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The current research examines the effectiveness of cryogenically treated (CT)
tungsten carbide cutting inserts on Custom450 stainless steel using multi-
objective soft computing approaches. The Taguchi-based L27 orthogonal array
was employed in the experiments. During milling operations, cutting force, surface
roughness, and cutting temperatureweremeasured at different spindle speeds (rpm),
feed rates (mm/min), and constant depths of cut (mm). The surface roughness and
chip morphology of the Custom 450 stainless steel machined by cryo-treated (CT)
and untreated (UT) cutting tool inserts were compared across various responses to
cutting temperature and force. This paper also carried out multi-objective
optimization, employing algorithm techniques such as Grasshopper Optimization
Algorithm (GHO), Grey Wolf Optimization(GWO), Harmony Search Algorithm(HAS),
and Ant line Optimization (ALO). The Multi-objective Taguchi approach and TOPSIS
were first used to optimize the machining process parameters (spindle speed, feed
rate, and cryogenic treatment) with different performance characteristics. Second, to
relate the machining process parameters with the performance characteristics
(cutting force, cutting temperature, and surface roughness), a mathematical model
was developed using response surface analysis. The created mathematical response
model was validated using ANOVA. The results showed that in IGD values of GHO,
GWO,HSA andALOmodule had 2.5765, 2.4706, 2.3647 and2.5882 respectively, ALO
has the best performance indicator. A Friedman’s test was also conducted, revealing
higher resolutionwith the ALOmethod thanwith the HSA, GWO, andGHOmethods.
The results of the scanning test show that the ALO approach is workable.
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Introduction

Stainless steels are widely used in springs, nuts, bolts, screws, and other fasteners, as well as
in the health, maritime, defence, and nuclear power plants industries. This is because of their
exceptional strength and robust resistance to oxidation and corrosion. Their superior
mechanical characteristics, low heat conduction coefficient, and remarkable resistance to
corrosion are the reasons behind this. Nevertheless, stainless steel alloys are usually used
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because of theirmany beneficial properties, such as their high flexibility,
high tensile strength, high fracture toughness, and high work hardening
rate. Aviation fittings, aerospace parts such as bushings, shafts, valves,
and certain screws, fuel tanks, exhaust components, high-temperature
engine parts, structural elements and cabin components, landing gears,
and other items are among the many applications for custom
450 stainless steel. In the past work, using a cryo-treated cutting
tool, custom 450 stainless steel is cut in different ways depending
on temperature, and cutting force. Additionally, it aims to examine the
workpiece’s surface morphology, chip anatomy, surface abrasion, and
tool morphology. Now the work is extended, the objective of this study
is to investigate how process parameters influence the performance of a
cryo-treated cutting tool during the milling of Custom 450 stainless
steel. This investigation employs soft computing techniques, including
the GHO, GWO, HSA, and ALO algorithms. Additionally, the study
evaluates the effectiveness of these algorithms using TOPSIS multi-
criteria decision analysis methods.

CNC milling processes are widely used than the conventional
machining in the manufacturing sector due to the accuracy. They
are frequently employed to create complex shapes like pockets and
slots. In industrial settings, hard materials are often milled using
tungsten carbide end mill cutting tools, which are characterized by
their higher hardness and wear resistance. This high hardness enables
the processing of materials with high strength-to-weight ratios. During
machining, cutting tools are subjected to high heat and variable loads.

The cutting tools used for machining should not deform or wear
excessively due to these conditions. Excessive softening of the cutting
toolmaterial, caused by high heat production duringmachining, leads to
increased tool wear and cutting forces. This is problematic as tool failure
is a common constraint, driving up component costs due to the need for
tool replacement. Numerous efforts have been made in the past to
enhance tool life and reduce surface roughness. However, optimizing
cutting forces and cutting temperaturewith cryogenically treated tools in
end milling of Custom450 stainless steel has not received significant
attention in the literature to date.

Cryogenic treatment of metal leads to the transformation of the
austenite phase into the martensite phase, characterized by a well-
structured grain structure and a body-centred tetragonal crystal
structure (Sert and Celik, 2019). The superior, tougher structure of
martensite provides high wear resistance. Cryo-treatment of cutting
tools has been identified as an effective method for reducing cutting
force, extending tool life, and improving wear resistance (Reddy et al.,
2009; Ozbek et al., 2016). (Korade et al., 2017) observed that combining
various types of cryogenic treatment with increasing tempering
temperatures and levels led to decreased hardness and increased
wear volume. Literature reviews indicate that cryogenically treated
coated carbide inserts have enhanced machining capabilities and
tool wear resistance (Kumar and Singh, 2015; Singla et al., 2018;
Panchagnula et al., 2023a; Panchagnula et al., 2023b). High spindle
speed operations benefit from increased tool life with cryo-treated
tungsten carbide inserts. Tool life and surface finishing are
significant factors in the machining process. Coatings and cryogenic
treatment have been shown to improve surface polishing and increase
wear resistance (Gill et al., 2012; Sahoo et al., 2020). (Jadhav et al., 2020)
performed turning operations on P20 tool steel using cryo-treated
cutting inserts, with experiments conducted using Taguchi’s
L27 orthogonal array and results analysed using MATLAB surface
plots and ANNs. Mukkoti et al. (Mukkoti et al., 2018) conducted end
milling on P20 steel using cryo-treated tungsten carbide cutting inserts,
with a focus on optimizing parameters affecting cutting forces and
power consumption, using regression analysis to relate process factors
to these outcomes.

Evolutionary algorithms have been utilized to optimize the
various machining processes (Kalita et al., 2020; Kalita et al., 2022;
Kalita et al., 2023a; Kalita et al., 2023b). Adhesive wear on the
studied surface was characterized by deformation lips, surface
cracks, and fractured ridges, with Particle Swarm Optimization
showing promising results for increased efficiency (Katoch et al.,
2019). (Manjunath and kumar, 2017) demonstrated that face
milling with cryo-treated tools can reduce surface roughness.
The work in this paper was theoretically validated by creating a
prototype using the BONN technique and real-time experimental
data. The optimization was conducted using a MATLAB Genetic
algorithm solver. The analysis of the direct and indirect effects of
process parameters on temperature rise assisted in selecting
parameters to minimize temperature increase, indicating the
stability of the end milling process. The study’s predictive
models for temperature rise are expected to align within a 95%
confidence interval of the experimental results (Kaushik et al.,
2018). Drilling on polymer composite material varied three process
constraints at four discrete levels: spindle speed, feed rate, and
weight percentage of graphite. The Taguchi-Grey Theory-Based
Harmony Search Algorithm (GR-HSA) was used for multi-

FIGURE 1
(A) Experimental setup (B) Cryogenic treatment setup.
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TABLE 1 Experimental design and output response.

Ex. No. Spindle
speed (SS)

Feed
rate (FR)

Cryogenic
treatment (CT)

Cutting
force (N)

Surface
roughness (µ)

Temperature
(°C)

1 1,500 0.1 0 356.5 0.4441 386

2 1,500 0.1 24 312.74 0.45322 352

3 1,500 0.1 36 283.7 0.6691 369

4 1,500 0.15 0 281.04 0.8201 346

5 1,500 0.15 24 275.2 0.7412 327

6 1,500 0.15 36 257.89 0.92333 344

7 1,500 0.2 0 205.67 1.4601 362

8 1,500 0.2 24 239.67 1.2891 337

9 1,500 0.2 36 252.4 1.4201 364

10 2,300 0.1 0 188.67 0.2912 405

11 2,300 0.1 24 149.68 0.2691 326

12 2,300 0.1 36 147.08 0.4719 341

13 2,300 0.15 0 157.1 0.72867 324

14 2,300 0.15 24 183.67 0.59 302

15 2,300 0.15 36 178.91 0.74851 320

16 2,300 0.2 0 152.4 1.371 328

17 2,300 0.2 24 204.92 1.1768 310

18 2,300 0.2 36 218.03 1.291 327

19 3,100 0.1 0 162.01 0.6141 421

20 3,100 0.1 24 168.95 0.567 378

21 3,100 0.1 36 153.4 0.756 390

22 3,100 0.15 0 197.62 1.06 358

23 3,100 0.15 24 238.93 0.921 335

24 3,100 0.15 36 245.97 1.0632 348

25 3,100 0.2 0 241.81 1.759 363

26 3,100 0.2 24 321.7 1.5381 343

27 3,100 0.2 36 342.21 1.6298 352

TABLE 2 Tuning parameters and their values for each algorithm.

Algorithm Parameter Value

GHO, GWO, HSA, ALO Population Size 100

No. of iteration (nitr) 100

Achieve size 100

GHO Cmin and Cmax 0.00004 and 1

GWO Scale Factor (SF) 2

HSA Harmony Memory Considering Rate (HMCR) 0.7

Pitch Adjusting Rate (PAR) 0.3

ALO Surface Roughness (SR) Vary with nitr and current iteration number (it)
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objective optimization and predictive modelling. The results
showed that the machining interface temperature increased with
GR-HSA spindle speed (2,500 rpm), softening the polymeric
material in the machining zone (Kumar et al., 2021). In multi-
pass face milling processes, parameters were optimized using
HSA and compared against HA and GA algorithms (Zarei et al.,
2009). The application of ant lion optimization in spacecraft
attitude controllers demonstrated the ability of the suggested
control action to prevent unnecessary long manoeuvring paths,
enhancing resistance to unwinding (Amrr et al., 2019). The forms
of two ship propellers were optimized using ALO, presenting
superior optimal designs in 3-bar truss design, cantilever beam
design, and gear train design. The ideal forms for ship propellers
illustrate the potential application of the proposed approach to
solve real-world problems with unpredictable search areas (Gao
and Zhao, 2019). An enhanced grey wolf optimization technique
was compared against algorithms like ALO, PSO, BA, regular
GWO, and others, showing superior performance in high-
dimensional situations (Khalilpourazari and Khalilpourazary,
2018). (Khalilpourazari and Khalilpourazary, 2018) suggested
the GWO for optimizing multi-pass milling process parameters,
using the Taguchi technique to find optimal values for the
algorithm’s essential parameters (Shunmugesh and
Panneerselvam, 2017). The results showed that the GWO
outperforms other solutions by reducing total production time
and offering the most workable solution for different cutting
strategies (Niu et al., 2019).

Previous research has focused on identifying the ideal level of
machining parameters for CNC milling operations, often employing
artificial intelligence approaches like genetic algorithms (GA),
artificial neural networks, and fuzzy logic. Commonly enhanced
input parameters include feed rate, depth of cut, and spindle speed
(Jia et al., 2012). However, limited research has been conducted on
using the length of the cryogenic treatment soaking as a process
parameter to achieve optimal machining parameters. Only a few
studies briefly mention the use of deep cryogenic treatment (DCT) to
enhance tool life, often focusing on single objectives like tool wear and
flank wear. Additionally, little work has examined the impact of
cryogenic treatment on thematerial of cutting tools. Thus, providing a
robust technological model to enhance the process’s productivity is
crucial. To address this gap, experimental tests were conducted to
investigate the impact of cryogenic treatment on end mill cutters on
the cutting force and temperature of Custom 450 stainless steel using a
CNC end milling process. These steels are particularly useful in
industries such as medical, food, nuclear power, and chemicals,
where precise machining into complex aeronautical fittings,
aerospace components like shafts, valves, and specific screws, cabin
components, and landing gears is essential (Kuntoğlu et al., 2020;
Kuntoğlu and Sağlam, 2021; Korkmaz et al., 2023a; Binali et al., 2023;
Korkmaz et al., 2023b). CNC end milling was carried out on a vertical
milling machine. Various soaking times (between 24 and 36 h) of CT
were applied to tungsten carbide end milling cutters. A scanning
electron microscope (SEM) was used to investigate the chip and
surface morphology of the cryo-treated and untreated tools. SEM
(Vickram et al., 2021; Palanivelu et al., 2022; Raj Deena et al., 2022)
imaging finds widespread utility in various fields.

Custom 450 is a martensitic stainless-steel grade that has
good resistance to corrosion up to about 650 °C and may be heat-

treated to significantly enhance its mechanical properties. There
are few articles regarding Custom 450 stainless steel in the
literature, despite the fact that there are various studies on the
machinability of stainless steels. Furthermore, publications do
not contain information on end milling on Custom 450 stainless
steel. The extensive use of Custom 450 stainless steel makes this
experiment essential. Despite the established use of cryo-treated
cutting tools in drilling, turning, and milling operations, the full
potential of milling processes on Custom450 stainless steel has
not been completely explored. While cryo-treated cutting tools
are well-recognized in various machining operations, the specific
application of end milling on Custom 450 stainless steel remains
under-investigated. Furthermore, in-depth studies focusing on
the end milling of Custom 450 stainless steel are still lacking.
Consequently, the objective of this study is to investigate how
process parameters influence the performance of a cryo-treated
cutting tool during the milling of Custom 450 stainless steel. This
investigation employs soft computing techniques, including the
GHO, GWO, HSA, and ALO algorithms. Additionally, the study
evaluates the effectiveness of these algorithms using TOPSIS
multi-criteria decision analysis methods.

Materials and methods

Materials and experimental details

The experiment involved end milling Custom 450 stainless
steel in a dry, room-temperature environment using cutting inserts
that were either untreated (UT), cryo-treated with 24 h of soaking
(CT 24 h), or cryo-treated with 36 h of soaking (CT 36 h). This was
conducted on a CNC vertical machining centre as shown in
Figure 1A. The dimensions of 160 mm × 75 mm × 20 mm
(4 numbers) were prepared. The chemical composition and
mechanical properties of Custom 450 stainless steel were
determined (31). The tool holder used was a standard indexable
type (Diameter: 16 mm, Length: 150 mm), and the cutting tool
insert was a TiAlN-coated tungsten carbide insert
(APMT1135PDR YBG205). The primary cutting parameters
employed in this study were spindle speed, feed rate, and depth
of cut. (31).

Cryogenic treatment

The tungsten carbide inserts underwent cryogenic treatment
in a specially designed cryogenic chamber (KRYO 550-16),
capable of cooling samples down to deep cryogenic
temperatures (-196 °C). The chamber’s temperature was
gradually reduced from room temperature (RT) to the
cryogenic temperature (CT, approximately -196 °C) at a rate of
2 °C/min as shown in Figure 1B. After being maintained at this
temperature (-196 °C) for 24 and 36 h, the temperature was
gradually raised back to room temperature (Devi and
Mahalingam, 2023). Additionally, the current experiment was
conducted to thoroughly examine the performance of cryo-
treated cutting tools on Custom 450 stainless steel. The
objective was to determine the optimal parameters at various
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spindle speeds (1,500 rpm, 2,300 rpm, 3,100 rpm), feed rates (0.1,
0.15, 0.2 mm/min), and a constant depth of cut (0.5 mm).

Design of experiments

The effectiveness of the system is evaluated using Design of
Experiments (DOE), which considers several factors
(Shanmugasundar et al., 2019a). DOE is an essential data collection
and analysismethodology used across various experimental scenarios. It

involves a planned experiment analyzing three aspects: factors, levels of
these factors, and responses. The primary goal of DOE is to compare
multiple solutions and identify the necessary factors to yield the best
output response. It facilitates the examination of the impact of various
input factors on a desired response. DOE is capable of identifying
significant interactions that might be overlooked when examining a
component at a time or dealing with multiple inputs simultaneously.

The foundation of the experiment design is the Taguchi-based
orthogonal array, which includes three parameters and corresponding
levels. This array can be used to develop optimal parameters, minimize

TABLE 3 ANOVA tables for the responses.

Source DF Cutting force (CF) Surface roughness (SR) Temperature (TT)

Adj SS F-value p-value Adj SS F-value p-value Adj SS F-value p-value

Model 9 100,269 471.41 0 4.70142 12244.8 0 19630.2 30.06 0

Linear 3 13,041 183.94 0 4.147 32402.47 0 6583.4 30.24 0

SS 1 9,831 415.96 0 0.16386 3841.02 0 616.6 8.5 0.01

FR 1 2,172 91.88 0 3.97312 93131.54 0 4908.8 67.65 0

CT 1 1,039 43.97 0 0.01002 234.86 0 1,058 14.58 0.001

Square 3 35,445 499.93 0 0.5491 4290.35 0 11087.2 50.94 0

SS*SS 1 35,087 1484.65 0 0.33484 7848.71 0 4797.8 66.12 0

FR*FR 1 88 3.72 0.071 0.09616 2253.96 0 3683.6 50.77 0

CT*CT 1 270 11.42 0.004 0.1181 2768.39 0 2605.8 35.91 0

2-Way Interaction 3 51,340 724.11 0 0.07345 573.86 0 1713.7 7.87 0.002

SS*FR 1 38,144 1,614 0 0.01248 292.43 0 630.7 8.69 0.009

SS*CT 1 3,223 136.36 0 0.00626 146.63 0 86.9 1.2 0.289

FR*CT 1 9,972 421.96 0 0.05471 1282.53 0 996 13.73 0.002

Error 17 402 0.00073 1233.5

Total 26 100,671 4.70215 20863.6

FIGURE 2
Feed rate vs. cutting force at various spindle speeds.
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treatments, reduce material costs, and determine the contributing factor
of each process parameter in machining. The L27 orthogonal array
consists of 13 columns, which can be assigned to test factors and their
interactions. For a 3-factor 3-level configuration, the total number of
tests required is given by 33 � 27. Therefore, a total of 27 experiments
are to be conducted in the L27 OA. Table 1 shows the
experimental design.

Regression models

TheMultiple Linear RegressionModel (MLRM) can be employed
inmathematics to calculate the response value (the output) in terms of
several parameters (the inputs) (Shanmugasundar et al., 2021a). This
study establishes three variants of the MLRM equations—linear,
quadratic, and interaction—using experimental data and
MATLAB’s “regress” function. These three models are represented
in their standard forms as Eq. 1, Eq. 2, and Eq. 3:

Fij � c1j + c2jX1i + c3jX2i + c4jX3i (1)
Fij � c1j + c2jX1i + c3jX2i + c4jX3i + c5jX1iX2i + c6jX1iX3i

+ c7jX2iX3i (2)
Fij � c1j + c2jX1i + c3jX2i + c4jX3i + c5jX1iX2i + c6jX1iX3i

+ c7jX2iX3i + c8jX
2
1i + c9jX

2
2i + c10jX

2
3i (3)

Here, Fij represents the calculated values of the i th experiment for
the j th response, c are the coefficients of variables, and X are
the variables.

Optimization methods

Metaheuristics are a popular set of algorithms that have been
used in diverse optimization applications (Shanmugasundar et al.,
2019b; Shanmugasundar et al., 2021b; Shanmugasundar et al.,
2022a; Shanmugasundar et al., 2023a; Shanmugasundar et al.,
2023b). In this study, Grasshopper Optimization Algorithm
(Meraihi et al., 2021), Grey Wolf Optimization (Mirjalili et al.,

2014), Harmony Search Algorithm (Yang, 2009) and Ant Lion
Optimization (Mirjalili, 2015) have been used.

Grasshopper optimization

Grasshopper Optimization Algorithm (GHO) is inspired by the
nymph and adult stages of grasshopper life (Meraihi et al., 2021). The
nymph stage involves short, leisurely steps, while the adult stage
features long, rapid movements. These behaviors underlie GHO’s
intensification and diversification phases. In the exploration phase,
GHO updates the position value of each grasshopper in the swarm
and evaluates fitness, symbolizing the search for food sources. During
the exploitation phase, it identifies the optimal solution among all
options, akin to seeking better food sources.

In GHO, each grasshopper represents a solution, and its position
(Xi) is modeled as follows:

Xi � Oi + Bi + Ri (4)
where Xi represents the i th solution’s position, Oi the interaction
between the solution and other swarms, Bi the gravitational pull, and
Ri the wind advection. The GHO algorithm is shown in Algorithm 1.

1. Initialize the grasshopper positions Xi(i � 1,2, . . . ,n)
2. Initialize Cmax, Cmin, and itemax

3. Calculate the fitness fi of each grasshopper

4. Store the best grasshopper T in a file

5. While (it<nitr)
• Update C

• For each search agent:

o Normalize the distance between grasshoppers

o Update the position of current grasshoppers

o Return grasshoppers to boundaries if they

go outside

• End For

• Update pareto optimal solutions

• Update T if a better solution is found and store

in file

• Increment I

6. End While

7. Convert fi into RCVi using TOPSIS.

8. Sort RCVi in descending order; display first

grasshopper’s data as optimal value.

Algorithm 1 Pseudocode for Grasshopper Optimization Algorithm.

It should be noted that TOPSIS (Hwang and Yoon, 1981), a
commonly used multi-criteria decision-making (Shanmugasundar
et al., 2022b; Shanmugasundar et al., 2022c) tool is used to convert
the fi into RCVi.

Grey wolf optimization
Grey Wolf Optimization (GWO) excels in unfamiliar,

challenging search areas and demonstrates strong convergence
and local optima avoidance (Mirjalili et al., 2014). It simulates
the Grey wolf pack’s predation process, which involves encircling,
hunting, and attacking. GWO reflects the strict social hierarchy of
grey wolves with alphas leading the pack, followed by betas, deltas,
and omegas. In GWO, agents a, b, and d determine the best hunting

FIGURE 3
Feed rate vs. surface roughness at various spindle speeds.
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strategy, while other wolves adjust their positions around the prey.
The GWO algorithm is shown in Algorithm 2.

1. Initialize the number of grey wolves and their

positions Xij(i � 1,2, . . . ,nw) and j � 1,2, . . . ,nd.

2. While (it<nitr)
• Determine the fitness function Fik(k � 1,2, . . . ,nf)

of each wolf

• Calculate Pareto optimal distance fi

• Sort fi in descending order; set as sfi and store the

first wolf’s data as Xit and Fit

• Using sorted data, assign Xa � X1, Xb � X2, Xc � X3

• Compute a � 2 − it × (2/nitr)
• For each wolf:

o Update position using calculated

values A1,C1,Da,X1; A2,C2,Db,X2; A3,C3,Dd,X3

o Check Xi within bounds

• End For

3. End While

4. Convert fi into RCVi using TOPSIS.

5. Sort RCVi in descending order; display first wolf’s

data as optimum value.

Algorithm 2 Pseudocode for Grey Wolf Optimization Algorithm.

Harmony search algorithm
Harmony Search Algorithm (HSA) (Yang, 2009) operates with

minimal mathematical constraints and does not require a predefined
dataset for parameter selection. It draws an analogy to artists seeking
harmonious music, with engineers seeking global solutions
determined by an objective function. The process involves
adjusting pitch and considering evolutionary algorithm
modifications to achieve optimal conditions. The main principles
of Harmony Search Process are: choose initial information from
search memory (memory-related concerns), select the closest value
from the harmony search memory (pitch modifications) and
randomly select values from the range of potential values. The
HSA algorithm is shown in Algorithm 3.

1. Initialize the population of parameters/harmony.

2. While (it<nitr)
• For each harmony (i � 1tonh):

o Calculate the fitness function (fi)

• End For

• Update pareto optimal solutions

• Store the best one with its parameters and

fitness value

• For each harmony (i � 1tonh):
o Improvise harmony based on rhmcr and rpar with

pitch adjustment

o Ensure new harmony stays within bounds

• End For

3. End While

4. Convert fi into RCVi using TOPSIS.

5. Sort RCVi in descending order; show the first harmony

as having the best value.

Algorithm 3 Pseudocode for Harmony Search Algorithm.

Ant lion optimization
Ant line Optimization (ALO) (Mirjalili, 2015), is another

popular metaheuristic which models the hunting behavior of ant
lions using traps. The algorithm represents an ant’s walk as
stochastic. The ALO algorithm is shown in Algorithm 4.

1. Initialize the population of ant and

antlion positions.

2. Calculate the fitness value (fi) of ants and antlions.

3. Save the best antlion and its position (elite antlion).

4. While (it<nitr)
• For each ant:

o Select an antlion using the roulette

wheel method.

o Slide randomly walking ants into a trap.

o Generate ant’s random walk route around the elite

antlion and the selected antlion.

o Normalize random walks.

o Calculate the position of ant.

• End For

• Calculate the fitness values (fi) of all ants.

• Update pareto optimal solutions.

• Combine ants and antlions.

• Sort according to fitness values and take the first

population size.

• Update the elite antlion.

5. End While

6. Convert fi into RCVi using TOPSIS.

7. Sort RCVi in descending order; display the first

antlion’s data as the optimum value.

Algorithm 4 Pseudocode for Antlion Optimization Algorithm.

The various parameter and their values for GHO, GWO, HSA
and ALO optimization are shown in Table 2.

Result and discussion

This section provides an analysis and comparison of results from
several optimization approaches, including Grasshopper
Optimization (GHO), Grey Wolf Optimization (GWO),
Harmony Search Algorithm (HSA), and Ant Lion Optimization
(ALO). The metaheuristic efficiency is assessed with an inertia
weight of 100, archive size of 100, and population size of 100.

Effects of variables on cutting force, surface
roughness and temperature

In mathematics, the response value (the output) can be
determined in terms of many parameters (the inputs) by using
the many Linear Regression Model (MLRM). This study uses
experimental data and the “regress” tool in MATLAB to establish
three variations of the MLRM equations: linear Equation of cutting
force, surface roughness and cutting temperature (Eqs 5, 6, 7)
respactively.

CF � 237.3 − 0.0272SS − 285FR − 0.463CT (5)
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SR � −0.750 + 0.0001172SS + 9.333FR + 0.00046CT (6)
TT � 392.2 + 0.00701SS + 313FR − 0.552CT (7)

In mathematics, the Multiple Linear Regression Model (MLRM)
can be used to compute the response value (the output) in relation to
multiple parameters (the inputs). Using experimental data and
MATLAB’s “regress” function, this study establishes three
variations of the MLRM equations: interaction Equations 8, (9),
and (10) respectively.

CF � 869 − 0.2610 SS − 3586 FR − 6.83CT + 1.409SSFR

+ 0.001118SSCT + 31.5FRCT (8)
SR � −0.765 + 0.000027SS + 8.95 FR + 0.0151CT + 0.00081SSFR

− 0.000002SSCT − 0.0737FRCT

(9)
TT � 351.1 + 0.0379SS − 95FR − 1.62CT − 0.181SSFR

− 0.000184SSCT + 9.94FRCT (10)

Equations (11)–(13) depict mathematical models for cutting
force, surface roughness, and temperature respectively. The
developed mathematical models were verified using ANOVA
shown in Table 3.

CF � 1480.9 − 0.8107SS − 4046FR − 6.013CT + 0.000119SS2

+ 1531FR2 − 0.02371CT2 + 1.4095SSFR + 0.001118SSCT

+ 31.45FRCT

(11)
Figure 2 illustrates the relationship between milling operation

factors and cutting forces. Increased spindle speed and feed rate
correlate with decreased cutting forces, indicating potential areas for
parameter optimization. Feed rate significantly influences cutting
forces, affecting tool life.

Surface roughness is impacted by feed rate, cryogenic treatment,
and spindle speed. Eq. (12) mathematically represents
surface roughness:

FIGURE 5
MLRS Performance comparison of CF, TT&SR. (A) Surface plot of CF vs CT, SS. (B) Surface plot of CF vs CT, FR. (C) Surface plot of CF vs FR, SS.

FIGURE 4
Feed rate vs. cutting temperature at various spindle speeds.
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FIGURE 7
(A) Normal probability plot (B) Pareto chart (C) Residual plot for cutting force.

FIGURE 6
Surface plot for influence of parameters on cutting force. (A) Surface plot of CF vs CT, SS. (B) Surface plot of CF vsCT, FR. (C) Surface plot of CF vs FR, SS.
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SR � 2.1159 − 0.001670SS − 6.239FR − 0.001916CT + 0.000000SS2

+50.64FR2 + 0.000496CT2 + 0.000806SSFR

−0.000002SSCT − 0.07367FRCT (12)

Figure 3 shows that cryo-treated inserts exhibit better surface
roughness than untreated inserts. Surface roughness decreases with
increased spindle speed and increases with feed rate from 0.1 to
0.15 mm/min and further with 0.2 mm/min.

The mathematical model for temperature (Eq. (13)) includes
spindle speed, feed rate, and cryogenic treatment as
independent variables:

TT � 777.0 − 0.1654SS − 3069FR − 4.148CT + 0.000044SS2

+ 9911FR2 + 0.0737CT2 − 0.1812SSFR − 0.000184SSCT

+ 9.94FRCT

(13)
Figure 4 demonstrates that cryo-treated cutting tools

outperform untreated inserts in terms of cutting temperature.
The MLRS Linear, Interaction, and Quadratic performance of

CF, TT, and SR are shown in Figure 5. The CF and TT quadratic
equations respond more favorably than the linear interaction.
Compared to the linear interaction, Figure 5 illustrates how well
the performs on the SR quadratic equation.

The design factors that most affect the three quality
attributes—manufacturing cost, tool life, and workpiece
quality—are found using ANOVA. A high F-value indicates a high
efficiency level for the parameter. Another important factor is the
p-value, which allows statistical analysis to be completed within a 95%
confidence interval. Consequently, the parameter affects the response
if the computed value is less than 5%. According to Table 3. Cutting
force, surface roughness, and temperature all had p values less than
0.05, indicating significant effects from each parameter on the output
responses. Similarly, input parameters have a considerable impact on
the output responses (square of FR, CT excluded), but no significant
influence is seen on cutting force from square of FR, CT and no
significant impact is seen on surface roughness from any of the
interactions.

Cutting force analysis

The graphical representations of the association between
response and cutting variables occur under specific cutting
settings that were indicated in the experimental design table.
Therefore, it is essential to comprehend how cutting conditions
affect cutting variables in order to better clarify these interactions.
Figure 6 displayed the combined effect of feed rate and cutting speed
on CF fluctuations on three-dimensional graphs. The cutting force

FIGURE 8
Surface plot for influence of parameters on surface roughness. (A) Surface plot of SR vs CT, FR. (B) Surface plot of SR vs CT, SS. (C) Surface plot of SR
vs FR, SS.
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FIGURE 9
(A) Normal probability plot (B) Pareto chart (C) Residual plot for surface roughness.

FIGURE 10
Surface morphology.
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reduced as the feed rate and cutting speed increased. The cutting
force reduced as the SS increased in the surface plot of CT and SS.
Pareto chart (Figure 7) indicates the least significant impact of feed
rate repetition on force in the X-direction. The primary effect plot
shows reduced cutting force with increased spindle speed. The
statistical analysis confirms the significant impact of milling
parameters on CF during titanium alloy milling. The response
surface plots demonstrate these effects, highlighting improved
thermal conductivity due to cryogenic treatment, influencing the
heat transfer from the tool’s tip and affecting cutting forces.

When attempting to determine the best pairings between two
sets of data, it can be helpful. By drawing an analogy with a
topographic map, the color and patterns in Surface Charts show
the places that fall within the same range of values. Three variables
are often used to generate a 3D Surface Plot: X, Y, and Z. Surface
plot for CF.

Surface roughness analysis

The surface plot of SR vs FR, SS in Figure 8 illustrates the effect
of process parameters on surface roughness. Initially, the surface
roughness was higher, but as the cutting speed increased, it
decreased and then increased again. Surface roughness rises in
dependence on the FR. According to the Pareto chart in
Figure 9, spindle speed and feed rate significantly influence

surface roughness. The production of built-up edges (BUE) at
specific spindle speeds reduces Ra. The SEM image in Figure 10
shows imperfections and micro-voids on machined surfaces caused
by carbide particles and BUE. Cryo-treated inserts perform better,
reducing heat generation and improving surface finishing. (39).

Temperature analysis

Effect of process parameters on temperature is shown in
Figure 11. Cutting temperature not decreases much. The Pareto
diagram (Figure 12) suggests a uniform impact of feed rate and
spindle speed on temperature. Residual analysis confirms a
consistent pattern across milling operations without specific
residue patterns, indicating the reliability of the experimental
setup. The results validate the model’s suitability for analyzing
cryo-treated cutting tool residues across various milling
performance variables. The residual plots demonstrate the
significant impact of input parameters on TT during machining.

Performance comparison of GHO, GWO,
HSA and ALO algorithms

The efficiency of ALO is compared with GHO, GWO, and
HSA. ALO shows superior performance in end milling

FIGURE 11
Surface plot for influence of parameters on cutting temperature. (A) Surface plot of TT vs CT, FR. (B) Surface plot of TT vs FR, SS. (C) Surface plot of TT
vs CT, SS.
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applications, achieving optimal parameter settings at a lower
iteration, as illustrated in the convergence plot (Figure 13). The
TOPSIS approach integrated the output responses from 22 runs
into a single objective, confirming the normal distribution
of output data from all algorithms. The p-value of > 0.05
further substantiates the reliability and consistency of the
ALO results.

Figure 14 reveals the impact of high heat loads and cutting zone
temperature on chip morphology, with thermal softening facilitating
machining at high temperatures. Increasing the feed rate results in
more serrated chip teeth, especially with cryo-treated cutting tool
inserts at high spindle speeds and feed rates. (36,41).

Table 4 presents the optimal process parameters and response
values obtained from 22 runs with a population size of 100 and
100 iterations for all algorithms. Table 5 shows the statistical
significance of these algorithms.

Inverted generational distance (IGD)

The IGD metric is utilized to compare the effectiveness
of Grasshopper Optimization (GHO), Grey Wolf
Optimization (GWO), Harmony Search Algorithm
(HSA), and Ant Lion Optimization (ALO) Algorithms. This
measure indicates the computational complexity of the

algorithms, as detailed in Khalilpourazari et al.
(Khalilpourazari et al., 2020). The IGD is calculated using the
Euclidean distance formula:

IGD �
�������∑n

i�1 Ed
2
i

n

√
(14)

where

Edi �
��������������∑no

j�1 Rij − Rbj( )2√
(15)

In this formula, Rij represents the i th run j th response value,
Rbj is the best j th response value, and Edi is the Euclidean distance.
The process involves calculating the Euclidean distance for each run
and then computing the IGD as the sum of each Euclidean distance
squared, divided by the number of runs (27 in this case).

Table 6 shows the IGD values for the selected algorithms. It is
evident from the IGD values that the ALO algorithm outperforms
GHO, GWO, and HSA.

Friedman test

The Friedman test, a non-parametric alternative to the
parametric two-way analysis of variance, is used to identify
significant differences in the behavior of the algorithms. This

FIGURE 12
(A) Normal probability plot (B) Pareto chart (C) Residual plot for cutting temperature.

Frontiers in Mechanical Engineering frontiersin.org13

Devi et al. 10.3389/fmech.2024.1353544

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1353544


FIGURE 13
Convergence plot for (A) cutting force (B) surface roughness (C) temperature.

FIGURE 14
Chip morphology.
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test assumes the null hypothesis of equality of medians between
the populations.

The test statistic value is calculated using the method described
in (Derrac et al., 2011; Zhang et al., 2023). The Friedman statistic
(Ff) is computed as:

Ff � 12r
a a + 1( ) ∑

j
R2
j −

a2 a + 1( )2
4

( ) (16)

Here, a is the number of algorithms, r is the number of runs, and
Rj represents the ultimate rank for each algorithm. The test statistic
is compared against the F-distribution table value. If the computed
Ff is higher than the table value, the result is considered significant.

The process for calculating the ranks involves:

1. Compiling the observed results for each algorithm/
problem pair.

2. Sorting the values for each problem starting with 1 (best
outcome) to a, with the ranks denoted as rji .

3. Calculating the ultimate rank Rj for each algorithm by
averaging the ranks obtained across all problems.

The Friedman statistic Ff is then calculated under the null
hypothesis that all algorithms perform similarly, and their ranks Rj

should be equal. (36).
According to Table 6, the IGD value for ALO is lower than for

the other algorithms, indicating superior performance. The
convergence graphs for Cutting Force (CF), Surface Roughness
(SR), and Temperature (TT) in Figure 12 further demonstrate
the effectiveness of the ALO algorithm compared to GHO,
GWO, and HSA. Therefore, it is concluded that ALO
outperforms GHO, GWO, and HSA.

Conclusion

The study aimed to optimize milling parameters such as spindle
speed and feed rate to minimize cutting force (CF) and surface
roughness (SR) using Grasshopper Optimization (GHO), GreyWolf
Optimization (GWO), Harmony Search Algorithm (HSA), and Ant
Lion Optimization (ALO) algorithms. Key findings, based on the
Multi-Criteria Decision Making (MCDM) method, are
summarized below:

• Analyses indicate that spindle speed, feed rate, and cryogenic
treatment are critical in milling. Increases in these parameters
correspond to higher CF and Temperature (TT).

• Utilizing cryo-treated (CT) inserts resulted in a 13% reduction
in surface roughness compared to untreated (UT) inserts,
particularly at high cutting parameters.

• Scanning Electron Microscope (SEM) examination of surfaces
milled with UT inserts at high speeds and feed rates revealed
significant grooves and ridges.

TABLE 4 Optimum process parameters and responses.

Particulars Parameters/Responses Algorithms

GHO GWO HSA ALO

Optimum Parameters SS 2417.8 2458.2 2437.7 2436.3

FR 0.1010 0.1004 0.1026 0.1000

CT 18.20 16.87 17.94 15.76

Optimum Responses CF 160.29 158.71 159.62 161.08

SR 0.2435 0.2424 0.2535 0.2329

TT 341.42 344.76 340.08 345.97

TABLE 5 Statistical analysis of relative closeness value.

Algorithms GHO GWO HSA ALO

Total 17 17 17 17

Mean 0.6121 0.5516 0.5055 0.6379

StDev 0.1951 0.1805 0.1336 0.129

Minimum 0.1485 0.2594 0.2405 0.2556

Q1 0.4575 0.3942 0.415 0.5561

Median 0.649 0.5197 0.5063 0.6884

Q3 0.7801 0.7198 0.6362 0.7377

Maximum 0.801 0.7878 0.6971 0.7437

Skewness -1.12 -0.2 -0.34 -1.77

Kurtosis 0.57 -1.5 -0.57 3.79

p-value 0.027 0.079 0.553 0.005

TABLE 6 Performance indicators.

Algorithms IGD Friedman mean rank Probability

GHO 1.283 2.5765 0.039

GWO 1.873 2.4706

HSA 1.17 2.3647

ALO 1.133 2.5882
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• Comparisons of CF, TT, and SR across various algorithms
showed that ALO achieved themost optimal parameter settings.

• TOPSIS, a multi-criteria decision analysis method, was used to
evaluate the effectiveness of GHO, GWO,HSA, and ALO, with
ALO demonstrating superior performance.

• The quadratic Multiple Linear Regression Model (MLRM)
equation proved to be the most accurate for end milling,
surpassing interaction and linear models.

• ALO showed higher efficiency in achieving closer-to-ideal
values in end milling, with an overall performance index of
1.133. The optimal parameters included a spindle speed of
2436.3 rpm, feed rate of 0.1 mm/min, and a cryogenic
treatment soaking period of approximately 15.76 h.

• ALO outperformed GHO, GWO, and HSA, as evidenced by
the lowest IGD value. The Friedman Test further
highlighted significant differences in the performance of
these algorithms.

For future research, exploring various levels of process factors is
planned. Implementing and comparing other well-known
metaheuristic approaches like Particle Swarm Optimization (PSO),
Artificial Neural Networks (ANN), Genetic Algorithms (GA),
Differential Evolution (DE), Jaya, Cuckoo, and Stochastic Fractal
Search with ALO will be considered. This comparative study aims
to identify the most effective metaheuristic approach for optimizing
end milling processes, thereby achieving precise parameter settings.
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