
Force-controlled pose
optimization and trajectory
planning for chained Stewart
platforms

Benjamin Beach1, William Chapin2, Samantha Chapin2*,
Robert Hildebrand1 and Erik Komendera2

1Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, United States,
2FASER Lab, Virginia Tech, Mechanical Engineering, Blacksburg, VA, United States

Introduction: We study optimization methods for poses and movements of
chained Stewart platforms (SPs) that we call an “Assembler” Robot. These
chained SPs are parallel mechanisms that are stronger, stiffer, and more
precise, on average, than their serial counterparts at the cost of a smaller
range of motion. By linking these units in a series, their individual limitations
are overcome while maintaining truss-like rigidity. This opens up potential uses in
various applications, especially in complex space missions in conjunction with
other robots.

Methods: To enhance the efficiency and longevity of the Assembler Robot, we
developed algorithms and optimization models. The main goal of these
methodologies is to efficiently decide on favorable positions and movements
that reduce force loads on the robot, consequently minimizing wear.

Results: The optimized maneuvers of the interior plates of the Assembler result in
more evenly distributed load forces through the legs of each constituent SP. This
optimization allows for a larger workspace and a greater overall payload capacity.
Our computations primarily focus on assemblers with four chained SPs.

Discussion: Although our study primarily revolves around assemblers with four
chained SPs, our methods are versatile and can be applied to an arbitrary number
of SPs. Furthermore, these methodologies can be extended to general over-
actuated truss-like robot architectures. The Assembler, designed to function
collaboratively with several other robots, holds promise for a variety of space
missions.

KEYWORDS

optimization, nonlinear programming, robotics, kinematics, Stewart platform, modular,
forces

1 Introduction

Robotic space missions are complex, expensive endeavors, often resulting in multiple
mission extensions or scope expansions to maximize the robotic system’s potential over its
useful lifespan. Ensuring that a system is precise and robust enough to accomplish its mission
in addition to unknown future mission requirements drives up development and
deployment costs significantly, especially due to one-off hardware design. The overall
cost of system deployment can be driven down by the mass production of smaller,

OPEN ACCESS

EDITED BY

Clément Gosselin,
Laval University, Canada

REVIEWED BY

Yan Jin,
Queen’s University Belfast,
United Kingdom
Gordon Roesler,
Robots in Space LLC, United States

*CORRESPONDENCE

Samantha Chapin,
sglassner@vt.edu

RECEIVED 19 May 2023
ACCEPTED 25 October 2023
PUBLISHED 24 November 2023

CITATION

Beach B, Chapin W, Chapin S,
Hildebrand R and Komendera E (2023),
Force-controlled pose optimization and
trajectory planning for chained
Stewart platforms.
Front. Mech. Eng 9:1225828.
doi: 10.3389/fmech.2023.1225828

COPYRIGHT

© 2023 Beach, Chapin, Chapin,
Hildebrand and Komendera. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Mechanical Engineering frontiersin.org01

TYPE Original Research
PUBLISHED 24 November 2023
DOI 10.3389/fmech.2023.1225828

https://www.frontiersin.org/articles/10.3389/fmech.2023.1225828/full
https://www.frontiersin.org/articles/10.3389/fmech.2023.1225828/full
https://www.frontiersin.org/articles/10.3389/fmech.2023.1225828/full
https://www.frontiersin.org/articles/10.3389/fmech.2023.1225828/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmech.2023.1225828&domain=pdf&date_stamp=2023-11-24
mailto:sglassner@vt.edu
mailto:sglassner@vt.edu
https://doi.org/10.3389/fmech.2023.1225828
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://www.frontiersin.org/journals/mechanical-engineering#editorial-board
https://doi.org/10.3389/fmech.2023.1225828

modular robots that can join together to enhance their capabilities.
Specifically, we seek to use parallel mechanisms called SPs, which are
typically stiffer, more precise, and more robust to vibration than
their serial counterparts of similar quality, at the cost of a smaller
range of motion (Majid et al., 2000). Linking these units in a series
overcomes their individual limitations and yet maintains their
trusslike rigidity, enabling their potential use for various

purposes. We designate such a configuration as an “Assembler”
robot. The origin of this idea came from previous research at NASA
Langley Research Center which has also continued development in
parallel with different physical Assembler hardware (Cooper et al.,
2022; Moser and Cooper, 2019). While the number of SPs in a stack
is arbitrary, the experimentation discussed in this article concerns
stacks of four. A stack of SPs has the property that it is over-actuated,

FIGURE 1
Anatomy of an Assembler Robot. The robot is comprised of four chained six degrees of freedom (DOF) SPs, giving it a larger range of motion and
total 24 DOF. Each SP is comprised of six linear actuators mounted between two plates, since the stacked SPs share plates the Assembler has a total of
5 plates that serve as the upper and lower boundaries of each SP. The legs are connected via ball joints that are mounted below and above each plate.
Thus, the leg connections do not lie in the same plane as the plates.

FIGURE 2
(A) Pose Optimization Flowchart (B) Trajectory Optimization Flowchart.

Frontiers in Mechanical Engineering frontiersin.org02

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

which implies that there is a continuum of internal plate poses for
any pair of end plate poses. This allows internal plate poses be
chosen to satisfy constraints and optimize a variety of metrics. The
objective of this research is to maneuver the interior plates of the
Assembler such that the load forces distributed through the legs of
each constituent SP are balanced, allowing for a larger workspace
and a greater overall payload capacity.

We propose to use these chained SPs as an alternative to robot
serial arms, for eventual use in fully automated robot assembly on
theMoon or in space. Each SP consists of a pair of plates with six legs
in between. The structure is actuated simply by extending or
contracting the linear actuator legs. An example of the structure
is shown in Figure 1.

Stacks of SPs, like the Assembler, combine the strength and
stability of truss-like SPs, with the reach that serially linked robots
such as Universal Robotics UR-10 can provide without the mass
inherent to large actuators responsible for driving serial
mechanisms. The construction of an SP of the type presented in
this paper - six linear actuators separating two parallel plates
presents precision and extreme stiffness (Li et al., 2002) as linear
actuators cannot be easily backdriven (and hold their positions with
no power applied). Position holding lends itself to the optional
application of the SP-Stack as semi-permanent long-term
reconfigurable support truss structures. The high stiffness also
means higher fundamental frequency and lower oscillation
amplitude (i.e., cantilevering is less of an issue). The stacking of
the individual platforms to make a larger robot extends the reach by
multiplying the workspace configurations, yielding a 24 total DOF
robot (or more, if necessary). This overactuation opens up
optimization, as near-infinite internal configurations can yield the
same end effector pose. In addition, the extreme overactuation
present in the system allows for redundancy. If any individual
actuator fails, the robot is capable of compensating for the
failure, increasing the robustness of the system. The methods
shown in this paper are applicable to a range of similarly
configured truss-like robots, not limited to this particular 24DOF
configuration. SP mechanisms are not perfect however, having poor
passive compliance, limited velocity, and limited angular range of
motion. The poor passive compliance can be compensated for with
active compliance, but restricted angular range of motion is a
limiting factor that must be considered in choosing applications
for this system, though it can be partially compensated for with a
spherical wrist at the end effector, or an off-axis turntable system at
the base.

We propose an optimization approach to reduce structural
forces in poses and throughout motion. The complexity of the
problem stems from the serial combination of parallel kinematic
structures (each SP), which can render difficult the problem
of even finding feasible poses for a given end effector position
and load. From an optimization perspective, the primary source
of complexity stems from nonlinearity and nonconvexity of
the feasible space, resulting from the trigonometric functions
required to model the physical kinematic transformations
throughout the structure, along with the many other bilinear and
quadratic terms. These include coordinate distance computations
to determine leg lengths, wrench and force computations, and
coordinate transformations after the computation of the
transformation matrices.

There have been many works in the literature exploring design
optimization of individual SPs, including (Chen et al., 2007; Bangjun
et al., 2012; Lei and Xiaolin, 2013; Toz and Kucuk, 2013; Xie et al.,
2017; Sun and Lian, 2018; Ríos et al., 2021). These works typically
optimize the design of a single SP with respect to parameters such as
stiffness, manipulability, and accuracy. In particular, (Zhang, 2005),
designs and implements a variant of SP with passive control of leg
forces. However, we found the literature on stacked SPs to be
incredibly sparse, and were unable to find any prior works
optimizing poses for stacked SP chains based on leg forces. There
is a related field studying more general actuated truss structures,
such as in (Miura and Furuya, 1988; Dorsey et al., 1992; Yokoi et al.,
1992; Williams, 1995). Among other structures, these works study
variable geometry truss (VGT) structures, which are similar to SP’s,
except that each plate is replaced with a triangle of three actuated
legs, and the legs between ‘plates’ are not actuated. (Yokoi et al.,
1992; Williams, 1995) also studied a version of an SP where the
plates are replaced with triangles of stiff legs. However, none of these
works study the problem of controlling forces while maneuvering
these devices.

For trajectory planning, state-of-the-art approaches include the
random tree search-based method RRT (LaValle, 1998) and variants
RRT-Connect (Kuffner and LaValle, 2000), RRT* (Karaman and
Frazzoli, 2011), RRT*-SMART (Islam et al., 2012), among others.
Other state-of-the-art approaches include CHOMP (Zucker et al.,
2013), TrajOpt (Schulman et al., 2014), and ROMP (Quintero-Pena
et al., 2021). A number of works have explored trajectory planning
for individual SP’s, including (Nguyen and Antrazi, 1990; Nguyen
et al., 1991; Cortes and Simeon, 2003; Grosch et al., 2010; Wang
et al., 2015; Ernandis, 2021). Several such works, such as (Cortes and
Simeon, 2003; Ernandis, 2021), rely on variants of RRT. In one
example (Cooper et al., 2022; Cortes and Simeon, 2003), even applies
this method to an obstacle-avoiding trajectory planning problem for
a 4-stack of SPs. (Balaban et al., 2019). performs stiffness
optimization on a 2-D version of the stacked platform structure.
Aside from RRT variants, some obstacle-avoiding trajectory
planning approaches applied primarily to simple structures such
as serial arms are introduced in (Zucker et al., 2013; Schulman et al.,
2014; Osa et al., 2017). Prior works involving trust-region based
approaches for trajectory planning, as used in this work, include
(Dragan and Srinivasa, 2014; Ichnowski et al., 2020; Quintero-Pena
et al., 2021) for serial arms, and (Szynkiewicz and Błaszczyk, 2011;
Santos and da Silva, 2017; Volz and Graichen, 2018) for more
difficult robots involving closed kinematic chains.

We were unable to find any works in the literature performing
any sort of force-controlled trajectory planning of stacked SPs in
three dimensions, with very few performing any sort of trajectory
planning for stacked SPs. Such optimization can significantly
improve maximum leg forces throughout the structure, thereby
increasing the workspace of an SP under large loads.

1.1 Contributions

1.1.1 Pose Optimization
We present an optimization approach to solve the inverse

kinematic pose optimization problem. We model the problem as
a quadratically constrained quadratic program (QCQP). We are not

Frontiers in Mechanical Engineering frontiersin.org03

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

aware of prior models for chained Stewart platforms, though for a
single SP, (Bingul and Karah, 2012), gives a dynamic model. We
propose two heuristics to generate initial poses with a given target
end effector position and load: (1) a spline-based heuristic and (2) a
simple closed-form initialization approach for which each SP has the
same pose. Note that these heuristics might fail to generate a feasible
pose. This is one of the inherent difficulties in the problem of even
detecting if there is a kinematically valid pose given a certain end
effector. We then optimize the QCQP by feeding themodel a feasible
initial solution to the local optimal solver IPOPT. The optimization
process typically takes just over 1 s on average for a single pose, for
an Assembler consisting of four chained SPs. We computationally
demonstrate the effectiveness of the approach, and demonstrate the
effectiveness of the method in improving the force-valid range of
motion of the assembler compared to the spline-based heuristic See
(Figure 2A).

1.1.2 Trajectory Optimization
We extend the pose optimization model to compute trajectories

that reduce the overall force on the machine when moving between
end effectors. We enable this possibility through a trust region
subproblem and show that generates quality movements efficiently.
We demonstrate that our approach significantly improves upon a
naive transformation.

In other tests, our approach significantly outperforms an RRT*
implementation. We do not include the RRT* in this paper as it was
suboptimal to our trust region method See (Figure 2B).

1.1.3 Outline
In Section 2 we describe the structure of the Assembler and its

abilities in terms of movement and positions. We then introduce the
forward and inverse kinematics problems for single SP’s and the full
Assembler, and mathematically define a kinematically valid SP. In
Section 3.3, we propose a spline-based construction heuristic (SIK)
to produce valid poses. We also propose a simpler same-SP heuristic

to produce starting solutions for the optimizer. In Section 3.4, we
propose an optimization model and simple initial-solution scheme
(OPT) to directly generate locally force-optimal poses. In Section
4.2, we propose a trust region approach for trajectory planning based
on the optimization model. In Section 5.2, we compare the
effectiveness of the SIK and OPT schemes to quickly generate
workable poses for the Assembler. In Section 5.3, we compare
the trust region trajectory planning scheme with a naive
approach based on linearly interpolating leg lengths between the
initial and target poses. Finally, in Section 5.4, we demonstrate the
effectiveness of the optimizer in improving the achievable range of
motion of the Assembler.

2 Assembler robot, notation, and
transformations

A Stewart platform consists of a pair of plates linked by six
linear actuators, constituting a parallel mechanism with six
degrees of freedom (DOF). The actuators for each platform
are connected via ball joints on either end. We refer to the
linear actuators as legs. The motor of each actuator is situated
on the leg bottom (LB), while the shaft of the actuator is on the leg
top (LT). We define the pose of a plate as its position and
orientation in a given reference frame, and we characterize the
pose of an Assembler via the poses of its plates in the Assembler’s
reference frame, also referred to as the global reference frame.
That is, a pose is a list of plate positions pG,Pi and rotations rG,Pi for
each plate i with i = 0, . . ., NP. See Figure 3B. The pose of each SP
can be expressed in terms of the pose of its top plate in the
reference frame of its bottom plate. We primarily use this local
‘SP-frame’ to mathematically define a kinematically valid SP. See
Figure 3C for examples of local reference frame variables.

Note that, crucially, a top plate pose is not uniquely defined by
only the leg lengths (Lazard and Merlet, 1994; Charters et al., 2009).

FIGURE 3
(A) Image of a linear actuator in two positions. The legs of the assembler are made from these linear actuators. Linear actuator has two parts: the
motor (on the leg bottom) and the shaft (on the leg top). The actuator works by extending and contracting the shaft. For force computations, we record as
data the distance from the bottom of the leg to the center of gravity of the motor, and from the top of the leg to the center of gravity of the shaft. (B) A
section of the Assembler with several variable locations labeled in the global reference frame. Note that the center of gravity of plate i is pG,P

i .
Variables in the global reference frame are denoted that a superscript G. (C) The same pose, but rotated to look from the reference frame BP of SP iwith
respect to the bottom plate. We also occasionally use T P to denote the reference frame with respect to the top plate of the SP.

Frontiers in Mechanical Engineering frontiersin.org04

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

An important pose is the resting pose. We define this as the pose
where all the legs are set to be 50% of their total possible length, as a
heuristic estimate of the center of a SP’s workspace. We define
parameters Lrest for each leg as the vector that leg follows when in
resting pose. Note that, in the resting pose, due to the symmetry of
the SP design used here, each plate is translated vertically with no
rotation, so that ri � 0 and pi,[1: 2] � 0.

We use 0 to denote a vector or matrix of zeros, and we leave size
of this vector/matrix to be deduced by context.

Given a goal position for the end effector of the Assembler, the
goal of this work is to quickly find kinematically valid poses and
motions for a given Assembler while controlling the worst-case
forces on the legs. We consider only mass-related forces and
external forces applied to the end-effector of the Assembler,
and neglect any external forces applied to other parts of the
Assembler by e.g., wind.

To resolve torques resulting from the masses of each leg, we must
compute the center of gravity (CoG) for each part the leg. Crucially,
the CoG for a leg is not in the center of each leg; rather, each leg is a
linear actuator consisting of two connected parts, a motor and a shaft.
See Figure 3A. The CoG of each part is a fixed distance from its
attachment location. This fixed-distance property gives the model for
the CoG a measure of mathematical complexity, as one cannot simply
multiply the vector defining the leg’s position by a fixed number to
obtain the position of the center of gravity for each part. Rather, the
unit vector defining the direction of the leg is multiplied by the fixed
distance from the attachment location of a part to its CoG. In this
work, the motor of each leg is connected to the bottom plate of its SP,
while the shaft is connected to the top plate.

In the remainder of this section, we first define our notation and
mathematics for coordinate transformations. We then define the
forward kinematics and inverse kinematics problems for an
Assembler and for a single SP, define a kinematically valid SP,
and give some reasoning for the use of four SPs for the Assembler in
this work.

2.1 Notation

In this section, we introduce some useful notation and
abbreviations to be used in the remainder of this work.

For parameter and variable definitions, we use the following
notation,

VarType
RefFrame(Optional),DesiredObject,specifier(Optional)
VarIndex,[ValIndex] , (1)

where RefFrame is the reference frame, VarIndex gives indices for
the related object, and ValIndex gives vector and matrix indices. We
implicitly define the reference frame of a plate by its leg attachment
locations. The reference frame for each plate of an SP has its origin at
the center of its exterior surface, the surface opposite its leg joints. In
the Assembler stack, the top plate of each SP joins the bottom plate
of the next at the plate centers, so that so that the two plates share the
same origin, with the top SP rotated by 30°. To simplify calculations,
we treat the top bottom plate of a SP and the top plate of the
preceding SP as a single plate, providing only a single reference
frame. This is accomplished by rotating the leg attachment locations
for the bottom SP by 30° about the z-axis to obtain the leg
attachment locations for the top SP.

2.2 Coordinate transformations

We use ‖ ·‖ to denote the 2-norm (Euclidean norm). For a vector
v, we use v̂ to denote v/‖v‖, that is, the unit direction of v. We define
êk ∈ R3 for k = 1, 2, 3 as the standard unit vectors with indices
starting at 1. That is, ê1 � [1, 0, 0]⊤, ê2 � [0, 1, 0]⊤, and ê3 �
[0, 0, 1]⊤.

We use  to denote coordinate transformations via a vector
containing the Translation-Axis-Angle representation (TAA)

 � p
r

() � p
‖r‖r̂() � p

θr̂
(). (2)

The TAA format is used to represent position p and orientation data
r in place of transformation matrices because total translational and
rotational errors can be found by taking the norm of the top 3 and
the bottom 3 components, respectively.

The related rotation matrix can be defined via Rodrigues’
formula as

Shorthand: Here, we summarize our shorthand notation. TAA, SP, and KVC are
used in text descriptions, while the rest are used in variable superscripts as
object specifiers.

TAA Translation-axis-angle

SP Stewart Platform

KVC Kinematic Validity Constraint

CoG Center of Gravity

BP Bottom Plate of SP

TP Top Plate of SP

P Plate

LB Leg Bottom

LT Leg Top

Reference Frames: These three reference frames are used throughout the 536
paper.

BP ‘SP’ frame, the reference frame of the bottom plate of an SP

T P Reference frame of the Top Plate of an SP

G ‘Global’ assembler frame, the reference frame of the bottom plate of the
bottom SP

Miscellaneous Notation: We aggregate some useful miscellaneous notation
here for reference.

0 A vector or matrix of zeros

I3 The 3 × 3 identity matrix

◇ The operator to apply a coordinate transformation T to a point p

êk The standard unit vectors for k = 1, 2, 3, such that êk,[k] � 1 and all
other êk,[j] � 0

Frontiers in Mechanical Engineering frontiersin.org05

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

R: � e r[] � I + sin ‖r‖() r[]
‖r‖ + 1 − cos ‖r‖()() r[]()2

‖r‖2 , (3)

where [r] is the vector cross-product operator for r

r[] ≔
0 −r3 r2
r3 0 −r1
−r2 r1 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
so that, for any vector v, we have [r]v = r ×v. We use the TAA

scheme to represent reference frames in space due to its
compactness, with the theoretically minimal six degrees of
freedom, combined with the mathematical ease of converting
the translational and rotational components to matrix
transformation form. The matrix R is used to define
transformation matrices via

T � R p
0 1

[]. (4)

To apply the coordinate transformation defined by transformation
matrix T to a point ~p, we use

T◇~p ≔ T
~p
1

()()
1: 3[]

� R~p + p. (5)

Where, for a vector v, we use a bracketedMATLAB style subscript to
denote components; for example, we define v[1: 3] � [v1, v2, v3]⊤.

2.3 Forward and inverse kinematics

There are two primary problems of interest to solve for a
general robot with an end-effector: the forward kinematics (FK)
and inverse kinematics (IK) problems. The FK problem is to
compute the end-effector pose given the actuator lengths.
Conversely, the IK problem is to compute the actuator values
given the end-effector pose.

For a single SP, the FK problem corresponds to computing the
pose of the top plate w.r.t. the bottom plate given a vector of leg
lengths. However, in general, the FK problem is difficult: it has
multiple reachable solutions (Lazard and Merlet, 1994; Charters
et al., 2009), most of which cannot be reversed, such as “pretzeled”
poses for which the SP has twisted excessively, and spirals
downwards until the legs collide. On the other hand, the IK
problem corresponds to computing the leg lengths of the SP
given the pose of the top plate w.r.t. the bottom plate. This
computation is straightforward, with a simple closed-form
solution, as described below. In this section, we describe all
computations in the reference frame of the SP.

Define the pose of the top plate of an SP as TTP, and let J be the
set of legs for the SP. Then, for each leg of an SP, there are
corresponding rest positions for the leg’s joint attachment
locations to the top and bottom plates. For a leg j ∈ J, these
are pT P,LT,rest

j for the top plate and pLBj for the bottom plate. These
locations are defined in the reference frame of the corresponding
plate, and are required for leg-vector and leg-length
computations. We compute the coordinates of the top-plate
leg joint locations via

pLT
j � TTP◇pT P,LT,rest

j j ∈ J. (6)

Note that the bottom-plate joint attachment locations pLB are known
constants. Once joint locations have been determined, it is
straightforward to calculate the resulting leg lengths by taking the
magnitude of the positional displacement between corresponding
leg joint pairs, as

Llen
j � ‖pLT

j − pLB
j ‖ j ∈ J. (7)

The vector of leg lengths (Llenj)j∈J is then the solution to the single-
SP IK problem.

Considering that IK on an SP is a single step mathematical
computation (Lynch and Park, 2017), it lends itself to rapid
successive iteration. Solutions to the FK problem for SPs are
based in this principle, with most algorithms performing calls to
IK in order to numerically approximate the true position. However,
as FK is not an integral component to the Assembler IK
methodologies described in this paper, it is not described here in
full. For further information, consult (Merlet, 2006).

For an Assembler consisting of a serial chain of stacked SP’s,
which are parallel kinematic structures, neither the FK or IK
problems are straightforward to solve. For the IK problem, there
is generally a continuous space (or set of disjoint continuous spaces)
of feasible plate positions for a given end-effector position.
Moreover, this space is difficult to characterize, and can contain
many bad solutions, such as those with extreme SP poses or very
high leg forces. As such, before computing the leg lengths, one must
first choose a ‘good’ solution for the plate positions from the space of
feasible solutions. On the other hand, to solve the FK problem for an
Assembler, one must individually solve the difficult FK problem for
each SP.

In this work, we focus on solving the IK problem for an
Assembler. We then extend our approach via a trust region
method to solve point-to-point trajectory planning.

2.4 Kinematic validity constraints

In this section, we define what it means for an SP to have a valid
pose. In this section, we will define constraints in the reference frame
of the base plate of SP, so that the origin is the center of the bottom of
the bottom plate of the SP, with no rotation. In effect, we omit the
reference frame superscript BP, as defined in the following section.

Leg Length Bounds: The legs have minimum and maximum
lengths that can be attained. For the robots we consider here, the legs
all have uniform length bounds Lmin and Lmax, but this is easily
changed in our model if more general situations are of interest.
Formally, for a particular leg, let pLT and pLB be the coordinates of
the top and bottom connections of the leg. Then the vector L �
pLT − pLB describes the direction and magnitude of the leg. This
vector is then bounded in magnitude as

Lmin ≤ ‖L‖≤Lmax. (8)
Note that, in the reference frame of the SP, the bottom-plate

attachment locations pLB are known constants.
Leg Angular Deviation: Each leg must not exceed a certain

angular deviation from its normal resting pose, as this could break
the ball joints in physical hardware. We must constrain the leg
lengths in both the top and bottom pose.

Frontiers in Mechanical Engineering frontiersin.org06

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

Formally, for a particular leg, let pLT,rest and pLB,rest be the rest
coordinates of the top and bottom connections of the leg. Then the
vector Lrest = pLT,rest − pLB,rest describes the direction and magnitude
of the leg in the resting pose.

The bottom-plate constraint for leg angle deviation is

cos θmax()≤ L
‖L‖ ·

Lrest

‖Lrest‖. (9)

Similarly, we require the same constraints for the top plate
angles. Let R be the rotation matrix defining the orientation of the
top plate w.r.t. the bottom plate. Then the top-plate angles are
defined as in (9), except that the rest coordinates are pre-multiplied
by R to move them to the top plate, yielding

cos θmax()≤ L
‖L‖ ·

RLrest

‖RLrest‖.

Since rotation operations are distance-invariant, we have
‖RLrest‖ � ‖Lrest‖, yielding

cos θmax()≤ L
‖L‖ ·

RLrest

‖Lrest‖. (10)

Legs Point Up: To prevent legs from colliding with the base plate
of an SP, we require that each leg is pointing ‘up’, so that the z-
component L[3] of L is nonnegative:

L 3[] ≥ 0. (11)
Extreme Pose Prevention: We wish to prevent extreme and

difficult-to-reach poses for each SP, particularly “pretzeling,” a
phenomenon where the top plate of an SP over-rotates in the z-
direction, causing it to collapse, spinning down until the legs of the
SP collide. See e.g., (Zhang, 2005; Charters et al., 2009) for more
information on singularities, such as pretzeling, that can be
encountered with some SP designs. To help prevent such extreme
poses, we set a limit of θR,max for the action of the plate rotationmatrixR
on any principle unit vector êk, where k ∈ {1, 2, 3}. This corresponds to
enforcing that each deviation angle θRk ≤ θR,max, which is equivalent to

‖êk‖‖Rêk‖ cos θRk() � ê⊤kRêk ≥ ‖êk‖‖Rêk‖ cos θR,max().
Now, since ‖êk‖ � ‖Rêk‖ � 1, and ê⊤kRêk � R[k,k], the kth diagonal
element of R, this simplifies to

R k,k[] ≥ cos θR,max(). (12)

In this work, we use a maximum rotation of 60°, or in radians,
θR,max � π

3.

2.5 Problem difficulty

For most cases, if forces are ignored, a feasible IK solution for the
Assembler can be found very quickly. For example, with four chained
Stewart platforms, and using the SP parameters and computers
specified in the numerical results section, IPOPT will typically
converge (or report a locally infeasible solution) within 0.1s, so that
a feasible solution to reach goal poses in the workspace can usually be
obtained via local optimization from several different initial solutions.

However, finding a globally optimal solution to the IK problem,
in terms of e.g., minimizing the maximal leg forces, is far more

difficult in general. Due to the nonconvexity of both the objective
and constraints, there are often multiple locally optimal solutions.
Moreover, these locally optimal solutions can differ greatly in
solution quality, as seen in Figure 4. When attempting a direct
global solve of our QCQP model in Section 3.4 with Gurobi 9.1.1,
applied to the Assembler with parameters defined in Section 5, even
directly optimizing an Assembler with only 2 SP’s requires an
inordinate amount of computational time (over an hour), despite
the fact that the original problem has only six DOF, the pose of the
middle plate, as the poses of the top and bottom plates are fixed.

Moreover, to demonstrate the potentially high number of locally
optimal solutions, we optimized the 2-SP Assembler with a goal pose
of p = [0,0,0.65]⊤ and r = [0,0,0]⊤, so that a vertical pose is impossible
due to the leg length lower-bounds. Using 100 randomized starting
poses for the middle plate drawn from a normal distribution, and
minimizing the maximal leg forces via IPOPT, we obtained
22 different locally optimal solutions, with maximum leg forces
ranging from 457N to 519N.

2.6 Justification of four SPs in a stack

We choose the number of chained SP’s for an Assembler so that it
can reach a ‘bent-over’ pose, with the end effector is in-plane with the
bottom plate, facing downwards. This enables the assembler roughly a
hemisphere of motion, allowing a reasonably large workspace while
keeping internal forces under control. While adding additional SP’s
would increase the kinematic flexibility of motion in a zero-gravity
environment, on Earth, it would also increase the loads on the legs
particularly for the bottom SP, thereby shrinking the workspace of the
Assembler due to excessive forces.

For the specifications of the SP used in this work, due to leg
length and joint motion limitations, a minimum of four chained SP’s
are required to reach this bent-over pose. Thus, we use four chained
SP’s for the computational tests in this work.

FIGURE 4
An example of a goal pose with two very different locally optimal
solutions in IPOPT, for the Assembler defined in Section 5 with a 5 kg
weight on the top plate. The red pose has a maximum leg force of
703N, while the green pose has a maximum leg force of only
282N. Axes units are in meters.

Frontiers in Mechanical Engineering frontiersin.org07

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

3 Assembler IK optimization

3.1 Definitions

In this section, we formally define the notation used for variables
and parameters needed for this work.

To reduce notation definitions, we implicitly define some
coordinate variables p, rotational variables r, and matrix variables
R and T from  via (2). We first define the sets of plates, SP’s, and
legs per SP in the table below.

Note that, as the Assembler studied in this work consists of NP

identical stacked SPs, there are really 2 plates between consecutive
sets of legs, so that mP

i � 2mP
0 � 2mP

NP
for i = 1, 2, . . ., NP − 1. The

problem variables and parameters are defined in their respective
tables.

We assume that the Assembler is oriented so that gravity
pulls directly downward in the reference frame of the Assembler,
i.e., g = [0,0,−g]⊤. To handle different orientations of the
Assembler, one needs only to redefine the gravity vector g.
Note that each  transformation term implicitly defines
corresponding TAA-form terms p and r, and matrix-form
terms R and T. Finally, as the bottom plate is positioned at
the origin of the global reference frame, we enforce that G,P

0 �
G,P,rest

0 � 0 .
In order to define a kinematically valid Assembler pose, we

enforce the SP-frame kinematic validity constraints constraints
in Section 2.4 for each SP, combined with the definition
G,P

NP
� G,goal, which ensures that the end-effector is where it

should be.
This constraint is enforced with a small implicit tolerance within

the nonlinear solver.

3.2 Force calculation

Force analysis follows the procedures set out in (Lynch and Park,
2017) with a few additional considerations.

Sets

Size Description

i ∈ I = 0, 1, . . ., NP: The plates

i ∈ IP = 0, 1, . . ., NP − 1: The SPs. Platform i connects plates i and i + 1

j ∈ J = 1, 2, . . ., 6: The legs for each SP.

Parameters

Parameter Size Description

G,goal R6 Target global-frame TAA pose for the end effector

BP,TP,rest
i R6 SP-frame rest pose of the top plate for SP i ∈ IP

pBP,LBi,j R3 SP-frame position of bottom joint j ∈ J for SP i ∈ IP

pT P,LT,rest
i,j R3 Rest position of top joint j ∈ J w.r.t. top plate for SP i ∈ IP

LBP,resti,j � pBP,LT,resti,j − pBP,LBi,j : SP-frame rest-position leg vector

for j ∈ J for SP i ∈ IP

θmax R Maximal angle deviation from rest position for any leg

θR, max R Maximal angle between RBP,TP
i êk and êk for plate i ∈ IP

and k ∈ [1 : 3]

(Lmin, Lmax) R Bounds on the length of any leg

fmax R Upper bound on the compressive and tensile force on
a leg

mP
i R Mass of plate i ∈ I

mLT R Mass of a leg motor

mLB R Mass of a leg shaft

dLT,CoG R Distance from the top joint to the CoG for a leg shaft

dLB,CoG R Distance from the bottom joint to the CoG for a leg
motor

g R Gravitational constant. For this work, we use Earth
gravity, g ≈ 9.81 m

s2

Variables

Variable Size Description

BP,TP
i R6 SP-frame pose of top plate for SP i ∈ IP

G,P
i R6 Global-frame pose of plate i ∈ I, where G,P

NP
� G,goal

pBP,LTi,j R3 SP-frame position of top joint j ∈ J for SP i ∈ IP

pG,LBi,j R3 Global-frame position of bottom joint j ∈ J for SP i ∈ IP

pG,LTi,j R3 Global-frame position of top joint j ∈ J for SP i ∈ IP

pG,LB,CoGi,j R3 Global-frame CoG position of motor for leg j ∈ J for SP i
∈ IP

pG,LT,CoGi,j R3 Global-frame CoG position of shaft for leg j ∈ J for SP i ∈ IP

LGi,j � pG,LTi,j − pG,LBi,j ; Global-frame leg vector for leg j ∈ J, SP i

∈ IP

LBPi,j � pBP,LTi,j − pBP,LBi,j ; SP-frame leg vector for leg j ∈ J, SP i ∈ IP

Lleni,j � ‖LBP‖; Leg length for leg j ∈ J, SP i ∈ IP

τi,j R Gravitational force on leg j ∈ J for SP i ∈ IP

τmax R Maximum force on any leg of the assembler

Wi R6 Global-frame wrench forces on the top plate of SP i ∈ IP

Wi � [WR
i ,W

P
i]⊤ , whereWR

i relates to the torque andWP
i

is the force

Js i R6×6 Spatial Jacobian related to leg-force computations for SP i
∈ IP

Jt i � (Js i)−⊤

Frontiers in Mechanical Engineering frontiersin.org08

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

For SP i ∈ IP, we can define the Jacobian with the relationship

Js−1i � pG,LB
i,1 × L̂

G
i,1 . . . pG,LB

i,6 × L̂
G
i,6

L̂
G
i,1 . . . L̂

G
i,6

⎡⎢⎣ ⎤⎥⎦⊤ (13)

where L̂
G
i,j is the unit vector for LGi,j.

Given a wrenchW defined in the global frame and acting on the
SP end effector, the resultant forces on each of the SP’s legs can be
determined by the relation:

τ i, 1: 6[] � Js i()⊤ Adj TG,TP
i()()⊤Wi (14)

where, as in (Lynch and Park, 2017), we define the matrix adjoint for
a transformation matrix T [see (4)] as

Adj T() ≔ R 0

p[]R R
[] (15)

For wrench computations, we first define the center of gravity for the
motor and shaft of each leg j ∈ J for SP i ∈ IP as

pG,LB,CoG
i,j � dLB,CoG

LG,LT
i,j

‖LG,LT
i,j ‖ + pG,LB

i,j and pG,LT,CoG
i,j � dLT,CoG

−LG,LT
i,j

‖LG,LT
i,j ‖ + pG,LT

i,j .

(16)

Then, to compute the global-frame wrenches Wi for each SP,
we sum all the wrenches from forces applied on or above the
platform by leg masses, platform masses, and the end effector
load. For i = 0, . . ., NP − 2, this is computed as

Wi � Wi+1 +mP
i+1

pG,P
i+1[]g
g

[]
+∑

j

mLT pG,LT,CoG
i+1,j[]g

g
[] +mLB pG,LB,CoG

i+1,j[]g
g

[](). (17)

For the last platform i = NP − 1, this is computed as

WNP−1 � WEE +mP
NP

pG,T
NP

[]g
g

[]. (18)

Note that, as g = (0,0,−g)⊤, for any vector p ∈ R3, we have

p[]g � g
−p 1[]
p 2[]
0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
Consequently, as WEE is a parameter, and since the 3rd

component of [p]g is zero, the 3rd-6th components of the
wrench are known constants, while the first two depend linearly
on the plate and leg locations.

3.3 IK heuristics

In this section, we introduce two heuristics for the initialization
of SP poses.

3.3.1 Spline-based IK
In this section, we introduce a splined kinematic approach,

denoting a cubic spline originating at the platform base plate and
ending at the end effector position. Define the following positions as
helper points pG,1 and pG,2 from the formulas:

TG,1 ≔ Tgoal −2
3
TT P,BP,rest
0(), TG,2 ≔ TBase 2

3
TT P,BP,rest
NP

(). (19)

Define the B-spline p: [0, 1] → R3 as

p x() ≔ Spline pG,Base, pG,1, pG,2, pG,goal(). (20)

We use SciPy’s B-spline interpolation (Virtanen et al., 2020),
which requires a minimum of four points to produce the spline
curve, these two helper points serve a dual purpose: ensure that
spline function has enough input to produce the expected curve, and
also to ensure that interior plates are placed behind the plane of the
goal end effector, and above the plane of the base plate. The resulting
spline function provides the positions of the interiorNP − 1 plates via
interpolation at pG,Pi � p(i

NP
), for i = 0, 1, . . ., NP. See Figure 5.

We then recursively determine the rotation of themiddle-most plate,
andwhen there is an even number of plates left in the queue, we consider
the two middle-most plates. The rotation of the middle-most plate(s) is
then determined by an average of the rotation between the beginning
and end plates, computed in TAA form in the reference frame of the
beginning plate. Once the middle plate(s) rotation is determined, we
recurse and determine the rotation of the next middle plate(s).

Within this heuristic, we consider a pose to be valid if all kinematic
validity constraints, including the end-effector position, are satisfied
within some small tolerance. If a pose fails kinematically, we attempt
several recourse steps to correct the pose. In the event of failure (such as a
calculated leg being too long), all legs are re-scaled such that the legs are
within bounds, maintaining orientation, and the end effector position is
recalculated accordingly.

Validation of the SP proceeds in steps, described in the following
algorithm.

3.3.2 Same-SP initialization
Wederive a simple initial guess for theAssembler pose by assuming

that each SP has the same SP-frame poseBP,TP
i � . It is then trivial to

compute the SP-frame rotationmatrices, as since all share the same axis
of rotation, we have for two rotations rBP,TPi and rBP,TPj that

RBP,TP
i RBP,TP

j � e rBP,TPi[]e rBP,TPj[] � e rBP,TPi +rBP,TPj[].
Thus, if RBP,TP

i � R for all i ∈ IP, we obtain

RG,P
NP

� e rG,PNP
[] � e NPr[] � RNP .

Thus, we simply compute r as

r � 1
NP

rG,PNP
.

Next, to compute the shared translation vector p, we first note that

RG,P
i � Ri

and

pG,P
1 � p

pG,P
2 � pG,P

1 + RG,P
1 p � I3 + R()p

pG,P
3 � pG,P

2 + RG,P
2 p � I3 + R + R2()p

pG,P
i � ∑i−1

l�0
Rl⎛⎝ ⎞⎠ p i ∈ I,

Frontiers in Mechanical Engineering frontiersin.org09

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

where I3 is the 3 × 3 identitymatrix, and notable thatR0 � I3 for any
invertible 3 × 3matrixR.We then obtain p via a single cheap linear solve.
To summarize, we compute r and p, and the resultingRG,P

i and pG,Pi ’s, via

r � 1
NP

rG,PNP

R � e r[]

pG,P,goal � ∑NP−1

i�0
Ri⎛⎝ ⎞⎠p

RG,P
i � Ri i ∈ I

pG,P
i � ∑i−1

l�0
Rl⎛⎝ ⎞⎠p i ∈ I

(21)

where, again, p is computed via a linear solve in the third equation.
Note that this initialization can correspond to multiple solutions, as
e.g., a 180-degree z-rotation can be achieved via four 45-degree or
four −45-degree z-rotations. Some examples of this phenomenon are
shown in Figure 6. As such, we try up to two solutions in TAA form.
Given 

G,goal
0 , we first normalize ‖rG,goal0 ‖ to ensure ‖rG,goal0 ‖< 2π. To

this end, if ‖rG,goal0 ‖∈ [2kπ, 2(k + 1)π) for some integer k ≥ 1, we
apply

rG,goal0 ← rG,goal0

‖rG,goal0 ‖ − 2kπ

‖rG,goal0 ‖ .

Then, if we find that the resulting SP-frame translation vector
pBP,TP is too far (more than 60°) from vertical, which is true if and
only if

p 2[] ≤ ‖p‖ cos
π

3
(),

we reject the solution, and then try a second one. We obtain this
second solution by reflecting the rotation ‖rG,goal0 ‖ about π to achieve
the same rotation from the opposite direction, via

rG,goal0 ← rG,goal0

2π − ‖rG,goal0 ‖
‖rG,goal0 ‖ .

We have found computationally that this procedure consistently
yields useful initial guesses for the optimizer, though the guesses are
often kinematically invalid.

3.4 Force-based IK optimization

We formulate the optimization problem for a stacked SP
Assembler as a quadratically constrained quadratic program
(QCQP). In this model, RG,P

i and pG,Pi are the driving decision
variables, in that they uniquely specify a pose. The rest of the
variables are derived directly from these. Note that, due to our
choice of reference frame, we have RG,P

0 � e[0] � I3, where I3 is the
3 × 3 identity matrix.

Constraints related to kinematic validity are denoted via (KVC);
all other constraints establish definitions of intermediate variables.

Equations in this section are either labeled as (M#) to denote that
they are used explicitly in the model, or as (#), to denote that this is
just a calculation useful to deriving the model equations.

3.4.1 Additional definitions
For the optimization model, we use all variables and parameters

in Section 3.1 except Jsi , including onlyR and p for each variable or
parameter, and add the following additional variables. For clearer
distinction between variables and parameters within this model, we
will represent all variables using blue text.

3.4.2 Constraints
Vector Norms: To model the two-norm ‖LBPi,j ‖ of the leg length

vector (which is equivalent to ‖LGi,j‖), we introduce intermediate
variable Lleni,j , then add the constraint

Llen2
i,j � ∑3

k�1
L2
i,j,[k] ∀i ∈ IP, j ∈ J. (M1)

‖v‖2 � ∑m
k�1

v2k[], (22a)

‖R‖2F � ∑m
k�1

∑m
l�1

R2
k,l[]. (22b)

Reference Frame Computations: The constraints in this section
are needed to define RBP,TP

i ’s and RG,P
i ’s. First, we express the global

rotation matrices via their columns as

RG,P
i � RG,P

i,[: ,1]
∣∣∣∣∣ RG,P

i,[: ,2] RG,P
i,[: ,3]

∣∣∣∣∣[] i ∈ I. (M2)

Note that, as rotation matrices define an orthonormal right-handed
coordinate system, it is sufficient to considerRG,P

i,[: ,1] andR
G,P
i,[: ,2] as the

driving variables, then compute RG,P
i,[: ,3] as

FIGURE 5
Possible example of calculation of plate centers pG,P

i via the
B-Spline calculation. Base plate and top plate locations are given, then
control points are computed by transforming the base plate and top
plate locations towards the rest pose. The B-spline is calculated,
and then plate locations are determined as equidistant spacing along
the spline.

Frontiers in Mechanical Engineering frontiersin.org10

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

RG,P
i,[: ,3] � RG,P

i,[: ,1] × RG,P
i,[: ,2]. (M3)

We then ensure the orthonormality of each RG,P
i,[: ,1] and RG,P

i,[: ,2] via

RG,P
i,[: ,1]

���� ����2 � 1,

RG,P
i,[: ,2]

���� ����2 � 1,
RG,P

i,[: ,1] · RG,P
i,[: ,2] � 0.

(M4)

Next, to obtain the translation portion of each plate transformation
in the SP frame, we inverse transform the global-frame point pGi by
TG
i by solving the forward transformation pGi � TG

i ◇pBP,TPi , as
defined in (5), for the pre-transformed point pBP,TPi , yielding

pBP,TP
i � (RG,P

i)⊤(pG,P
i+1 − pG,P

i) i ∈ IP. (M5)
We constrain that the bottom plate is at the origin in the global
Assembler frame via

pG,P
0 � 0

RG,P
0 � I3.

(M6)

Finally, we define the SP-frame rotation matrices RBP,TP
i via

RG,P
i RBP,TP

i � RG,P
i+1 , yielding

RBP,TP
i � RG,P

i()⊤RG,P
i+1 i ∈ IP. (M7)

Moreover, any expressions of the form ‖v‖2, v ∈ Rm, or ‖R‖2F,
R ∈ Rm×m, as in (M4), (T4), and (T1), are substituted explicitly with
the defining expressions.

Leg Attachment Locations: In (M8), we define the SP-frame and
global-frame locations of the leg attachments on the top/bottom plates
for each SP according to (6). Note that the position of the bottom leg
attachments are known constants in local space. See also Figure 3.

pBP,LT
i,j � RBP,TP

i pT P,LT,rest
i,j + pBP,TP

i ∀i ∈ IP, j ∈ J

pG,LB
0,j � pG,B,rest

0,j ∀j ∈ J

pG,LB
i,j � RG,P

i pBP,LB
i,j + pG

i ∀i ∈ IP, i≥ 1, j ∈ J

pG,LT
i,j � RG,P

i+1p
T P,LT,rest
i,j + pG

i+1 ∀i ∈ IP, j ∈ J.

(M8)

Leg Centers of Gravity: To define the center of gravity for each
leg j ∈ J for SP i ∈ IP, we start with (16), multiply through by
denominators, and rearrange, yielding

Llen
i,j (pG,LB,CoG

i,j − pG,LB
i,j) � dLB,CoGLG

i,j,

Llen
i,j (pG,LT

i,j − pG,LT,CoG
i,j) � dLT,CoGLG

i,j.
(M9)

Leg Length Bounds: (KVC) We define the leg length bounding
constraints via (8), as

Lmin ≤ Llen
i,j ≤ Lmax. (M10)

Note that the upper-bounding leg length constraints are second
order cone constraints in terms of pBP,TPi andRBP,TP

i (as the interiors
of spheres), while the lower-bounding constraints are nonconvex as
sphere exteriors.

Leg Angle Deviation: (KVC) The bottom-plate leg angle
deviation constraints are defined via (9), after multplying through
by denominators, as The bottom-plate leg angle deviation
constraints are defined via (9), as

Llen
i,j ‖LBP,rest

i,j ‖ cos(θmax)≤ LBP
i,j · LBP,rest

i,j ∀i ∈ IP, j ∈ J. (M11)

while the top-plate constraints are defined via (10), after multiplying
through by denominators, as

Llen
i,j ‖LBP,rest

i,j ‖ cos(θmax)≤ LBP
i,j · (RBP,TP

i LBP,rest
i,j) ∀i ∈ IP, j ∈ J.

(M12)
Note that all leg angle deviation constraints are second-order

cone constraints given fixed rotation matrices.
Continuous Translation Enforcement: (KVC) We enforce that

legs do not break the surface of the bottom plate of any SP via (11), as

pBP,LT
i,j, 3[] ≥ pBP,LB

i,j, 3[] (23)

Extreme Pose Prevention: (KVC) To help prevent extreme and
difficult-to-reach poses for each SP, we enforce (12), as

RBP,TP
i, k,k[] ≥ cos θR,max(), k � 1, 2, 3 (24)

End Effector: (KVC) We enforce that the end effector pose is
exactly as desired via

pG,P
NP−1 � pG,Pgoal

RG,P
NP−1,[: ,1] � RG,P,goal

[: ,1]
RG,P

NP−1,[: ,2] � RG,P,goal
[: ,2]

(M13)

where pG,P,goal and RG,P,goal are computed from G,goal.
Objective: The objective is to minimize maximal leg force

min τmax. (M14)
where the constraints defining the maximum force τmax are
introduced in Section 3.4.3.

Initialization: As the model is solved only to local optimality via
IPOPT due to the intractability of a global solve even with NP = 2, an
initial solution for the pose is required. We choose to initialize via
the same-SP initialization scheme in Section 3.3.2, as it performed
much better in our numerical testing when compared to the spline-
based scheme in Section 3.3.1, despite yielding valid poses less often
before optimization.

3.4.3 Forces
Referring to (15), the transposed adjoint of a transformation

matrix T is

Adj T()⊤ � R⊤ R⊤ p[]⊤
0 R⊤[]. (25)

For shorthand, we let Ai: � Adj(TG
i)⊤ for each i ∈ I.

Each column of the transposed inverse Jacobian Jt as in (13) via
(M15), can be computed as (see (Lynch and Park, 2017) for
discussion on single SPs)

Llen
i,j J

t
i,[: ,j] � [pG,LB

i,j]LG
i,j

LG
i,j

[] ∀i ∈ IP, j ∈ J. (M15)

Note that Lleni,j � ‖pG,LTi,j − pG,LBi,j ‖ � ‖pBP,LTi,j − pBP,LBi,j ‖ is the length of
the corresponding leg, as modelled in (M1).

To compute the global-frame wrenches for each SP, we use (17)
for i = 0, . . ., NP − 2 and (18) for i = NP − 1.

Finally, to compute the leg forces, and defining τi �
[τi,1, . . . , τi,6]⊤ for each i, we use the vector constraints

Frontiers in Mechanical Engineering frontiersin.org11

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

Jt iτ i � AiWi ∀i ∈ IP

τmax ≥ τ i,j ∀i ∈ IP, j ∈ J
τmax ≥ − τ i,j ∀i ∈ IP, j ∈ J

(M16)

where the jth component of the resulting solution τi is the force on
the jth leg of the ith SP. We then minimize over τ.

Notice that AiWi can be written as:

AiWi � RG,P
i()⊤ RG,P

i()⊤ pG,P
i[]⊤

0 RG,P
i()⊤⎡⎣ ⎤⎦ WR

i

WP
i

[]
� RG,P

i()⊤ WR
i + pG,P

i[]⊤WP
i()

RG,P
i()⊤WP

i

⎡⎣ ⎤⎦.
Thus, the first constraint of (M16) is equivalent to, and

implemented as,

Jt iτi � (RG,P
i)⊤(WR

i + [pG,P
i]⊤WP

i)
(RG,P

i)⊤WP
i

[] i ∈ IP. (M17)

Note that this constraint is bilinear in nature, sinceWP
i is a constant.

If w2 ≠ 0, we also enforce that the force on each leg does not
exceed the maximum allowable force, via

τmax ≤fmax (M18)

3.4.4 Improving robustness
Due to the nature of iterative local nonlinear optimization via e.g.,

IPOPT, the equality constraints defining various intermediate variables
such as leg lengths, rotation matrices, the inverse Jacobian etc., and
even primary constraints such as end-effector position, can become
violated as the solver attempts to resolve violations of the physical
constraints defining a valid pose. We have observed that this can
sometimes lead to instability within the optimizer, particularly if the
end effector is moved from the goal position during optimization.

To address this instability while controlling for computational
time, we implement an iterative-refinement scheme around the basic
nonlinear optimizer. Here, we leverage the fact that the variables
G,P

i uniquely define the Assembler. Thus, if an optimization seems
to be converging slowly or returns with a ‘locally infeasible’ status,
we re-initialize the model every so often, and reset the end effector to
the correct location.

To this end, we set the maximum total internal iteration count as
2,500. Every k iterations, if the solver has not yet converged, we stop the
solve, re-initialize using the plate locations and corrected the end effector
location, then continue. We start with k = 500, but for each internal
solver error we divide k in half and try again, with up to five such retries.

Occasionally, locally infeasible solutions can occur at valid poses,
due to numerical difficulties in resolving force-related equality
constraints. This results in sub-optimal, but kinematically valid,
poses. When using IPOPT as the nonlinear solver, we have
observed that the solver can often recover from such poses after
re-initialization. Thus, to handle this contingency, on the first
consecutive ‘locally infeasible’ result, we deduct k iterations from
the remaining total (as if the solver had run k iterations) and re-
initialize as usual. On the second consecutive locally infeasible result
for the same pose, we report an optimization failure due to local
infeasibility within the solver.

4 Trajectory planning

The Assembler is designed to be a movable platform that can
help with complicated operations. As such, it is important that it can
move from one position to another. We will adapt the tools in the
prior section to develop trajectory optimization techniques. We
present two approaches: a naïve direct transformation and a force
optimization using trust regions. We also implemented an RRT*
version that hinges on sub-paths computed from the force
optimization approach. However, our RRT* did not produce as
good results as the trust region method, so we do not include that in
our description or results here.

Equations in this section are either labeled as (N#) (T#), or (#) to
denote equations for naïve method, trust method, or calculations,
respectively.

4.1 Naïve direct transformation

We establish the simplest approach to move from one pose to
another that we call the naïve method. This approach is ignorant
to force calculations, and thus is very prone to generating
infeasible trajectories that violate the maximum force bounds.
The approach simply uses a linear interpolation of the vector of
leg lengths throughout the motion. For each target leg-length
vector Lgoali,j , i ∈ IP, j ∈ J, the FK problem is solved to obtain the full
trajectory planning solution. To solve this problem, we first
attempt the widely-used Newton-Raphson approach, as in e.g.,
(Nguyen and Antrazi, 1990; Merlet, 2006). If this does not
succeed, we then leverage a force-free version of the nonlinear
optimizer to solve the FK problem, in which the end effector is
allowed to move, and we optimize the squared leg-length-
distance from the goal. More formally, to construct a QCQP
model for the FK problem, we begin with the model in Section
3.4, then remove all force-related constraints and the end effector
constraint (M13). We then optimize

min∑
i∈IP

∑
j∈J

(Li,j − Lgoal
i,j)2. (N1)

Note that the FK problem for the Assembler can decompose into
separate FK problems for each SP.

4.2 Trust region optimization

We introduce a trust region method for trajectory planning of
the SP. This algorithm first optimizes the starting and goal poses,
then iteratively tries to make small steps towards the goal pose until
it is sufficiently close, while trying to maintain forces that do not
exceed those in the starting or ending poses.

4.2.1 Additional definitions
To define the optimization problem for a single step, we first

introduce the following additional parameters for the full
optimization.

Frontiers in Mechanical Engineering frontiersin.org12

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

Note that we normalize the non-negative objective weights
with λforce + λpose = 1. We then compute the full optimized starting
and ending poses by solving the QCQP model in Section 3.4 with
IPOPT, then compute the maximum force observed in
either pose.

Note that, for practical use, the starting pose would be specified
directly as the current pose of the Assembler.

For each iteration, we define the pose from the previous
iteration as

Finally, we introduce the following additional variables for each
iteration.

4.2.2 Constraints
We begin with the model in Section 3.4, omitting the end effector

constraints (M13) and the explicit force constraint (M18). We also
redefine the end effector wrench definitionWEE to account for the fact
that the end effector is no longer at a fixed position.

We then add constraints to ensure that no plate moves a
distance further than εpos from pG,P,initi , measured in two-norm,
and rotates no further than εrot from RG,P,init

i , measured in matrix
Frobenius norm. The Frobenius norm was chosen for its superior
performance and robustness compared to more direct angle-
based measures in preliminary testing, combined with its
simplicity and convexity. Finally, we add constraints to define
τviol and τends, then define the objective function.

Motion Limit: We ensure that positional and rotational motions
are sufficiently controlled via

‖RG,P
i − RG,P,init

i ‖2F ≤ εrot()2 i ∈ I, i≥ 1
‖RG,P

i − pG,P,init‖2 ≤ εpos()2 i ∈ I, i≥ 1.
(T1)

Force Definitions: To define wrenches, we first define the now-
variable rotational component WR,EE of the end effector wrench
WEE via

pG,m,EE � RG,P
NP
vT P,m,EE + pG,P

NP

WR,EE � [pG,m,EE]FEE (T2)

where the translational component WP,EE = FEE of the wrench is
constant. We then use (18) and (17) to define plate wrenches as
before. Next, we define the additional required force-related
variables with

τviol ≥ τmax − fmax ∀i ∈ IP, j ∈ J
τends ≥ τmax − fmax ,ends ∀i ∈ IP, j ∈ J
τabsi,j ≥ τi,j ∀i ∈ IP, j ∈ J

τabsi,j ≥ − τ i,j ∀i ∈ IP, j ∈ J

τviol ≥ 0
τends ≥ 0

(T3)

Note that, through τviol, the max-force constraints on the legs are
moved to the objective with a high coefficient. For the purposes of
balancing objective terms related to forces, distances, and rotation
angles, we assume forces and distances are measured in SI units
(i.e., Newtons and meters). Note that the rotation terms are unit-
independent, as they are measured via Frobenius norms of unitary
rotation matrices.

Additional parameters for trajectory planning problem.

Parameter Description

G,EE,start Starting end effector position

G,EE,goal Goal end effector position

λforce ∈ [0, 1] Coefficient for force-related objective terms

λpose ∈ [0, 1] Coefficient for objective terms related to distance from the final
goal pose

λavg ∈ [0, 1] Additional multiplier for average-force-related objective term

εpos Positional plate motion limit for each Stewart platform per
iteration

εrot Rotational plate motion limit for each Stewart platform per
iteration

FEE The force vector applied to the end effector

vT P,m,EE The application point for FEE w.r.t. the top plate of the assembler

Computed initial state parameter for trajectory planning problem.

Parameter Description

G,P,start
i

Global-frame starting pose for plate i ∈ I

BP,TP,start
i

SP-frame starting pose for plate i ∈ I


G,P,goal
i

Global-frame goal pose for plate i ∈ I


BP,TP,goal
i

SP-frame goal pose for SP i ∈ IP

fmax, ends Maximum force in either path endpoint, the starting and goal
poses

Initial state parameters for the current iteration of the trust region trajectory
planning method.

Parameter Description

G,P,init
i

Initial global-frame pose for plate i ∈ I for the current iteration

BP,TP,init
i

Initial SP-frame pose for plate i ∈ IP for the current iteration

Additional variables for the current iteration of the trust region trajectory
planning method.

Variable Description

τviol Maximum force above the maximum allowable force in any leg

τends Maximum force above fmax, ends in any leg

τabsi,j
Absolute value of τi,j for leg i ∈ IP, j ∈ J

WEE End-effector wrench at the current pose

Frontiers in Mechanical Engineering frontiersin.org13

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

4.2.3 Objective
To assist in defining the objective functions, we define the

following expressions for the sake of readability. These definitions
are the ‘distance-to-goal’ metrics for the objective function

τ1−norm � ∑
i∈IP

∑
j∈J

τabsi,j ,

Epos � ∑
i∈IP

‖pBP,TP
i − pBP,TP,goal

i ‖2,
Erot � ∑

i∈IP
‖RBP

i − RBP,goal
i ‖2F.

(T4)

With these definitions, we define the objective function as

min λforce(τends + λavg

6NP
τ1−norm + 1000τviol) + λpose(Epos + 1

4
Erot).

(T5)
Note that the decision to divide the Erot by 4 serves to balance the
position and rotation distance metrics, and performed well in
preliminary testing compared to other coefficients. For
Assemblers consisting of SP’s of different sizes, this divisor
should be re-scaled according to the size of the SP, while the
choice of λforce should be re-scaled according to the weight of the SP.

4.2.4 Iteration
The trust region method proceeds by solving the problem

described above until convergence. However, the process often
stagnates, reaching positions where the objective to reduce forces
overrides the objective to move towards the goal pose, or evenmoves
in the wrong direction to improve average forces. When stagnation
occurs due to high maximum forces, we divide λforce by 2, set λpose =
1 − λforce, and try again with the same initial positions. Similarly, if
either stagnation or motion in the wrong direction occurs due to
average forces, we divide λavg by 4 and try again with the same initial
positions. The method converges when the distance between the
current pose and the goal pose is small enough that the goal pose is a
valid solution for the next iteration.

More formally, for the current iteration, define

Emax ,pos � max
i∈I,i≥1

‖pG,P,init
i − pG,P,goal‖,

Emax ,rot � max
i∈I,i≥1

‖RG,P,init
i − RG,P,goal

i ‖F. (26)

Then convergence occurs when both Emax ,pos ≤ εpos and Emax ,rot ≤ εrot.
Early termination occurs if the process has stagnated or moved in the
wrong direction too many times, or if too many iterations have been
reached.

Due to themulti-objective nature of the trust regionmethod, it is
possible that insufficient progress towards the goal can occur during
the solve. We call this a stagnation and formally define this to occur
when one of the following criteria are met after optimizing:

max
i∈I,i≥1

‖pG,P
i − pG,P,init‖≤ εpos

100
,

max
i∈I,i≥1

‖RG,P
i − RG,P,init

i ‖F ≤ εrot

100
.

(27)

Even if λavg = 0, stagnation can occur in the optimizer if τ max

= f max, ends and further progress requires forces above f max, ends.
Thus, if stagnation occurs, we conclude that the average-force
term is the culprit only if τ max ≤ f max, ends − 0.001, where the

1 mN subtraction is added to be conservative, helping to prevent the
algorithm from stagnating with repeated, futile reductions of λavg.

We define a step to be in the wrong direction if both the
positional and rotational components of the motion have moved
somewhat away from the goal pose, i.e., if for an iteration k we have
Emax ,pos
k ≥ Emax ,pos

k−1 + 10−4 and Emax ,rot
k ≥ Emax ,rot

k−1 + 10−4. We allow
motion in the wrong direction in order to reduce maximum leg
forces that seemed excessive, i.e., if τ max > f max, ends. If we reject the
motion step, then the position-related terms in the objective
function have worsened while the max-force-related terms have
not improved, and so the average force term must be the culprit.

Define the maximum allowed number of stagnated iterations as
nmax, stag, and define the maximum number of iterations as kmax. The
iteration then proceeds as in Algorithm 1. For shorthand, we define
the solution path as a list of poses from the starting pose to the goal
pose. As defined in Section 2, a pose is the corresponding list of pG,Pi ’s
and RG,P

i ’s.

Input: A starting position posestart and ending position

poseends.

Output: An integer K and a sequence of poses pose0, . . .,

posek

1 nstag ← 0, k ← 1, pose0 ← posestart

2 while not converged and nstag < nmax, stag and k ≤ kmax do

3 poseinit ← posek−1
4 Solve the trust region problem from position

poseinit to compute solution pose

5 if stagnation detected or (wrong direction detected

and τendsk−1 � 0) then

6 if wrong direction then

7 λavg ← 1
4λ

avg, nstag ← nstag + 1

8 else

9 λforce ← 1
2λ

force, λpose ← 1 − λforce, nstag ← nstag + 1

10 end if

11 else

12 posek ← pose, k ← k + 1

13 end if

14 end while

15 if converged then

16 posek ← posegoal

17 end if

Algorithm 1. General procedure for trust-region trajectory planning

method.

To improve the consistency of this algorithm, we run it within a
backtracking scheme: if convergence fails, then we assume the
iteration got sidetracked by forces, and restart after dividing λforce

by 4, for up to 5 total restarts. Then, if convergence succeeds, but
maximal mid-path forces exceed maximum path-endpoint forces,
we run again with posestart and poseends switched to try to find a better
path. We only keep this reversed solution if it converges and yields
better worst-case mid-path forces.

5 Experimental results

The results in Section 5.2 and 5.3 were coded in Python 3.7, while
the optimization steps were performed in IPOPT 3.11.1 (Wächter and

Frontiers in Mechanical Engineering frontiersin.org14

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

Biegler, 2005) via Pyomo 5.7 (Hart et al., 2011; Bynum et al., 2021).
They were run on a laptop running Windows 10 with 32 GB of RAM,
using an Intel Core i7-9750H CPU processor (2.6GHz, 6 Cores,
12 threads). Additional computations were run on a desktop
computer running Windows 10 with 64 GB of RAM, using an
AMD Ryzen 9 3900X 12-Core processsor running at 3.79 Ghz.

For these computational studies, we use the following parameters.
All parameters are given in SI units, i.e., kilograms, meters, seconds, and
Newtons for masses, distances, time, and forces, respectively.

For even i, The values of pBP,LBi,j and pT P,LT,rest
i,j are equal to pBP,LB0,j

and pT P,LT,rest
0,j , respectively. For odd i, we have

pBP,LB
i,j � RoddpBP,LB

0,j

pT P,LT,rest
i,j � RoddpT P,LT,rest

0,j

(28)

Where Rodd is a 30-degree rotation about the z-axis,

Rodd �

�
3

√
2

−1
2

0

1
2

�
3

√
2

0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (29)

5.1 Pose generation

We describe the procedure for generating the dataset of poses that
we use to generate end-effector goal positions for the computational
studies in this work. This generation begins with the generation of
individual random poses for the intended SP configuration. Given that

the target 4-SP Assembler consists of four separate robots, poses can be
generated by applying kinematic operations on each constituent SP
separately, then stacking them, resulting in a full pose for the Assembler.

Pose generation for the individual SPs came in two varieties:
Uniform and Extreme. Uniform poses were generated by applying the
FK algorithm to a SP with a set of leg lengths uniformly generated
from their minimum and maximum extensions. Configurations that
resulted in an error or were at the “home” position (via error
correction) were discounted, and iteration continued until a set
number of poses (for the purpose of this paper, 10,000) were
generated. Extreme poses followed the same procedure, with the
added caveat that poses which did not meet a minimum measure
of rotation magnitude of 30-degrees were also rejected, leaving only
poses with the requisite tilt factor. Tilt was selected as being more
important than translation because a tilt in one platform has a much
greater change potential in a stack end effector than does translation.

Once individual SP poses were completed, the 4-SP stacked
poses could be constructed. There were three categories of poses
which we trialed: Uniform, Extreme, and Repeated. Uniform poses
drew from the aforementioned uniform individual poses, while
Extreme drew from the extreme poses. For both, four poses are
chosen at random from their constituent files and applied to create a
stacked pose. The end effector position (topmost plate of the
topmost SP) is recorded, along with the plate positions and leg
lengths of all constituent platforms. The Repeated poses differ
slightly in generation. They too draw from the extreme pose file,
but only one individual SP pose is chosen, and is applied to each
platform in the stack, such that the ultimate pose is severely biased
towards tilt in the direction of the constituent SP pose. For the
purposes of this analysis, each type of pose generator produced three

Experimental Results Parameters.

Parameter Value

NP 4

BP,TP,rest
i

[0,0,0.5069351,0,0,0]⊤

pBP,LB0,j 0.150037 0.150037 −0.040202 −0.109834 −0.109834 −0.040202
−0.040202 0.040202 0.150037 0.109834 −0.109834 −0.150037
0.016637 0.016637 0.016637 0.016637 0.016637 0.016637

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
⊤

pT P,LT,rest
0,j 0.109834 0.109834 0.040202 −0.150037 −0.150037 0.040202

−0.109834 0.109834 0.150037 0.040202 −0.040202 −0.150037
−0.016637 −0.016637 −0.016637 −0.016637 −0.016637 −0.016637

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
⊤

θmax 55°

θR, max 60°

(Lmin, Lmax) (0.38044, 0.580434)

fmax 889.644

mP
(i�0: NP) [7.235,14.47,14.47,14.47,7.235]⊤

mLT 0.15

mLB 0.2

dLT,CoG 0.05

dLB,CoG 0.089

g 9.81

Frontiers in Mechanical Engineering frontiersin.org15

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

files consisting of 100, 1,000, and 10,000 poses respectively. The
100 pose file is intended purely for testing, whereas the two larger
datasets for each type were earmarked for analysis.

5.2 Pose optimization

In this section, we compare the SIK and OPT methods for
solving the IK problem on the instances generated in Section 5.1. We
also include the force-related information for the initially generated
poses (GEN) as a reference.

Table 1 summarizes the performance of the SIK and OPT
methods on various instances, while Table 2 summarizes some
additional performance characteristics determined during meta-
analysis. A pose is said to be valid the end effector and base
plates are in the correct pose, and all constraints related to
kinematic validity are satisfied. A valid pose is said to be force-
valid if the maximum-force constraints are also satisfied. The Avg %
and Avg Max % Reduced metrics measure the percent reduction of
forces out of the instances for which both methods yield
kinematically valid poses. The % Improved metric measures the
percentage of poses for which OPT yielded a better pose then SIK,
out of the poses for which at least one of the methods yielded a valid
pose. Finally, the Avg OPT Time metric measures the average time
required for the OPTmethod to terminate, regardless of termination
status.

Note that the optimizer is always able to find kinematically
valid poses when initialized via the same-SP approach, even
when the initial guesses are not kinematically valid. This
effectiveness is especially noticeable for poses from the
difficult Repeated datasets, for the success rate from SIK was
only about 22%.

Figure 7 showcases the force-performance for the SIK and
OPT approaches. From the figure, note that, particularly for the
repeated dataset, the problems yielding kinematically valid poses
for SIK are significantly less likely to yield force-invalid poses
in OPT.

Figure 8 showcases the computational performance of the
optimizer over the Extreme and Repeated instances. The
Uniform performance plot is omitted due to its strong
similarity to the Extreme plot, but with one outlier requiring
more than 16s. Note that the time-performance for the
Repeated poses is more polarized than for other datasets: ~55%
(vs. ~40%) of poses solve in less than 1s, but ~10% (vs. ~3%)
require more than 2s to solve.

From Table 1 and Figure 7, we see a very strong degree of
improvement in the resulting forces compared to the SIK heuristic.
The forces are at least halved between 70% and 80% of the time, with
improvement factors over 8 in some cases. This improvement,
combined with the fast computation times observed in Figure 8,
renders the OPT approach a viable method for the generation of
force-optimized poses for SPs. Note that, in terms of forces, even the
SIK approach was typically able to find much better poses than were
initially generated, when it succeeded in generating a kinematically
valid pose.

5.3 Trajectory planning

In this section, we demonstrate the effectiveness of the trust
region method, then showcase how this method can be used in
conjunction with RRT* to obtain good obstacle-avoiding paths very
quickly after pre-processing.

To demonstrate the effectiveness of the trust region method, we
showcase a difficult motion: a transition between opposite bent-over
poses. We showcase using the thin-plated SP with εpos = 0.2, εrot � π

3,
λforce = 0.04, λpose = 0.96, and λavg = 0.05. The sample motion, along
with a plot showing the progression of the motion in terms of the
forces and themaximum plate global-frame distances from any plate
to the ending pose, is shown in Figure 9.

To demonstrate the consistency and performance of the trust
region method, we compare the trust region method with the direct
transformation and the RRT* approach.

A comparison trajectory planning results for all datasets are
shown in Table 3. The settings used for the trust-regionmethod were
εpos = 0.1, εrot � π

6, λ
force = 0.04, λpose = 0.96, and λavg = 0.05. Some

primary metrics of the solution are given as

1. Behaved: A path is considered behaved if the maximum leg forces
mid-motion do not exceed the maximum forces at the starting or
ending pose.

TABLE 1 Performance metrics for SIK and OPT, out of 10,000 random poses.

Dataset Solver Valid poses Force-valid poses

Uniform GEN 10,000 627

SIK 9,048 4,416

OPT 10,000 9,895

Extreme GEN 10,000 323

SIK 8,905 3,459

OPT 10,000 9,903

Repeated GEN 10,000 1,479

SIK 2,191 187

OPT 10,000 8,317

TABLE 2 Improvement of OPT over SIK, along with average computational time for 10,000 random poses.

Dataset Avg (%)Reduced Avg max (%)Reduced % improved Avg OPT time (s)

Uniform 34.03 57.4 100 1.15

Extreme 33.85 58.51 100 1.18

Repeated 37.81 64.67 100 1.19

Frontiers in Mechanical Engineering frontiersin.org16

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

FIGURE 7
Pose comparison of OPT, GENerated, and SIK forces, considering the poses for which both approaches yielded kinematically valid poses. (A)
Comparison of maximum leg forces, (B) Factor of improvement of OPT over each method. Forces are in Newtons. The mass of the actuators and
Assembler plates as well as a 5 kg mass at the final End Effector are taken to account in the experiments.

FIGURE 6
Some examples of pose initialization results. The red poses are the originals, while the green poses are reflected. (A) First try yields extreme angles and
flattened SP’s; (B) reflected try yields inverted pose with legs clipping through the plates; (C) initializations yield mirrored poses. Axes units are in meters.

Frontiers in Mechanical Engineering frontiersin.org17

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

FIGURE 8
Computation times for OPT over 10,000 poses for the Extreme and Repeated instance families.

FIGURE 9
Force-controlled transition between bent-over poses using trust region method. (Left) Axes units are in meters. (Right) Force in Newtons. The mass
of the actuators and Assembler plates as well as a 5 kg mass at the final End Effector are taken to account in the experiments.

Frontiers in Mechanical Engineering frontiersin.org18

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

TABLE 3 Comparison of trajectory planning results for trust-region vs. naïve FK, out of 1,000 random poses.

Dataset Method % behaved % force-valid Avg OPT time (s)

Uniform Trust 100 100 15.06

Naïve 1.0 78.5 7.79

Extreme Trust 99.9 100 15.35

Naïve 1.3 75.1 8.34

Repeated Trust 99.8 100 22.20

Naïve 0.3 19.7 9.08

FIGURE 10
Comparison of maximum forces between trajectory planning methods. (A) Comparison of maximum forces, (B) Factor of improvement of trust-
region method over naïve interpolated FK. The green line represents the maximum allowed force.

Frontiers in Mechanical Engineering frontiersin.org19

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

2. Force-Valid: A path is considered force-valid if either all leg forces
are valid throughout the motion, or if the path is behaved with
excessive leg forces at either the starting or ending pose.

3. Avg OPT Time: The average optimization time across all
tests.

We show a more complete picture of the maximum leg forces
resulting from the two approaches in Figure 10, and compare the
motion energies in Figure 11. To estimate the motion energies, we
assume that extending a leg under tensile forces and contracting a leg
under compression forces are free operations, and count only the
portions of the motions that require energy input.

The results reveal that the trust region method is far more
consistent, with maximum forces only rarely exceeding those at the
end effectors (in 0.1% of cases), and with maximum-force
improvements as high as a factor of 5. However, the gains in
maximum forces and consistency come at a price: the motion
energies tend to be far higher, exceeding the more direct motions
by as much as a factor of 7. Furthermore, the naïve approach solves
roughly twice as quickly as the trust region approach. Thus, in
practice, we recommend first computing the naïve motion, then
applying the trust region method if the motion is either near-
infeasible or very poorly behaved, with mid-motion max-forces
far higher then endpoint max-forces.

FIGURE 11
Comparison of motion energies between trajectory planning methods. (A) Comparison of motion energies, (B) Extra-energy factor of trust-region
method over naïve interpolated FK.

Frontiers in Mechanical Engineering frontiersin.org20

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

Note that, in practice, any leg motion requires some baseline
motor energy usage even under zero net forces, which would further
strengthen the energy advantage gained from the shorter naïve
motions.

5.4 Range of motion analysis

Using a stochastic method, we analyzed the range of motion for
the SIK method for both the thin and thick-plated SPs. The results
are shown in Figure 12.

For a single SP, the simplified range of motion (ROM)
methodology is to create a number of concentric scaled unit
spheres centered at the platform’s rest pose (a sphere with a
certain number of points evenly distributed about its exterior
surface) and calculate IK for each point, along with perturbing
the rotations at the extremes. Points that succeed are admitted into
the ROM cloud, and those that do not are discarded. The final ROM
graphic is created by utilizing the technique Alpha-Shapes in order
to create a concave hull illustrating the reachability of the platform.

6 Conclusion

We have presented a fast approach for the force-optimization of
stacked SPs that can significantly improve their range of motion under
heavy loads. In particular, the optimization step can result in reductions
of the worst-case leg forces by as much as an order of magnitude in
some cases. Further, we have presented a fast, consistent trust-region
trajectory planning approaches based on this pose optimization scheme,

and demonstrated the effectiveness of the approach in comparison to a
simple length-based optimization approach.

In the future, the ultimate goal is to use these stacked SP
structures to perform automated assembly operations. To
improve on the pose optimization approach, we suggest
exploring the use of more robust heuristics in conjunction with
the local optimizer proposed in this work. For example, to improve
pose optimization given fixed base and end-effector positions, one
could quickly compute rough bounds on the possible poses for the
middle plates, then apply heuristics such as a genetic algorithm or a
bidirectional search, with frequent or intermittent local optimization
steps, to quickly hone in on a solution. Alternatively, one could
construct some fast heuristic for generating randomized feasible or
near-feasible poses for a fixed end-effector position, then locally
optimize a moderate number of random poses in parallel to seek a
stronger solution with limited additional computational cost.

Lastly, it may be possible to make our objective function for the
trajectory optimization more realistic. Our objective tracks the
amount of energy used over time. However, since the amperage
needed for expansion and contraction of the leg joints is a nonlinear
function of the movement, we may be able to study this function
using our hardware to model a better objective function that reflects
the amperage used for each movement. This will require further
hardware experimentation.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

BB is responsible for the force-based inverse kinematics
optimization math, pose optimization, and trust-based trajectory
planning. WC is responsible for determining the kinematic
constraints for the Stewart platform chain, force calculations,
pose generation, and trajectory planning. SC created a hardware
load-cell equipped Stewart platform to test the force feedback and
use data to verify the mathematical model. RH and EK are advisors
for this project and provided ideas and guidance on approaches in
addition to writing and editing the manuscript. All authors
contributed to the article and approved the submitted version.

Funding

Some of this material is based on work supported by NASA via
contract 80LARC20P0020 for the “Assemblers: A modular and
reconfigurable manipulation system for autonomous in-space
assembly” project. Additionally, this material was also partially
based on work sponsored by the Northrop Grumman
Undergraduate Research Experience in Industrial & Systems
Engineering at Virginia Tech project. Any opinions, findings, and
conclusion or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the

FIGURE 12
Range of motion approximation for the test Assembler used in
our computational experiments. Axes units are in meters. Plot shows
points where the end-effector can be located. Note that there is a hole
in the middle of this image since certain shorter end-effector
points are not reachable.

Frontiers in Mechanical Engineering frontiersin.org21

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

Northrop Grumman Corporation. RH and BB are funded by
AFOSR grant FA9550-21-0107.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Author disclaimer

Any opinions, findings, and conclusion or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the Air Force Office of Scientific
Research.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmech.2023.1225828/
full#supplementary-material

References

Balaban, D., Cooper, J., and Komendera, E. (2019). “Inverse kinematics and sensitivity
minimization of an n-stack Stewart platform,” in 2019 IEEE/RSJ international
conference on intelligent robots and systems (IROS) (IEEE), 6794–6799.

Bangjun, L., Likun, P., and Tingtao, M. (2012). “Improving dynamic performance of
Stewart platforms through optimal design based on evolutionary multi-objective
optimization algorithms,” in Proceedings of the 1st international conference on
mechanical engineering and material science (Atlantis Press), 294–298.

Bingul, Z., and Karah, O. (2012). “Dynamic modeling and simulation of Stewart
platform,” in Serial and parallel robot manipulators - kinematics, dynamics, control and
optimization (InTech), 19–42.

Bynum, M. L., Hackebeil, G. A., Hart, W. E., Laird, C. D., Nicholson, B. L., Siirola,
J. D., et al. (2021). Pyomo–optimization modeling in python. 67third edition. Springer
Science & Business Media.

Charters, T., Enguica, R., and Freitas, P. (2009). Detecting singularities of Stewart
platforms. Mathematics-in-Industry Case Stud. J. 1, 66–80.

Chen, H., Chen, W., and Liu, J. (2007). Optimal design of Stewart platform safety
mechanism. Chin. J. Aeronautics 20 (4), 370–377. doi:10.1016/s1000-9361(07)60057-0

Cooper, J. R., Neilan, J. H., Mahlin, M., and WhiteAssemblers, L. M (2022). A
modular, reconfigurable manipulator for autonomous in-space assembly.

Cortes, J., and Simeon, T. (2003). 2003 IEEE international conference on robotics and
automation (cat. No.03CH37422). IEEE, 4354–4359.Probabilistic motion planning for
parallel mechanisms

Dorsey, J., Sutter, T., and Wu, K. (1992). Structurally adaptive space crane concept for
assembling space systems on orbit. NASA Langley Research Center. Technical report.

Dragan, A., and Srinivasa, S. (2014). Integrating human observer inferences into robot
motion planning. Auton. Robots 37 (4), 351–368. doi:10.1007/s10514-014-9408-x

Ernandis, R. (2021). PhD thesis. College Park: University of Maryland.Sampling based
motion planning for minimizing position uncertainty with Stewart platforms

Grosch, P., Gregorio, R. D., Lopez, J., and Thomas, F. (2010). “Motion planning for a
novel reconfigurable parallel manipulator with lockable revolute joints,” in 2010 IEEE
international conference on robotics and automation (IEEE), 4697–4702.

Hart, W. E., Watson, J.-P., and Woodruff, D. L. (2011). Pyomo: modeling and solving
mathematical programs in python. Math. Program. Comput. 3 (3), 219–260. doi:10.
1007/s12532-011-0026-8

Ichnowski, J., Avigal, Y., Satish, V., and Goldberg, K. (2020). Deep learning can
accelerate grasp-optimized motion planning. Sci. Robot. 5 (48), eabd7710. doi:10.1126/
scirobotics.abd7710

Islam, F., Nasir, J., Malik, U., Ayaz, Y., and Hasan, O. (2012). RRT*-Smart: rapid
convergence implementation of RRT* towards optimal solution. IEEE.

Karaman, S., and Frazzoli, E. (2011). Sampling-based algorithms for optimal motion
planning. Int. J. Rob. Res. 30 (7), 846–894. doi:10.1177/0278364911406761

Kuffner, J., and LaValle, S. (2000). RRT-connect: an efficient approach to single-query
path planning. In Proceedings 2000 ICRA. Millennium conference. IEEE international
conference on robotics and automation. Symposia proceedings (cat. No.00CH37065).
IEEE, 2, 995–1001.

LaValle, S. M. (1998). Rapidly-exploring random trees: a new tool for path planning.
The annual research report.

Lazard, D., and Merlet, J.-P. (1994). The (true) Stewart platform has 12 configurations,
2160–2165.

Lei, Z., and Xiaolin, D. (2013). “Optimize the redundant 6-DOF Stewart platform
based on ant colony optimization,” in Proceedings of 2013 3rd international conference
on computer science and network technology (IEEE), 1238–1241.

Li, Y.-W., Wang, J.-S., and Wang, L.-P. (2002). Stiffness analysis of a Stewart
platform-based parallel kinematic machine. Proc. 2002 IEEE Int. Conf. Robotics
Automation (Cat. No.02CH37292) 4, 3672–3677.

Lynch, K. M., and Park, F. C. (2017). Modern robotics: mechanics, planning, and
control. Cambridge, UK: Cambridge University Press. OCLC: ocn983881868.

Majid, M. Z. A., Huang, Z., and Yao, Y. L. (2000). Workspace analysis of a six-degrees
of freedom, three-prismatic- prismatic-spheric-revolute parallel manipulator. Int.
J. Adv. Manuf. Technol. 16 (6), 441–449. doi:10.1007/s001700050176

Merlet, J. P. (2006). Parallel robots. Springer.

Miura, K., and Furuya, H. (1988). Adaptive structure concept for future space
applications. AIAA J. 26 (8), 995–1002. doi:10.2514/3.10002

Moser, J., and Cooper, J. (2019). A reinforcement learning approach for the
autonomous assembly of in-space habitats and infrastructures in uncertain
environments. 22nd IAA Symposium on Human Exploration of the Solar System.
International Astronautical Conference.

Nguyen, C., Antrazi, S., Zhou, Z.-L., and Campbell, C. (1991). “Experimental study of
motion control and trajectory planning for a Stewart Platform robot manipulator,” in
Proceedings. 1991 IEEE international conference on robotics and automation (IEEE
Comput. Soc. Press), 2, 1873–1878.

Nguyen, C. C., and Antrazi, S. (1990). Trajectory planning and control of a 6 dof
manipulator with Stewart platform-based mechanism. NASA Goddard Space Flight
Center. Technical report.

Osa, T., Esfahani, A. M. G., Stolkin, R., Lioutikov, R., Peters, J., and Neumann, G.
(2017). Guiding trajectory optimization by demonstrated distributions. IEEE Robot.
Autom. Lett. 2 (2), 819–826. doi:10.1109/lra.2017.2653850

Quintero-Pena, C., Kyrillidis, A., and Kavraki, L. E. (2021). Robust optimization-based
motion planning for high-DOF robots under sensing uncertainty. IEEE.

Ríos, A., Hernández, E. E., and Valdez, S. I. (2021). A two-stage mono- and multi-
objective method for the optimization of general UPS parallel manipulators.
Mathematics 9 (5), 543. doi:10.3390/math9050543

Santos, J. C., and da Silva, M. M. (2017). Investigation of motion planning methods
with a kinematically redundant manipulator.

Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., et al. (2014). Motion
planning with sequential convex optimization and convex collision checking. Int.
J. Robotics Res. 33 (9), 1251–1270. doi:10.1177/0278364914528132

Sun, T., and Lian, B. (2018). Stiffness and mass optimization of parallel kinematic
machine. Mech. Mach. Theory 120, 73–88. doi:10.1016/j.mechmachtheory.2017.09.014

Szynkiewicz, W., and Błaszczyk, J. (2011). Optimization-based approach to path planning
for closed chain robot systems. , 21(4):659–670. doi:10.2478/v10006-011-0052-8

Toz, M., and Kucuk, S. (2013). Dexterous workspace optimization of an asymmetric
six-degree of freedom Stewart–Gough platform type manipulator. Robotics Aut. Syst. 61
(12), 1516–1528. doi:10.1016/j.robot.2013.07.004

Frontiers in Mechanical Engineering frontiersin.org22

Beach et al. 10.3389/fmech.2023.1225828

https://www.frontiersin.org/articles/10.3389/fmech.2023.1225828/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmech.2023.1225828/full#supplementary-material
https://doi.org/10.1016/s1000-9361(07)60057-0
https://doi.org/10.1007/s10514-014-9408-x
https://doi.org/10.1007/s12532-011-0026-8
https://doi.org/10.1007/s12532-011-0026-8
https://doi.org/10.1126/scirobotics.abd7710
https://doi.org/10.1126/scirobotics.abd7710
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1007/s001700050176
https://doi.org/10.2514/3.10002
https://doi.org/10.1109/lra.2017.2653850
https://doi.org/10.3390/math9050543
https://doi.org/10.1177/0278364914528132
https://doi.org/10.1016/j.mechmachtheory.2017.09.014
https://doi.org/10.2478/v10006-011-0052-8
https://doi.org/10.1016/j.robot.2013.07.004
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat. Methods 17, 261–272. doi:10.1038/s41592-019-0686-2

Volz, A., and Graichen, K. (2018). An optimization-based approach to dual-arm
motion planning with closed kinematics. IEEE.

Wächter, A., and Biegler, L. T. (2005). On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming.Math. Program. 106
(1), 25–57. doi:10.1007/s10107-004-0559-y

Wang, P., Yang, H., and Xue, K. (2015). Jerk-optimal trajectory planning for Stewart
platform in joint space. In 2015 IEEE international conference on mechatronics and
automation (ICMA), 1932–1937. IEEE.

Williams, R. L. (1995). “Survey of active truss modules,” in Volume 1: 21st design
automation conference (American Society of Mechanical Engineers).

Xie, Z., Li, G., Liu, G., and Zhao, J. (2017). Optimal design of a Stewart
platform using the global transmission index under determinate constraint of
workspace. Adv. Mech. Eng. 9 (10), 168781401772088. doi:10.1177/
1687814017720880

Yokoi, K., Komoriya, K., and Tanie, K. (1992). A method for solving inverse
kinematics of variable structure truss arm with high redundancy. J. Intelligent
Material Syst. Struct. 3 (4), 631–645. doi:10.1177/1045389x9200300406

Zhang, B. (2005). Design and implementation of A 6 dof parallel manipulator with
passive force control. PhD thesis, University of Florida.

Zucker, M., Ratliff, N., Dragan, A., Pivtoraiko, M., Klingensmith, M., Dellin,
C., et al. (2013). Chomp: covariant Hamiltonian optimization for motion
planning. Int. J. Robotics Res. 32 (9), 1164–1193. doi:10.1177/
0278364913488805

Frontiers in Mechanical Engineering frontiersin.org23

Beach et al. 10.3389/fmech.2023.1225828

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1177/1687814017720880
https://doi.org/10.1177/1687814017720880
https://doi.org/10.1177/1045389x9200300406
https://doi.org/10.1177/0278364913488805
https://doi.org/10.1177/0278364913488805
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2023.1225828

	Force-controlled pose optimization and trajectory planning for chained Stewart platforms
	1 Introduction
	1.1 Contributions
	1.1.1 Pose Optimization
	1.1.2 Trajectory Optimization
	1.1.3 Outline

	2 Assembler robot, notation, and transformations
	2.1 Notation
	2.2 Coordinate transformations
	2.3 Forward and inverse kinematics
	2.4 Kinematic validity constraints
	2.5 Problem difficulty
	2.6 Justification of four SPs in a stack

	3 Assembler IK optimization
	3.1 Definitions
	3.2 Force calculation
	3.3 IK heuristics
	3.3.1 Spline-based IK
	3.3.2 Same-SP initialization

	3.4 Force-based IK optimization
	3.4.1 Additional definitions
	3.4.2 Constraints
	3.4.3 Forces
	3.4.4 Improving robustness

	4 Trajectory planning
	4.1 Naïve direct transformation
	4.2 Trust region optimization
	4.2.1 Additional definitions
	4.2.2 Constraints
	4.2.3 Objective
	4.2.4 Iteration

	5 Experimental results
	5.1 Pose generation
	5.2 Pose optimization
	5.3 Trajectory planning
	5.4 Range of motion analysis

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Author disclaimer
	Supplementary material
	References

