then the paper presents the MFM in a
tutorial style—in the context of this problem’s resolution. The paper supplements
the multi-body dynamic equations of motion obtained through the MFM with
simplified and reduced hydrodynamic, aerodynamic and mooring loads to
simulate the translational and rotational response of the floating turbine under
various load conditions. The results closely approximate those found in previous
work and, in the process, demonstrates MFM’s analytical advantage. Current
results capture the coupled responses in all degrees of freedom and
gyroscopic effects occurring when the platform pitches with the spinning
rotor. The project thus provides an accurate model for the dynamics of the
turbine and opens the door to inserting correct advanced hydrodynamics to
validate the model further. The work presents simulations for the different load
cases through a 3D web page using WebGL and the ThreeJS library. Users may
download all software to verify the results. An undergraduate student conducted
the work alone, demonstrating the ease of implementation of the MFM.
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1 Introduction

The world’s increasing need for energy makes renewable energy sources attractive.While
the demand for renewable energy increases, so does the resistance to onshore wind farms due
to the environmental impact, which puts certain species at risk WWF (2022). Offshore wind
farms will lessen the environmental impact regarding permanent structures’ installation and
yield more favourable wind conditions Burton et al. (2011).

Floating offshore wind turbines (FOWT), however, experience harsher environmental
loads and also increased freedom to translate compared to fixed installations. This implies
that predicting the movement of the FOWT is a challenge unto itself. To maximise their
potential, continually improved analyses for floating offshore wind farms must be
implemented.
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Currently, there exists reliable commercial software to conduct
analyses of such structures. However, as engineers continue to
infuse analyses with artificial intelligence, it is advisable to rely on
such legacy software alone and, instead, supplement analyses with
A.I. and digital twins. A digital twin is a representation of an
industrial asset in operation that includes the asset’s condition and
relevant historical data. When supplemented with AI, such models
can vastly improve the asset’s operation; in this case, includes the
modelling of dynamics response. A judicious use of inter-process
communication algorithms, in which a digital twin can access a
database of both previously solved problems coupled with extant
weather conditions; and this can speed the computation for near
real-time simulations. In fact, this work is currently underway in a
related project of crane motion on ships using the method used and
discussed herein.

The Moving Frame Method (MFM) can ease the process of
obtaining the equations of motion Storaas et al. (2019) and can
substantially reduce simulation time when implemented without the
computational overhead of commercial software. The MFM utilizes
Lie algebra and Cartan’s notion of Moving frames to extract the
equations of motion of both single- and multi-body systems as well
as 2D and 3D kinetics in a consistent notational matter Impelluso
(2017).

This research constructs the equations of motion using the
MFM and implements some of the environmental loads. It will
focus on the OC3 Phase IV spar-buoy platform and the NREL 5MW
reference turbine due to extensive research already performed on
such platforms and turbines. The goal is to replicate previously
found results and also to lay the foundation for further use of the
MFM when addressing complex multi-body dynamic systems. The
authors selected the FOWT as such an implementation due to its
nature. It is a complex machine, and experiences equally complex
loading. Furthermore, the industry is implementing AI for many of
its optimization problems. This makes the MFM method an
interesting approach to use. Essentially, this project endeavors to
demonstrate advanced computational techniques, such as how the
MFM enables easy transitions between scenarios where the tower-
nacelle-rotor connection is considered as a rigid body, and, later,
coupled with a finite element process, a deformable body.

To understand the method, the reader may review two papers
Impelluso (2017); Murakami (2013). In the first half of this paper, we
will launch directly into the method in a tutorial style.

2 The moving frame method

The Moving Frame Method (MFM) represents a paradigm shift
in the foundation of the discipline of multi-body dynamics.

2.1 MFM background

The MFM exploits the philosophy of Elie Cartan who advocated
that all objects be endowed with a moving reference frame Cartan
(1986). To relate the moving frames in a multi-body system (one for
each link), the MFM utilizes a compact notation, along with the
group theory and associated algebra of Sophus Lie but distilled to the
simplicity of matrix multiplications Frankel (2011).

In addition, the MFM for multi-bodies adopts a revised
approach to the Principle of Virtual work, in which a proper
variation of the angular velocity is established. While Wittenburg
Wittenburg (2007) advocated the use of virtual power to embed
driving forces and motor torques into the variation principle, the
MFM adopts a restriction on the variation of the angular velocity.
This restriction derives from both the variation of the frame and the
variation of the coordinates; and as first advocated by Holm Holm
(2008).

The MFM is not merely an alternate method of analysis. Rather,
it represents a paradigm shift in a discipline—one which empowers
the moving reference frame over the inertial. It eschews the notion of
fictious forces that derive from such frames, and predicating itself on
the reality that everything moves. The MFM renders a notation that
is consistent across the facets of dynamics. It enables 2D, 3D, single
andmulti-body dynamics to be represented with the same consistent
notation. It needs no validation as it produces the same equations of
motion as the traditional approach to dynamics, but more
expeditiously, and with a suite of equations that more more
amenable to coding through its matrix-based formulation.

FIGURE 1
Turbine with frames attached to each body.
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A pedagogical analysis of the method and an assessment of student
learning has been presented previously Impelluso (2017) for single body,
3D dynamics. Regarding research, the MFM has been used to model
ROV motion Austefjord et al. (2018), friction Rykkje et al. (2021),
gyroscopic wave energy converters Korsvik et al. (2019), a knuckle boom
crane Eia et al. (2019), and ship stability Flatlandsmo et al. (2019).

In this project, we apply the MFM to study the dynamics of a
wind turbines. In this way, we demonstrate the power of the MFM
and its ability for easy deployment in the analysis of floating wind
turbines. For in this era of smart machines, we must consider
recoding legacy software if we are to imbue existing software
with artificial intelligence.

2.2 Applying the moving frame method

Figure1 illustrateshoweachbodyoftheFOWTwillbeendowedwith
its own reference frame at the body’s center ofmass. The combined body
of the platform and the tower will hold the first frame from which the
inertial frame will be deposited. In other words, the first body’s frame is
primaryandtheinertial frameismerelyadecal tobepeeledoffattheonset
of the analysis to compute position data. The second moving reference
frame is attached to the nacelle, and the third is attached to the combined
bodyofthehubandtheblades.All frameswillbealignedwiththecentreof
massof the respectivebodiesat the start time. In the followingsection, the
kinematics of each moving frame will be described. This will lay the
foundationforobtainingtheequationsofmotion.WenowusetheSpecial
EuclideanGroup,SE(3), toobtaineachcomponent’sangularvelocityand
translational velocities systematically. However, to ease understanding,
thereader isadvised toconsult theprimaryresultsofeachof the following
three subsections, as per Table 1, below:

2.3 Kinematics of the platform, body 1

The platform will have all rotational and translational freedoms.

• The rotation of the platform—pitch, yaw and roll—from the
inertial frame, is found by post-multiplying the inertial frame by a
rotation (a member of the special orthogonal group, SO(3).

• The translation of the platform—surge, heave and sway from
the inertial frame is found by post-multiplying the inertial
frame by translation coordinates.

e 1( ) t( ) � eIR 1( ) t( ) (1)
r 1( )
c t( ) � eIx 1( )

c t( ) (2)
Obtaining these rotational and translational coordinates in the

inertial reference frame will be the main focus of later parts of the
analysis. However, at this time, we proceed beyond SO(3) and adopt
the Special Euclidean Group, SE(3), which will enable us to combine
both motions in one data structure.

Next, the frame and its position are group in a structure called
the frame connection. Below, both the inertial frame connection and
the moving frame connection (the former asserts the origin) are
displayed:

eI 0( ) (3)
e 1( ) t( ) r 1( )

c t( )( ) (4)

The two frame connections are related through a frame
connection matrix, defined implicitly by Eq. 5. Notice that the
expression below recapitulates the two equations that
commenced this section.

e 1( ) t( ) r 1( )
c t( )( ) � eI 0( )E 1( ) t( ) � eI 0( ) R 1( ) t( ) x 1( )

c t( )
0T 1

[ ]
(5)

The frame connection matrix, E(1)(t), is a member of the Special
Euclidean Group, SE(3), and carries associated group properties
and algebra. As a member of SE(3) the inverse can be found
analytically:

E 1( ) t( )( )−1 � R 1( )T t( ) −R 1( )T t( )x 1( )
c t( )

0T 1
[ ] (6)

As an aside, note that the superscript (1) implies an absolute
frame connection matrix to relate the inertial and moving frame
connections.

Next, we obtain the rate of change of the frame connection
matrix as follows:

_e 1( ) t( ) _r 1( )
c t( )( ) � eI t( ) 0( ) _E 1( )

t( ) (7)

Taking the derivative of the frame connection matrix _E
(1)(t),

yields:

_E
1( )

t( ) � _R
1( )

t( ) _x 1( )
c t( )

0T 0
[ ] (8)

TABLE 1 Kinematic results.

Body Translation Rotation

Platform: 1 _x(1)
c (t) � _x(1)c (t) ω(1)(t) = ω(1)(t)

Nacelle: 2

_x(2)c (t) �
R(2)(t)s(2/J)c (t)T

�������→←�������
ω(2)(t)+

R(1)(t)s(J/1)c (t)T
�������→←�������

ω(1)(t)+
_x(1)c (t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ω(2)(t) = R(2/1)T(t)ω(1)(t) + ω(2/1)(t)

Rotor: 3

_x(3)
c (t) �

R(2)(t)s(3/J)c (t)T
�������→←�������

ω(2)(t)+
R(1)(t)s(J/1)c (t)T

�������→←�������
ω(1)(t)+

_x(1)c (t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ω(3)(t) � R(3/1)T(t)ω(1)(t)+
R(3/2)T(t)ω(2/1)(t) + ω(3/2)(t)( )
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Since the inverse of the frame connection matrix is analytically
known through the algebraic properties of SE(3), the rate of change
of the frame connection matrix can be expressed in terms of the
same frame connection matrix:

_e 1( ) t( ) _r 1( )
c t( )( ) � e 1( ) t( ) r 1( )

c t( )( ) E 1( ) t( )( )−1 _E 1( )
t( ) (9)

_e 1( ) t( ) _r 1( )
c t( )( ) � e 1( ) t( ) r 1( )

c t( )( )Ω 1( ) t( ) (10)

The two equations above implicitly defineΩ(1)(t). Bymultiplying
the inverse of the frame connection matrix and its rate, we obtain:

Ω 1( ) t( ) � ω1(t)
�����→←�����

R 1( )T t( ) _x 1( )
c t( )

0
T

0

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ (11)

From this the foundation has been laid to extract the
translational and rotational information in the following steps:

ω 1( )
�������→←�������

t( ) � R 1( )T t( ) _R 1( )
t( ) (12)

As previously mentioned the angular velocity matrix in its skew-
symmetric form is used to express the time rate of change of the
body frame in terms of the body frame:

_e 1( ) t( ) � e 1( ) t( )ω 1( )
�������→←�������

t( ) (13)
From Eq. 11 the translational velocity information of the body in

the moving frame can also be extracted:

_r 1( )
c t( ) � e 1( ) t( )R 1( )T t( ) _x 1( )

c t( ) (14)
Which is easily referred back to the inertial frame using the

inverse frame relation:

_r 1( )
c t( ) � eI t( ) _x 1( )

c t( ) (15)
This concludes the kinematic of the platform and the next

section will continue through the tree structure of the platform,
nacelle and blades. From here, the same structures will apply,
however, they will be formulated as relative frame connections.

2.4 Kinematics of the nacelle, body 2

The yaw bearing motor enables the rotation of the nacelle about
the tower’s vertical axis. As a simple first pass, this study assume the
motor and Nacelle as one body. To construct the frame connection
matrices, one may progress from the first body to the second as
follows:

• Translate to yaw bearing, henceforth known as point J, using
the turbine frame. Ultimately, for simplicity, the analysis will
assert that the second body is directly above the first:
s(J/1)2 (t) � s(J/1)1 (t) � 0. However, for now, the analysis
leaves it as general coordinate form:

s J/1( ) t( ) � e 1( ) t( )s J/1( ) t( ) � e 1( ) t( )
s

J/1( )
1 t( )
s

J/1( )
2 t( )
s

J/1( )
3 t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (16)

• Next, to reach the second frame, we allow the second body to
rotate from the first, using a member of SO(3) to affect the
rotation, about the vertical axis:

R 2/1( ) t( ) �
cos ϕ −sin ϕ 0
sin ϕ cos ϕ 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (17)

• Finally, we translate to the center of mass of the nacelle. For
simplicity it can be assumed that we progress directly outward:
s(2/J)2 (t) � s(2/J)3 (t) � 0.

s 2/J( ) t( ) � e 2( ) t( )s 2/J( ) t( ) � e 2( ) t( )
s

2/J( )
1 t( )
s

2/J( )
2 t( )
s

2/J( )
3 t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (18)

With the abovementioned rotational and translational coordinates,
the relative frame connection matrix - that relates the platform frame
connection to the nacelle frame connection can be obtained as the non-
commutative product of the following matrices (which can be stated, in
words, as translate, rotate, translate):

E 2/1( ) t( ) � I3x3 s J/1( ) t( )
0 1

[ ] R 2/1( ) t( ) 0
0 1

[ ] I3x3 s 2/J( ) t( )
0 1

[ ] (19)

Performing the matrix multiplication yields:

E 2/1( ) t( ) � R 2/1( ) t( ) R 2/1( ) t( )s 2/J( ) t( ) + s J/1( ) t( )
0 1

[ ] (20)

The relative frame connection relationship is now complete:

e 2( ) t( ) r 2( )
c t( )( ) � e 1( ) t( ) r 1( )

c t( )( )E 2/1( ) t( ) (21)

Note that the superscript on E(2/1)(t) implies a relative frame
conenction matrix, between two moving frame connections.

However, by taking advantage of the platform’s frame connection
matrix, Eq. 5, the absolute frame connection of the nacelle is found
using the Group property of closure under matrix multiplications:

e 2( ) t( ) r 2( )
c t( )( ) � eI 0( )E 1( ) t( )E 2/1( ) t( ) (22)

Define:

E 2( ) t( ) � E 1( ) t( )E 2/1( ) t( ) (23)
Using what was previously found it can be shown that:

E 2( ) t( ) � R 2( ) t( ) R 2( ) t( )s 2/J( ) t( ) + R 1( ) t( )s J/1( ) t( ) + x 1( )
c t( )

0T 1
[ ]

(24)
Where R(2)(t) in the upper left of E(2)(t) is the absolute rotation

matrix of the nacelle frame, defined in the following manner:

R 2( ) t( ) � R 1( ) t( )R 2/1( ) t( ) (25)
The term located in the upper right quadrant of E(2)(t) describes

the nacelle’s center of mass location from the inertial frame.
As in the previous section the inverse of the absolute frame

connection matrix is obtained:
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E 2( ) t( )( )−1 � R 2( )T t( ) −R 2( )T t( ) R 2( ) t( )s 2/J( ) t( ) + R 1( ) t( )s J/1( ) t( ) + x 1( )
c t( )( )

0 1
[ ]

(26)

The time rate of change of the absolute frame connection
matrix:

_E
2( )

t( ) � _R
2( )

t( ) _R
2( )

t( )s 2/J( ) t( ) + _R
1( )

t( )s J/1( ) t( ) + _x 1( )
c t( )

0 0
[ ]

(27)
Finally, using the data structure of SE(3) the time rate of change

of the second frame connection in terms of the second frame
connection is:

_e 2( ) t( ) _r 2( )
c t( )( ) � e 2( ) t( ) r 2( )

c t( )( ) E 2( ) t( )( )−1 _E 2( )
t( ) (28)

Define:

Ω 2( ) t( ) � E 2( ) t( )( )−1 _E 2( )
t( ) � Ω 2( )

11 t( ) Ω 2( )
11 t( )

0 0
[ ] (29)

Expanding on the terms in the Omega matrix:

Ω 2( )
11 t( ) � R 2/1( )T t( )R 1( )T t( ) _R

1( )
t( )R 2/1( ) t( )

+R 1( ) t( ) _R 2/1( )
t( )( ) (30)

Ω 2( )
12 t( ) � R 2/1( )T t( )R 1( )T t( ) _R

2( )
t( )s 2/J( ) t( )+

_R
1( )

t( )s J/1( ) t( ) + _x 1( )
c t( )( ) (31)

From Eq. 30 the absolute angular velocity matrix can be
extracted and used to find the angular velocity vector:

ω 2( ) t( ) � R 2/1( )T t( )ω 1( ) t( ) + ω 2/1( ) t( ) (32)
Using Eq. 31 the translational velocity of the second body

expressed in the inertial frame can be found:

_x 2( )
c t( ) � R 2( ) t( )s(2/J)c (t)T

��������→←��������
ω 2( ) t( )+

R 1( ) t( )s(J/1)c (t)T
��������→←��������

ω 1( ) t( ) + _x 1( )
c t( )

⎛⎜⎜⎝ ⎞⎟⎟⎠ (33)

For the sake simplicity, the recursive relationships for only
rotations, SO(3) and the combined rotation and displacement
SE(3) are presented here.

ω(α)(t)
�������→←�������

� R α/α−1( )T t( )ω(α−1)(t)
���������→←���������

R α/α−1( ) t( ) + R α/α−1( )T t( ) _R α/α−1( )
t( )
(34)

Ω α( ) t( ) � E α/α−1( )T t( )Ω α−1( ) t( )E α/α−1( ) t( ) + E α/α−1( )T t( ) _E α/α−1( )
t( )
(35)

As we conclude the nacelle kinematics it must be emphasized
that the nacelle will not yaw in the current case studies, and this will
be addressed in later parts of this projec. Despite this, we have
installed the possibility to insert such a motor-driven yaw. Also the
relative angular velocity between the nacelle and the turbine is
analytically known to involve only one rotation since it is driven
by a motor torque. It is written as:

ω 2/1( ) t( ) � _ϕ
0
0
1

⎛⎜⎝ ⎞⎟⎠ � _ϕe3 (36)

Recognizing that the column, above, is the uskewed form of the
basis of skew symmetric angular velocity matrices for a single
rotation:

e3
↔ �

0 −1 0
1 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (37)

Combing Eq. 36 and 32 the absolute angular velocity vector can
be stated:

ω 2( ) t( ) � R 2/1( )T t( )ω 1( ) t( ) + e3 _ϕ (38)

2.5 Kinematics of the blades, body 3

In this project, the three blades and the hub will be considered
one body; however, nothing prevents future research from extending
this and modeling each individual blade.

The rotation will be induced by the wind speed, and amotor (the
motor will be applied to slow the spinning of the blades down and
generate power).

Since the center of mass of the blades lies coincident with the
spin axis of the blades there is no need to translate after accounting
for the rotation of the blades.

• Translate from the nacelle CM to the joint (which incidentally
coincides with the CM of the blades)

s 3/2( )
c t( ) � e 2( ) t( )s 3/2( )

c t( )
s 3/2( )
c1 t( )
s 3/2( )
c2 t( )
s 3/2( )
c3 t( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ (39)

• Rotation of the third frame from the second frame will happen
about the 1 axis and the rotation matrix is shown:

R 3/2( ) t( ) �
1 0 0
0 cosψ −sinψ
0 sinψ cosψ

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (40)

The non-commutative building blocks of the relative frame
connection matrix follows:

E 3/2( ) t( ) � I3x3 s 3/2( )
c t( )

0 1
[ ] R 3/2( ) t( ) 0

0 1
[ ] (41)

Through matrix multiplication it is known:

E 3/2( ) t( ) � R 3/2( ) t( ) s 3/2( )
c t( )

0 1
[ ] (42)

Which is used in the context of frame connections in the
following way:

e 3( ) t( ) r 3( )
c t( )( ) � e 2( ) t( ) r 2( )

c t( )( )E 3/2( ) t( ) (43)

The absolute frame connection matrix is found by pre-
multiplying this result by the absolute frame connection matrix
for the nacelle:

E 3( ) t( ) � E 2( ) t( )E 3/2( ) t( ) (44)
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The result of this matrix multiplication is shown below, however
every step is not shown:

E 3( ) t( ) � R 3( ) t( ) R 2( ) t( )s 3/J( )
c t( ) + R 1( ) t( )s J/1( )

c t( ) + x 1( )
c t( )

0 1
[ ]

(45)
Since the translation for the yaw bearing to center of mass of the

nacelle happens in the same frame as the translation from the nacelle
to the center of mass of the blades it is known that:

s
3/J( )

c t( ) � s 3/2( )
c t( ) + s

2/J( )
c t( ) (46)

The time rate of change of the frame connection of the rotor
frame in terms of the rotor frame can also be found:

Ω 3( ) t( ) � E 3( ) t( )( )−1 _E 3( )
t( ) (47)

Ω 3( ) t( ) � Ω 3( )
11 t( ) Ω 3( )

12 t( )
0 0

[ ] (48)

Expanding on the terms in the matrix:

Ω 3( )
11 t( ) � R 3( )T t( ) _R 3( )

t( ) (49)
The angular velocity vector can be extracted:

ω 3( ) t( ) � R 3/1( )T t( )ω 1( ) t( )+
R 3/2( )T t( )ω 2/1( ) t( ) + ω 3/2( )( ) (50)

Ω 3( )
12 t( ) �

R 3/2( )T t( )s(3/J)c (t)T
��������→←��������

ω 2( ) t( )+
R 3/1( )T t( )s(J/1)c (t)T

��������→←��������
ω 1( ) t( )+

R 3( )T t( ) _x 1( )
c t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (51)

Which leads to the translational velocity of the rotor expressed
in the inertial frame:

_x 3( )
c t( ) �

R 2( ) t( )s(3/J)c (t)T
��������→←��������

ω 2( ) t( )+
R 1( ) t( )s(J/1)c (t)T

��������→←��������
ω 1( ) t( )+

_x 1( )
c t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (52)

Before delving deeper into the solution, note for the sake of
simplicity, that the relative angular velocity of the rotor from the
nacelle is analytically known to involve only one rotation. Thus, this
rotation coordinate can be infused into the analysis in a simpler way as
follows.

ω 3/2( ) t( ) � _ψ
1
0
0

⎛⎜⎝ ⎞⎟⎠ � _ψe1 (53)

Similarly to the nacelle kinematics the column is the unskewed
form of the basis of skew symmetric angular velocity matrices fora
single rotation about the shared first axis.

e1
↔ �

0 0 0
0 0 −1
0 1 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (54)

And therefore the angular velocity vector can be restated as:

ω 3( ) t( ) � R 3/1( )T t( )ω 1( ) t( ) + R 3/2( )T t( ) _ϕe3 + _ψe1 (55)

This concludes applying the frames to the turbine, in the next
section the generalized essential coordinates will be examined.

In accordance with Table 1, we summarize the results we
have obtained. The work performed yielded the following
Cartesian result presented below. The first two of which are
tautological:

_x 1( )
c t( ) � _x 1( )

c t( ) (56)
ω 1( ) t( ) � ω 1( ) t( ) (57)

_x 2( )
c t( ) � R 2( ) t( )s(2/J)c (t)T

��������→←��������
ω 2( ) t( )+

R 1( ) t( )s(J/1)c (t)T
��������→←��������

ω 1( ) t( ) + _x 1( )
c t( )

⎛⎜⎜⎝ ⎞⎟⎟⎠ (58)

ω 2( ) t( ) � R 2/1( )T t( )ω 1( ) t( ) + ω 2/1( ) t( ) (59)

_x 3( )
c t( ) �

R 2( ) t( )s(3/J)c (t)T
��������→←��������

ω 2( ) t( )+
R 1( ) t( )s(J/1)c (t)T

��������→←��������
ω 1( ) t( )+

_x 1( )
c t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (60)

ω 3( ) t( ) � R 3/1( )T t( )ω 1( ) t( )+
R 3/2( )T t( )ω 2/1( ) t( ) + ω 3/2( ) t( )( ) (61)

2.6 Generalized coordinates

The next step is to reformulate these expressions and extract the
Cartesian coordinates as a function of a minimal set of generalized
coordinates. Since there are three bodies the Cartesian coordinate rates
will be a 6 × 1 column vector holding the translational and rational
velocity of each respective body, where each element in the column will
be 3 × 1 column. The full Cartesian rate column will be 18 × 1:

_X t( ){ } �
_x 1( )
c t( )

ω 1( ) t( )
_x 2( )
c t( )

ω 2( ) t( )
_x 3( )
c t( )

ω 3( ) t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(62)

In the previous equation, the first row consits of surge, sway and
heave; the second row consists of roll, pitch and yaw of the turbine body:
this is followed by the Cartesian rates for body 2 and 3. Meanwhile the
rate of change of the generalized essential coordinates:

_q t( ){ } �
_x 1( )
c t( )

ω 1( ) t( )
_ϕ
_ψ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (63)

In Eq. 63, the first two rows are as before, but the third row is one
coordinate (the turning of the nacelle) and the last row, also one
coordinate, is the spin of the blades.

The Cartesian rates are related to the time rate of change of the
generalized essential coordinates through the B-matrix as follows. The
system is linear in that the generalized rates are readily extracted:

_X t( ){ } � B t( )[ ] _q t( ){ } (64)

For the FOWT the B-matrix will be a 6 × 4 matrix in compact
notational form:
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B t( )[ ] �

I3 03x3 03x1 03x1
03x3 I3 03x1 03x1
I3 B32 B33 03x1
03x3 R 2/1( )T t( ) e3 03x1
I3 B52 B53 03x1
03x3 R 3/1( )T t( ) R 3/2( )T t( )e3 e1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(65)

Where:

B32 � R 2( ) t( )s(2/J)c (t)T
�������→←�������

R 2/1( )T t( ) + R 1( ) t( )s(J/1)c (t)T
�������→←�������

(66)

B33 � R 2( ) t( )s(2/J)c (t)T
�������→←�������

e3 (67)

B52 � R 1( ) t( )s(J/1)c (t)T
�������→←�������

+ R 2( ) t( )s(3/J)c (t)T
�������→←�������

R 2/1( )T t( ) (68)

B53 � R 2( ) t( )s(3/J)c (t)T
�������→←�������

e3 (69)

2.7 Hamilton’s principle and kinetics

To obtain the equations of motion for the FOWT, Hamilton’s
Principle is applied. To this end, the Lagrangian is established in a
structured form to account for all masses. The Lagrangian describes
the states of a dynamic system as the difference between kinetic and
potential energy for conservative forces. By extending Hamilton’s
Principle with the Principle of Virtual Work, we can account for
non-conservative forces such as the applied motors and dissipative
fluid forces.

L̂ � K +W (70)
Both translational velocity and angular velocity contribute to the

kinetic energy of dynamic multi-body-systems. However, this
energy will be expressed using the linear and angular momentum
for each body, α = 1, 2, 3, stated here (using the mass mα, and mass
matrix of inertia, J(α)c , of each body) as:

L α( )
c � eI t( )L α( )

c � eIm α( ) _x α( )
c t( ) (71)

H α( )
c � eIH α( )

c � eI t( )J α( )
c ω α( ) t( ) (72)

Next, the goal is to group the previous two equations in one
structured form, as follows. A generalized mass matrix [M] is
constructed. It consists of the alternating masses and mass
moment of inertia of the bodies in the multi-body system: (1)-
Platform, (2)-Nacelle, (3)-Rotor. Each entry on the diagonal below
is, itself a 3 by 3 matrix. The impact of a sparse matrix will be
handled in the Matlab code.

M[ ] �

m 1( )I3 0 0 0 0 0
0 J 1( )

c 0 0 0 0
0 0 m 2( ) 0 0 0
0 0 0 J 2( )

c 0 0
0 0 0 0 m 3( ) 0
0 0 0 0 0 J 3( )

c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(73)

Using the generalized mass matrix, the generalized momenta
can be constructed:

H{ } � M[ ]

_x 1( )
c t( )

ω 1( ) t( )
_x 2( )
c t( )

ω 2( ) t( )
_x 3( )
c t( )

ω 3( ) t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� M[ ] _X t( ){ } �
L 1( )
c

H 1( )
c

L 2( )
c

H 2( )
c

L 3( )
c

H 3( )
c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(74)

The kinetic energy of the entire multi-body system can be
stated as:

K � 1
2

_X t( ){ }T H{ } (75)

With this expression for the kinetic energy and an
understanding of the applied loads, we obtain the equations of
motion through variational methods. However, there will be a
difficulty in formulating the variation of the angular velocity and
a digression must be made.

The variation of the generalized velocities needs to be obtained
to take the variation of the Lagrangian. The variation of any frame
connection matrix has been defined by Murakami at UCSD
Murakami (2013) and was obtained independently by Holm (2008).

δΠα � δπα(t)
�������→←�������

R α( )T t( )δx α( )
c t( )

0
T

0

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ (76)

Where δπα(t)
������→←������

is the variation of the angular displacements
defined as:

δπα(t)
�������→←�������

� R α( )T t( )δR α( ) t( ) (77)
Note that the unvaried form does not exist. This term above,

is merely a definition that will be structurally consistent with
related terms in this analysis. Essentially, the rotation matrix is
varied, δR(α)(t), and pulled back to an inertial frame by post-
multiplication of the transpose of the original form: R(α)T(t). Next
the virtual generalized displacement matrix column, δ ~X(t){ } is
presented:

δ ~X t( ){ } �
δx 1( )

c t( )
δπ 1( )

c t( )
δx 2( )

c t( )
δπ 2( )

c t( )
δx 3( )

c t( )
δπ 3( )

c t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(78)

The commutativity of the time differentiation and the variation
of the frame is essential during the integration of the Lagrangian.
The restriction on the variation of the angular velocities is proved
below:

δω α( ) t( ) � d

dt
δπ α( ) t( ) + ω(α)(t)

�������→←�������
δπ α( ) t( ) (79)

The variation of the translational velocities:

d

dt
δx α( )

c t( ) � δ _x α( )
c t( ) (80)

Next the two equations above are consolidated into one form.
This is done by construction another sparse matrix system. [D] is a
skew symmetric sparse matrix used to account for the restriction on
the variation of the angular velocities:
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D[ ] �

0 0 0 0 0 0

0 ω(1)(t)
�������→←�������

0 0 0 0
0 0 0 0 0 0

0 0 0 ω(2)(t)
�������→←�������

0 0
0 0 0 0 0 0

0 0 0 0 0 ω(3)(t)
�������→←�������

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(81)

Using the above equation the variation of the velocities can be
stated as:

δ _X t( ){ } � d

dt
δ ~X t( ) + D[ ] δ ~X t( ){ } (82)

The sparsity of the D matrix leaves the variation of linear
velocities in standard forrm, yet handles the restriction on the
variation of the angular velocities. In Eq. 65 the relationship
between the generalized Cartesian velocities and the generalized
essential velocities is presented, and the same can be shown for the
variation of the generalized Cartesian displacements and the
essential generalized displacements:

δ ~X t( ){ } � B t( )[ ] δq t( ){ } (83)

The virtual work done by all the forces, conservative and non-
conservative can be stated as:

δW � δ ~X t( ){ }T Q t( ){ } (84)

Where Q(t){ } holds all the applied forces and moments:

Q t( ){ } �

F 1( )I
c t( )

M 1( )
c t( )

F 2( )I
c t( )

M 2( )
c t( )

F 3( )I
c t( )

M 3( )
c t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(85)

Recollecting Eq. 83 and 84 the generalized forces and a new
expression for the virtual work can be stated:

F* t( ){ } � B t( )[ ]T Q t( ){ } (86)

δW � δq t( ){ }T F* t( ){ } (87)
Varying the Lagrangian will now give the following expression:

δL̂ � δ _X t( ){ }T M[ ] _X t( ){ } + δq t( ){ }T F* t( ){ } (88)

The Lagrangian can now be integrated noting that the boundary
condition of no variation at the boundaries must be met:

∫t1

t0

δ _X t( ){ }T M[ ] _X t( ){ } + δq t( ){ }T F* t( ){ } dx (89)

Taking advantage of integration by parts and the boundary
conditions it can be shown that the equation above yields the following:

B t( )[ ]T M[ ] B t( )[ ] €q t( ){ } + B t( )[ ]T M[ ] _B t( )[ ](
+ D t( )[ ] M[ ] B t( )[ ]) _q t( ){ } � F* t( ){ } (90)

Hamilton’s Principle extended by the Principle of Virtual Work
has now provided the matrix form equations of motion for
the FOWT.

2.8 Reconstruction of the rotation matrix

The platform is free to rotate in pitch, roll and yaw
directions and therefore the rotation matrix will be unknown
and must be reconstructed from the calculated angular velocity
of the platform. If the angular velocity is constant, it can be
shown that:

_R
1( )

t( ) � R 1( ) t( )ω(1)(t)
�������→←�������

(91)
By assuming a constant angular velocity and exploiting a mid-

point integration scheme for each time step in the chosen numerical
method to solve the equations of motion the reconstruction formula
can be used:

R t + Δt( ) � R t( )exp Δtω t( + Δt/2{ } (92)
When the Cayley Hamilton Theorem is applied to a skew

symmetric matrix, it is known that:

exp tω0{ } � I + ω0

‖ω0‖ sin t‖ω0‖( ) + ω0

‖ω0‖( )2

1 − cos t‖ω0‖( )( ) (93)

2.9 Hydrodynamics

Solving the hydrodynamic problem in general requires
knowledge about two different aspects of the fluid; velocity and
pressure Perez and Fossen (2007). The overarching Navier-Stokes
equations are unnecessarily too advanced for this first pass analysis.
However, by assuming an inviscid, incompressible, irrotational fluid
flow the velocity can be derived by taking the gradient of a potential
function Faltinsen (1990). With the formulations presented below
the MFM will be used to relate the hydrodynamic loads to
the FOWT.

To assess the hydrodynamic loads that act upon the platform
several assumptions and simplifications must be made. The most
important assumption is that the hydrodynamic problem can be
linearised. This assumption is mostly valid for deep water sea states
where it is implied that the wave elevation is relatively small
compared to the wave length which in turn eliminates breaking
of waves in most cases Jonkman (2007).

By means of linearisation, the superposition principle can be
applied, and the true linear hydrodynamic equation Ogilvie (1964) is
presented below:

FPl
i � FH

i + FW
i − ∫t

0
Kij t − τ( ) _qj τ( ) dτ + FD

i + FL
i − Aij ∞( )€qj

(94)

• Hydrostatics: FH
i is the resultant force and moments from the

body’s displacement, altering the position of the buoyancy
center and the amount of displaced fluid. It is calulated by
summing the pressure acting on the submerged body.

• Wave Excitation Loads: FW
i is the forces and moments from

waves. These forces are obtained using a corresponding wave
spectra and the normalized vector of wave excitation loads
which, in turn, is calculated from the geometry of platform by
means of numerical software.
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• Radiation loads: The convolution integral term represents the
energy that dissipates as the platform oscillates in the fluid.

• Viscous Drag: FD
i represents the loads from viscous drag due

to the platform velocity relative to the fluid velocity.
• Mooring lines loads: The combined forces and moments from
all three mooring lines are encapsulated in the FL

i term. A
quasi-static model will be used to approximate the mooring
loads for various displacements of the FOWT Grindheim
(2022).

• Aij(∞) is the added mass component at infinite frequency.
The translating and rotating platformwill also need to displace
the surrounding water which is known as added mass and is
calculated in the frequency domain using a numerical panel
method with software such as Wamit.

2.10 Implementing themodel in a simulation

The numerical integration used in this work does not exploit
Matlab’s Runge-Kutta 4th order (RK4) solver. The authors
developed their own. The Matlab solver does not come
equipped with the necessary call out to a function to establish
the rotation matrix for the base frame (in this case, the turbine
body). For while this work uses Runge-Kutta-4 to integrate, it
must deal with one other issue, in tandem: there is no standard
rotation matrix for the turbine body (it may include roll, pitch
and yaw). Consequently, the code cannot state an explicit
rotation matrix and its time derivative for ease of updating
the B-matrix between times steps. Thus, the approach used
was to use the Cayley-Hamilton theorem, and the Rodriguez
formula (the latter of which derives from Cayley-Hamilton), to
update the rotation matrix from the angular velocity matrix,
between the times steps of RK4.

The code is kept as general as possible and flags are implemented
to handle specific scenarios that are simulated. Through the MFM
the equations of motion were extracted, recall Eq. 90, and they can be
written in compact form:

M* €q t( ){ } +N* _q t( ){ } � F* T( ){ } (95)
Where:

M* � B t( )[ ]T M[ ] B t( )[ ]
N* � B t( )[ ]T M[ ] _B t( )[ ] + D t( )[ ] M[ ] B t( )[ ]( ) (96)

The process will start with calculating the forces acting upon the
FOWT at the current time step before initializing the Runge-Kutta
method. Between every partial step of the Runge-Kutta method the
rotation matrix for the platform that holds the pitch, roll and yaw
displacements must be reconstructed using 93.

Once the essential generalized velocities are approximated the
generalized coordinates are also approximated through a simple mid-
point integration scheme explained further in the next section. The
Cartesian coordinates are then calculated and saved for the visual 3D
simulation.

A list of pertinent data used in the Matlab code is presented
below:

TABLE 2 Structural data Jonkman (2010).

Body Description Value Unit

Platform Overall length 130.0 [m]

Draft 120 [m]

Mass 746.6 · 104 [kg]

CM location below SWL 89.92 [m]

Roll inertia about CM 4.23 · 109 [kgm2]

Pitch inertia about CM 4.23 · 109 [kgm2]

Yaw inertia about cm 1.64 · 108 [kgm2]

Tower Overall length 77.6 [m]

Mass 250.0 · 103 [kg]

CM above SWL 43.4 [m]

Jxx 1.3 · 108 [kgm2]

Jyy 1.3 · 108 [kgm2]

Jzz 1.6 · 106 [kgm2]

Nacelle Mass 240.0 · 103 [kg]

CM location above tower top 1.75 [m]

CM location downwind from yaw axis 1.9 [m]

Inertia about yaw axis 2.6 · 106 [kgm2]

Jxx 8.7 · 105 [kgm2]

Jyy 1.7 · 106 [kgm2]

Jzz 1.7 · 106 [kgm2]

Hub Mass 57.0 · 103 [kg]

CM above tower top 1.96 [m]

CM upwind from yaw axis 5.02 [m]

Inertia about spin axis 116.0 · 103 [kgm2]

Jxx 58.0 · 103 [kgm2]

Jyy 58.0 · 103 [kgm2]

Blades Length of individual blades 61.5 [m]

Mass 53.3 · 103 [kg]

Inertia about spin axis 3.5 · 107 [kgm2]

Jyy 1.8 · 107 [kgm2]

Jyy 1.8 · 107 [kgm2]

TABLE 3 Load cases, based on El Beshbichi et al. (2021b).

Load case Wind Wave Initial displacement

1.4a None None Surge: 20 m

1.4e None None Pitch: 10°

5.2 Turbulent Irregular Airy waves None
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FIGURE 2
Surge response of the FOWT from Free Decay Surge.

FIGURE 3
Pitch response of the FOWT from Free Decay Surge.

FIGURE 4
Surge response of the FOWT from Free Decay Pitch.
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• Current time
• Time step
• Generalized essential velocities
• The rotation matrix describing the full 3D rotation of
the FOWT

• Angular velocity matrix of the platform
• Centre of mass location of the platform, nacelle and rotor
• Mass of the individual bodies
• Mass moment of inertia matrix for each body
• Forces and moments from external loads

Rearranging Eq. 95 and discretizing it:

€qn+1 � Mn*[ ]−1 Fn* −Nn* _qn[ ] (97)
The Runge-Kutta 4th-order method with the above equation

reduces to:

k1 � Mn*[ ]−1 Fn* −Nn* _qn[ ]
k2 � Mn+0.5Δt*[ ]−1 Fn+0.5Δt* −Nn+0.5Δt* _qn +

1
2
k1Δt( )[ ]

k3 � Mn+0.5Δt*[ ]−1 Fn+0.5Δt* −Nn+0.5Δt* _qn +
1
2
k2Δt( )[ ]

k4 � Mn+Δt*[ ]−1 Fn+Δt* −Nn+Δt* _qn + k3Δt( )[ ]
_qn+1 � _qn + Δt k1 + k2 + k3 + k4( ) 1

6

(98)

A simple mid-point integration scheme is implemented to
calculate the general essential coordinates:

qn+1 � qn + _qn + _qn+1( )
2

Δt (99)

For the load cases which where simulated in this paper a fixed step
integration was used. The initial conditions used in the various load cases
were based upon the work done in El Beshbichi et al. (2021a).

FIGURE 5
Pitch response of the FOWT from Free Decay Pitch.

FIGURE 7
Pitch response of the FOWT LC5.3 El Beshbichi et al. (2021b).

FIGURE 6
Surge response of the FOWT LC5.3 El Beshbichi et al. (2021a).
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A complete system description of the structural properties of the
floating wind turbine can be found in Table 2.

2.11 Traditional methods of validation

Currently, tools such as Bladed by DNV, SIMO/RIFLEX byMarintek,
HAWC2 by DTU and FAST by NREL are used to analyze and validate

FOWT design Robertson et al. (2014); Cordle and Jonkman (2011); dnv
(2023); Jonkman et al. (2010). These are fully coupled dynamic tools which
account for hydrodynamic and areodynamic loads, structural dynamics,
mooring and control systems in their prediction of the system response.
These methods are known as the aero-hydro-elastic-servo fully-coupled
approachCruz andAtcheson (2016) andwhile accurate in their predictions
can be time-consuming to use El Beshbichi et al. (2021b). These methods
also assume a generic FOWT design which limit their usability in
exploration of new design which differs significantly from the
traditional FOWT.

3 Results

To facilitate comparison between existing validated work, this
section will present some of the results from individual load cases. A
brief overview of the load cases can be seen in Table 3 The response
of the FOWT for free decay surge and pitch (Load Case 1.4 El
Beshbichi et al. (2021a)) scenario as well as irregular wind and wave
response [Load Case 5.2 El Beshbichi et al. (2021b)].

3.1 Free decay surge

The platform is initially displaced 20m in the surge direction. It is
released and the response is simulated accounting for hydrostatic,
mooring, drag and damping loads. The results that are presented
shows the response of the platform in the surge (Figure 2) and pitch
(Figure 3) direction. The results show good correlation with previous
findings but there are discrepancies in the amplitude and natural period
due to the simplified loads which are applied in these simulations.

3.2 Free decay pitch

The platform is tilted to 10° in the pitch direction. It is also translated
such that the sea-water line is not displaced in the surge direction. The
results presented show the response in the surge direction (Figure 4) and
pitch direction (Figure 5). As in the previous section the results are not an
exact replica but correlate in orders of magnitude and frequency. The
differences are readily explained by the simplified implementation of loads.

3.3 Irregular wave

For this load case an irregular wave spectra with significant wave
height of 6m and peak spectral period is 10s. A turbulent wind field is
also created with a mean wind speed of 10m/s. Below the response in
the surge direction (Figure 6), pitch direction (Figure 7) and the yaw
direction (Figure 8) which is induced from the gyroscopic effect of
the pitching FOWT as the rotor spins.

4 Discussion

The animation is presented on this web site: https://olemg.
github.io/FinalSim/. The reader is free to download the Matlab
code to reproduce the results.

FIGURE 9
Free decay response taken from El Beshbichi et al. (2021b).
“Present Model” refers to themodel in that article. The heave response
in the figure was removed. Licensed under CC by 4.0 (https://
creativecommons.org/licenses/by/4.0/).

FIGURE 8
Yaw response of the FOWT LC5.3 El Beshbichi et al. (2021a).

Frontiers in Mechanical Engineering frontiersin.org12

Grindheim et al. 10.3389/fmech.2023.1156721

https://olemg.github.io/FinalSim/
https://olemg.github.io/FinalSim/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1156721


This project deployed the MFM to analyze the dynamic
response of a floating wind turbine. This work has
demonstrated how equations of motion for the analysis are
easily obtained with the MFM, and in a form suitable for
numerical solution by standard numerical methods. The focus
of this project was not a more advanced and detailed analysis, but
a validation of previous work, with a method that is more easily
deployed. Using the MFM, analysts need not turn to commercial
software and potential “black box” functions, but are able to
create the entire software system themselves.

The results were compared to previous work done on the
same FOWT El Beshbichi et al. (2021b). Figure 9 shows some of
the free decay results which were found in El Beshbichi et al.
(2021a). The discrepancies between this analysis and previous
work are relatively simple and readily explained. The obstacles
were the wave radiation, damping coefficients and related issues
on the location of the center of mass. Seeing as these variables
were not properly adjusted to fit this simulation results that
where similar in order of magnitude and frequency were deemed
sufficient. These issues do not detract from the mathematical
simplicity of the MFM, nor its power.

A validation must be conducted on the best way to solve the wave
radiation damping state-space model and make it account for all
couplings in all DOF’s. It could also be of interest to use the MFM
to model the delta connection (crowfoot) of the mooring lines correctly
such that there is no need for the added yaw spring stiffness.

The discrepancies are easy to overcome with greater attention paid
to damping factors by a specialist influidmechanics. The primary goal of
this project was to demonstrate the MFM and to create the overarching
model so that suchmore refined analyses can be conducted. By revisiting
the hydrodynamic coefficients such as the added mass matrix, damping
matrix and this analysis could be more accurate (or, it might turn out
that previous analyses could be improved; or both).

The results presented in this project do not precisely replicate what
was previously found but this was expected due to the previously
mentioned simplifications and assumptions (all of which can be
revisited, improved, or, if found to be faulty, corrected). Damping can
easily be introduced into this model. Once the form of the damping (say,
due towave viscosity) is assessed, one then adds it to the force vector, prior
to multiplying by B-star to ensure that is involved as a generalized force.

However this project demonstrates that the moving frame
method is capable of complex multi-body dynamic analysis.

5 Conclusion

There were two overarching facets to this work.
The first goal was to commence the construction of a software

system to model the dynamics of floating wind turbines. In this
regard, initial results have shown to be promising. The overall results
capture the response of the floating turbine under various conditions,
and they correspond to results predicted by commercial software.
While there is someminimal discrepancy, the authors attribute this to
an incomplete accounting of viscous effects and wave radiation.
Ongoing work will rectify this in the next round.

The second goal of this work aligns with the philosophy of
the American naturalist philosopher, Henry David Thoreau
who opined, with concern, that “Man has become a tool of

his tools.” In that spirit, this work has demonstrated that, with
the Moving Frame Method, dynamical analysis is reduced to
one equation that is readily implemented through a
combination of a simple Runge-Kutta algorithm in a matrix-
based environment. Furthermore, through WebGL and its
interface, ThreeJS, the work is visualized through two-
dimensional graphs, and with three-dimensional web pages
(viewable on cell phones). In fact, the entire coding was
conducted as a Bachelor project under the guidance of one
professor who provided judicious advice on hydrodynamics,
and another professor who taught the student the Moving
Frame Method. In this way, future researchers need not rely
on large-scale legacy software and readily implement analyses
dedicated to the focus of their research.

6 Future work

For one of the authors, the future work consists of the
dissemination of the MFM in the undergraduate curriculum.
The undergraduate discipline of dynamics has become
corrupted. There is, today, too heavy a reliance on the
inertial frame, too much of a focus on 2D planar dynamics,
and an ill-thought use of energy principles. Thus, students
never learn the nuances and beauty of the discipline when
focused on planar problems. Some schools split the assorted
topics into other courses, further disintegrating the discipline,
undermining a complete understanding, and giving rise to the
disengagement many students now feel. The MFM brings
reason and simplicity to dynamics, while uplifting it to three
dimensions and solving advanced 3D problems at the
undergraduate level. It leverages energy principles not as
back-of-envelope confirmation of solutions in 2D (as is done
in most textbooks today), but in its rightful place: Hamilton’s
Principle and variational calculus. This coming fall, the method
will be taught in three universities. The author invites any
reader interested in this method to contact him to discuss
access to all pedagogical content.
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